• 沒有找到結果。

8. 低溫 250 oC、5.4x10-2 s-1擠製的 AZ31 管材,在高溫 400 oC、2x10-4 s-1拉伸測試可獲 得最高超塑性伸長率為 631%,在中溫 300 oC、2x10-4 s-1拉伸測試也可獲得 605%不 錯的伸長率。

9. 中溫 350 oC、1.3x10-2 s-1擠製的 AZ31 管材,在中溫 300 oC、2x10-4 s-1拉伸測試所獲 得超塑性伸長量為 607%,是中溫擠型之冠。

10. 擠製加工中,若斷面積減縮率越大,則加工所需的壓力就會越大,故在相同的推桿 作用力之下來擠製成品,實驗證明擠製管材時具有更多的壓應力來促使管材細化之 作用。

11. 採用低溫 250 oC 所擠製的管材,不論是在 200 oC、300 oC、400 oC 的不同溫度條件 下進行拉伸測試,所獲得的伸長量都是最高的,中溫 300 oC、350 oC 擠製的管材伸 長量較接近,而高溫 400 oC 所擠製的管材,同樣是在 200 oC、300 oC、400 oC 的不 同溫度條件下進行拉伸測試,所獲得的伸長量都是最低。

12. 以低溫 250 oC 所擠製的管材其超塑性最好,而高溫 400 oC 所擠製的管材其超塑性最 差,擠型溫度比擠型速率對管材之晶粒與超塑性影響較大。

13. 從 SEM 的顯微觀察,得知室溫拉伸測試的破斷面,是呈現有不少微小 dimples,沿 著擠型方向所進行的室溫拉伸測試,破斷面均是延性破裂。

14. 從 SEM 的顯微觀察,得知室溫液壓鼓脹破裂後破斷面,是呈現一長條撕裂狀的脆性 破壞。

15. 從拉伸測試結果得知,高溫 400 oC 之 m 值為 0.40,屬於以晶界滑移變形機構為主導。

中溫 300 oC 的 m 值為 0.29,是以溶質拖曳型之差排潛變變形機構為主導;低溫 200

oC 之 m 值,只有 0.22,變形機構為 power law dislocation creep。隨著溫度的上升 m 值就逐漸上升,顯示晶界滑移較順暢。

16. 液壓鼓脹成形實驗所獲得的 K、n 值,與拉伸測試所獲得的 K、n 值大致相符合,如 果擠製的 AZ31 管材外徑尺寸增加、管材內壁厚度減少,或液壓鼓脹成形過程中,

溫度增加,則所獲得的鼓脹高度必能相符合一致。

17. 所擠製的 AZ31 管材內的所有晶粒,是與 basal planes 相互平行著,差排的滑移只能

被限制在 2D 的平面滑移上,所以擠製的 AZ31 管材要在 3D 形成橢圓形的自由鼓脹 是相當困難的,尤其是在室溫環境之下。

參考文獻

1. I. J. Polmear, “Magnesium Alloys and Application”, