• 沒有找到結果。

本研究利用磁場平衡開發出一半主動式旋轉阻尼器,採用永久磁石提供固定 磁場,電磁線圈提供反相磁場吸引永久磁石之磁力線,減少永久磁石之磁力線通 過磁黏滯液體工作區,以降低阻尼器可提供之扭力矩。提供電流產生之磁場與阻 尼器輸出之力矩成線性關係,且本研究提出模組化系統,可以使用不同阻力環組 數、阻力間隙來調整、改變阻尼器輸出之扭力矩,以因應在不同的使用範圍之中。

本論文之研究貢獻如下:

1) 整合永久磁石與電磁線圈,達到控制阻尼力。

2) 開發出逆功能之半主動阻尼器,使其在無外加能源時,有較高的扭力矩 輸出效用。

3) 開發出使用範圍為線性調整之半主動式阻尼器。

4) 完整設計開發流程,包含設計概念、理論分析、實驗測試和有限元素分 析。

要完成可以應用於人體雙足之輔具上,必需有量測、控制系統和能量供給之 搭配,為了追求應用上之美觀,周邊裝置也須精簡研發,

未來研究方向:

1) 藉由縮小液體間隙或是增加永久磁石磁場來微小化及輕量化。

2) 開發完整的量測和控制系統,應用於足部輔具。

3) 建立完整模組化規格表。

參考文獻

[1] Perry, Jacquelin, “Gait analysis: normal and pathological function”, Thorofare ,NJ, Charles B. Slack ,1992.

[2] Ehrgott, R. and Masri, S.F., “Modeling the oscillatory dynamic behavior of electrorheological materials in shear.”, Smart Materials and Structures, No. 1, 1992, pp.275-285.

[3] Gavin, H.P., Hanson, R.D. ,and Filisko, F.E., “Electrorheological dampers, part 1:

analysis and design.” Journal Applied Mechanics, Vol. 63, ASME, 1996, pp.669-675.

[4] Chang, C.C. and Roschke, P., “Neural network modeling of a

magnetorheological damper.” Journal of Intelligent Material Systems and Structures, Vol. 9, 1998, pp.755-764.

[5] Stanway, R., Sproston, J.L., and Stevens, N.G., “Non-Linear Modelling of an Electro-Rheological Vibration Damper.” J. of Electrostatics, Vol. 20,

1987,pp.167-184.

[6] Gamoto, D.R. and Filisko, F.E., “Dynamic mechanical studies of

electrorheological materials: moderate frequencies.” Journal of Rheology, Vol.

35(3), 1991, pp.399-425.

[7] Burton, S.A., Makris, N., Konstantopoulos, I., and Antsaklis, P.J., “Modeling the response of ER damper: phenomenology and emulation.” Journal of Engineering Mechanics, No. 122, 1996, pp.897-906.

[8] Kamath, G.M. and Wereley, N.M., “A nonlinear viscoelastic-plastic model for electrorheological fluids.” Smart Materials and Structures, Vol. 6, No. 3, 1997, pp.351-359.

[9] Wereley, N.M., Pang, L. ,and Kamath, G.M., “Idealized hysteresis modeling of electrorheological and magnetorheological dampers.” Journal of Intelligent Materials, Systems and Structures, Vol. 9, 1998, pp.642-649.

[10] Dyke, S.J., Spencer Jr., B.F., Sain, M.K., and Carlson, J.D., “Seismic

responsereduction using magnetorheological dampers.” Proceedings of IFAC World Congress, vol. L, Inteernational Federal of Automatic Control, 1996a, pp.145-150.

[11] Spencer Jr., B.F., Dyke, S.J., Sain, M.K., and Carlson, J.D., “Phenomenological

123, No. 3, 1997, pp.230-238.

[12] Yang, G.,“Large-Scale Magnetorheological Fluid Damper for Vibration Mitigation: Modeling, Testing and Control.” Dissertation, Civil Engineering, University of Notre Dame, Notre Dame, Indiana,2001.

