• 沒有找到結果。

本論文在電極尺寸上,使用理論模型將既有的的樣品尺寸放大,以符合量測之最小 電流需求;在製程上,將蝕刻接觸層此步驟加入 Multi-Step Etching,提升了製作上的成 功率,亦於樣品隔離之蝕刻步驟改變製程方法,以半切及全切方式取代蝕刻方式,減少 製程步驟;於軟體模擬,使用 COMSOL 模擬軟體將改變尺寸大小的樣品進行比較其電 流密度分佈以評估電流在高聚光倍率時的情況;最後,於製程中將元件實現,並量測連 續倍率之高聚光,亦證實了電極優化後降低串聯電阻之結果。

63

參考文獻

[1] 莊嘉琛,2008,太陽能工程-太陽電池篇,台北:全華圖書公司。

[2] C. Baur, A. W. Bett, F. Dimroth, G. Siefer, M. Meusel, W. Bensch, W. Kostler, G. Strobl,

“Triple-Junction III-V Based Concentrator Solar Cells :Perspectives and Challengess,”

Jounal of Solar Energy Engineering, vol. 129, pp. 258-265, 2007.

[3] H. B. Serreze, “Optimizing Solar Cell Performance Simultaneous Consideration of Grid Pattern Design Interconnect Configuration,” 13th IEEE Photovoltaic Specialists Conference, 1978.

[4] G. M. M. W. Bissels, M. A. H. Asselbergs, J. J. Schermer, E. J. Haverkamp, N. J.

Smeenk and E. Vlieg, “A Genuine Circular Contact Grid Pattern for Solar Cells,”

Progress in Photovoltaics: Research and Applications, vol. 18, pp. 517–526, 2011.

[5] K. Nishioka, T. Takamoto, T. Agui, M. Kaneiwa, Y. Uraoka, T. Fuyuki, “Evaluation of InGaP/InGaAs/Ge triple-junction solar cell and optimization of solar cell’s structure focusing on series resistance for high-efficiency concentrator photovoltaic systems,” vol.

90, pp. 1308-1321, 2006.

[6] S. Okamodo, M. Nishida, T. Shindo, Y. Komatsu, S. Yasue, M. Kaneiwa and T.

Nanmori, “23.5% Efficent Silicon Solar Cell with Rear Micro Contacts of c-Si/pc-Si:H Heterostructure,” 26th IEEE Photovoltaic Specialists Conference, 1997.

[7] A. R. Moore, “An Optimized Grid Design a Sun-Concentrator Solar Cell,” RCA Review, vol.40, pp. 140-152, 1979.

[8] C. Algora, S. Member, E. Ortiz, I. R. Stolle, V. Díaz, R. Peña, V. M. Andreev, V. P.

Khvostikov, and V. D. Rumyantsev, “A GaAs Solar Cell with an Efficiency of 26.2% at 1000 Suns and 25.0% at 2000 Suns,” Transactions on Electron Devices, vol. 48, pp.

840-844, 2001.

[9] Y. Sakurada, Y. Ota, and K. Nishioka “Simulation of Temperature Characteristics of

64

InGaP/InGaAs/Ge Triple-Junction Solar Cell under Concentrated Light,” Jpn. J. Appl.

Phys. 2011. P-type Al0.5In0.5P by Ion Implantation,” Appl. Phys. Lett., vol. 63, pp. 3161-3163, 1993.

[15] 吳健銘,民 98,高聚光型 In0.49Ga0.51P/GaAs/In0.3Ga0.7As 三接面太陽能電池結構與 電極之光電特性模擬與分析,國立彰化師範大學光電科技研究所碩士論文。

[16] K. Nishioka, T. Takamoto, T. Agui, M. Kaneiwa, Y. Uraoka, T. Fuyuki, “Evaluation of InGaP/InGaAs/Ge triple-junction solar cell and optimization of solar cell’s structure focusing on series resistance for high-efficiency concentrator photovoltaic systems,” vol.

90, pp. 1308-1321, 2006.

[17] V. Garboushian, K.W. Stone, A. Slade, “The Amonix High-Concentration Photovoltaic System,” Concentrator Photovoltaics, vol. 130, pp. 253-277, 2007.

[18] Y. Lijie LI. Fuxiao J. Youquan C. Xinyu, “Formation of Ohmic Contacts to P—GaAs,”

Research & Progress of SSE, vol. 27, pp. 427-430, 2007.

[19] K. Nishioka, T. TAKAMOTO, T. Agui, M. Kaneiwa, Y. Uraoka, T. Fuyuki,

“Evaluation of InGaP/InGaAs/Ge Triple-Junction Solar Cell under Concentrated Light by Simulation Program with Integrated Circuit Emphasis”, Japanese Journal of Applied Physics, vol. 43, pp. 882-889, 2004.

[20] 卓輝,民 102,高聚光太陽能電池新樣式優化電極之研製,國立高雄大學電機系碩

65

士論文。

66

附錄

根據表面橫向功率消耗的公式計算,由於電極間距與電流的照顧面積有關,因此 電極間距越大,所涵蓋的面積愈大,而半導體所產生的光電流流至電極被收集的路徑也 愈遠,其造成的消耗功率為三種(電極電阻消耗功率、接觸電阻功率消耗、表面橫向電 阻功率消耗)功率消耗之中影響權重最大,於此,我們於製程最小線寬容許範圍內,設 計了三種相同尺寸(Size=1mm2)、相同遮罩率(S=6%)的三種不同電極間距(P=25m, 100m, 125m)之電極圖形,最後將樣品每顆圖形利用半切技術隔開,最後比較在連續 高聚光下時的特性。圖 5-7 顯示電極間距 25m 的圖形在 120 倍高聚光下擁有較高的短 路電流,圖 5-8 在不同聚光倍率下比較三種電極間距之填充因子特性,由圖可看出於高 聚光倍率時電極間距的差異較明顯,猜測為低聚光倍率時所產生的光電流較小,產生的 串聯電阻效應影響較不明顯,然而隨著聚光倍率提升、溫度提升,電極間距較小的優勢 漸顯,最後在考慮製程上的因素,較密集、線寬較細之電極間距的圖形仍需要考量目前 線寬大小>2m 的限制。

I-V 曲線[Size=1mm2, Pattern=Normal, S=8%, @60x Suns(AM1.5) P=25m, 100m, 125m]

67

填充因子[Size=1mm2, Pattern=Normal, S=8%, P=25m, 100m, 125m]

相關文件