• 沒有找到結果。

結論與未來展望

在文檔中 中 華 大 學 (頁 81-88)

熱退火後金屬閘極的功函數偏移變大,此結果對於 gate-first 的製程將是不利的,換 言之,使用微波退火將有能力去解決這些問題,因其較低的製程溫度、好的加熱均勻 性以及經過熱退火後平帶電壓的偏移幾乎和未退火的相等。

如何利用新穎的微波退火技術去活化不同種類的金屬材料和元件源極、汲極的摻 雜以及利用 high-k / metal gate 來取代 oxide / metal gate 的堆疊,是我們未來研究的 方向。

參考文獻

Chapter 1

[1.1] 施敏 原著,黃調元 譯,“半導體元件物理與製作技術 (第二版)”,交大出版 社,2010。

[1.2] Peter Van Zant 原著,姜庭隆 譯,李佩雯 校閱,“半導體製程 (第四版) ”,

美商麥格羅〃希爾國際股份有限公司 台灣分公司,2001。

[1.3] H.-S.P. Wong, Beyond the Conventional Transistor, IBM J. Res. & Dev., vol.46, 2002.

[1.4] 張新君,“金氧半元件金屬閘極和高介電係數介電層之製程整合研究”,清華 大學工程與系統科學研究所,碩士論文,2006。

[

[11..55]] International Technology Roadmap for Semiconductors, 2005 updated.

[1.6] 許淑君,“以二氧化鉿為氮化鎵閘極介電層之金氧半電容器之研究”,成功大 學電機工程研究所,碩士論文,2008。

[1.7] Dieter K. Schroder, “Semiconductor Material and Device Characterization (2rd Edition),” John Wiley and Cons, Inc., 1998.

[1.8] P. Chakrabarti, et al., “Effect of Trap-assisted Tunneling (TAT) on the Performance of Homojunction Mid-Infrared Photodetectors based on InAsSb,Journal of Microwaves and Optoelectronics,” vol.5, no.1, pp.1-14, 2006.

[1.9] C. Hobbs, et al., “Fermi-level pinning at the poly-Si–Metal oxide interface,” in Symp.VLSI Tech. Dig, 2003.

[1.10] Xiao-Rong Wang, et al., “Work Function Modulation For TiN/Ta/TiN Metal Gate Electrode,” IEEE International Conference: Solid-State and Integrated Circuit Technology (ICSICT), 2010.

[1.11] I. De, et al., “Solid-State-Electronics,” vol.44, no.6, pp.1077-80, 2000.

[1.13] K. Mistry, et al., “A 45nm Logic Technology with High-k+Metal Gate Transistors, Strained Silicon, 9 Cu Interconnect Layers, 193nm Dry Patterning, and 100%

Pb-free Packaging,” IEDM Tech. Dig., pp.247-250, 2007.

[1.14] C.M. Lai, et al., “A Novel Hybrid High-k/Metal Gate Process for 28nm High Performance CMOSFETs,” IEDM Tech.Dig., pp.655-658, 2009.

[1.15] C. Auth, et al., “45nm High-k + Metal Gate Strain-enhanced Transistors,” VLSI Tech.Dig., pp.128-129, 2008.

[1.16] T.Y. Hoffmann, “HKMG gate-first vs gate-last options,” IEDM Conference, Proc.2009.

[1.17] Y.-J. Lee, et al., “3D 65 nm CMOS with 320°C microwave dopant activation,”

IEDM Tech.Dig., pp.31–34, 2009.

Chapter 2

[2.1] 江佩錞,“氮化鎢薄膜之製備及閘極特性之研究”,成功大學材料科學及工程 學系,碩士論文,2002。

[2.2] B.E. Deal, “Standardized terminology for oxide charges associated with thermally oxidized silicon,” IEEE Trans. Electron Dev., vol ED-27, 1980.

[2.3] Dieter K. Schroder, “Semiconductor Material and Device Characterization (2rd Edition),” John Wiley and Cons, Inc., 1998.

[2.4] 張博俊,“以氮化鋁材料作為矽基板上閘極介電層之研製與特性分析”,中原 大學電子工程學系,碩士論文,2005。

[2.5] Donald A. Neamen 原著,楊賜麟 譯,半導體物理與元件,美商麥格羅〃希爾 國際股份有限公司 台灣分公司,2005。

[2.6] 國家奈米元件實驗室水平爐管技術資料,

http://www.ndl.org.tw/cht/doc/3-1-1-0/T3/T3_B.pdf.

[2.7] K. Mistry, et al., “A 45nm Logic Technology with High-k+Metal Gate Transistors,Strained Silicon, 9 Cu Interconnect Layers, 193nm Dry Patterning, and 100% Pb-free Packaging,” IEDM Tech. Dig., pp.247-250, 2007.

[2.8] C.M. Lai, et al., “A Novel Hybrid High-k/Metal Gate Process for 28nm High Performance CMOSFETs,” IEDM Tech.Dig., pp.655-658, 2009.

[2.9] C. Auth, et al., “45nm High-k + Metal Gate Strain-enhanced Transistors,” VLSI Tech.Dig., pp.128-129, 2008.

[2.10] M. Leskela, “Atomic layer deposition (ALD): from precursors to thin film structures,” Thin Solid Films, vol.409, issue 1, pp.138–146, 2002.

[2.11] George S.M, et al., “Surface Chemistry For Atomic Layer Growth,” J. Phys. Chem, vol.100, pp.13121-13122, 1996.

layer deposition,” Chem. Vap. Deposition, vol.5, issue 1, pp.7-9, 1999.

[2.13] 陳忠慶,“非揮發性奈米晶體記憶體之研製”,中華大學電機工程學系碩士班 碩士論文,2010.

[2.14] T. L. Alford, et al., “Dopant activation in ion implanted silicon by microwave annealing,” Journal of Applied Physics, vol.106, issue 11, no.114902, 2009.

Chapter 3

[3.1] From Barron, A. Atomic Layer Deposition, Connexions Web site, http://cnx.org/content/m25737/1.2/, Jul 13, 2009.

[3.2] H. Fujioka, et al., QMCV simulator, online available, http://www-device.eecs.berkeley.edu/qmcv/index.shtml.

[3.3] 張新君,“金氧半元件金屬閘極和高介電係數介電層之製程整合研究”,清華 大學工程與系統科學研究所,碩士論文,2006。

[3.4] 李采慈,“薄膜製程射頻被動元件設計”,中央大學電機工程研究所,碩士論 文,2010。

[3.5] X. W. Lin, and D. Pramanli, “Future interconnect technologies and copper metallization,” Solid State Technology, pp.63, 1998.

[3.6] 陽靖孙,“銅薄膜高溫凝聚行為之研究”,成功大學材料科學與工程學系,碩 士論文,2002。

在文檔中 中 華 大 學 (頁 81-88)

相關文件