[13] Dyke, S.J., Spencer Jr., B.F., Sain, M.K., and Carlson, J.D. “Modeling and control of magnetorheological dampers for seismic response reduction.” Smart Materials and Structures, Vol. 5, 1996, pp.565-575.

[14] Dyke, S.J., Spencer Jr., B.F., Sain, M.K., and Carlson, J.D. ,“Seismic

responsereduction using magnetorheological dampers.” Proceedings of IFAC World Congress, vol. L, Inteernational Federal of Automatic Control, 1996a, pp.145-150.

[15] Zhou, L., Chang, C.C., and Spencer Jr., B.F., “Intelligent Technology- Based Control of Motion and Vibration Using MR Dampers.” Earthquake Engineering and Engineering Vibration, Vol. 1, No. 1, 2002, pp.100-110.

[16] Zhou, L. and Chang, C.C.,“Adaptive fuzzy control for nonlinear

building-magnetorheological damper system.” Journal of Structural Engineering, Vol. 129, No. 7, 2003, pp.905-913.

[17] Lord Corporation product bulletin. “LORD MR Rotary Brake (RD-2087-01).”

Cary, NC. , 2007. http://www.lord.com/Default.aspx?tabid=3364

[18] Carlson , J. D., Matthis W., and Toscanod J. R., “Smart Prosthetics Based On Magnetorheological Fluids”,Proceedings of SPIE - The International Society for Optical Engineering, Vol. 4332, 2001, pp.308-316.

[19] Phillips, R.W., “Engineering applications of fluids with a variable yield stress.”

Dissertation, University of California, Berkeley, California, 1969.

[20] Herschel, W.H. and Bulkley, R., “Model for time dependent behavior of fluids.”

Processing, American Society of Testing Materials, No. 26, 1926, pp.621.

[21] Carlson , J. D., “What makes a good MR fluid?”, International Conference on Electrorheological (ER) Fluids and Magneto-rheological (MR) Suspensions, July, 2001.

[22] Fernando, D. G., Koo, J. H., and Mehdi A., “A Review of the State of the Art in Magnetorheological Fluid Technologies – Part I--MR fluid and MR fluid models”,The Shock and Vibration Digest, Vol. 38, No. 3, May 2006, pp.203–219.

[23] Bölter, R. and Janocha, H., “Design rules for MR fluid actuators in different

Engineering, Vol. 3045, 1997, pp.148-159.

[24] Goldberg and Hsu, “Normal and pathological gait”, Atlas of Orthoses and Assistive Devices, Mosby Inc.,1997.

[25] Zeng, M. and Song, G., “A thin film magnetorheological (MR) damper/lock”, Proceesdings of SPIE, Vol. 5052, 2003, pp.44-52.

[26] Kim, J. H. and Oh, J. H., “Development of an above knee prosthesis using MR damper and leg simulator”, IEEE International Conference on Robotics and Automation, Vol. 4, 2001, pp.3686-3691.

[27] Herr, H. and Wilkenfeld, A., “User-adaptive control of a magnetorheological prosthetic knee”, Industrial Robot: An International Journal, Vol. 30, No.1, 2003, pp.42-55.

[28] Moreno, J. C., Rocon, E., Ruíz, A. F., Brunetti, F. J., and Pons, J. L., “Design and implementation of an inertial measurement unit for control of artificial

limbs:Application on leg orthoses”, Sensors and Actuators, B: Chemical, v 118, n 1-2, 2006, pp.333-337.

[29] 黃光裕, “磁性元件講義”, 國立台灣大學機械工程研究所授課講義,2002.

[30] 卜遠程, “磁流變流體之機械性質與消能機制的探討”,國立台灣大學博士論 文, 1998.

[31] Huang, J., Fu, L. J., and Wang, G. C., “Properties and applications of magnetorheological fluids”, Proc. of SPIE, Vol. 6040, 2005, pp.60402I.

附錄A 磁黏滯液體之性能表

附錄B 永久磁石之性能表

附錄C TRD600 扭力計規格表

相關文件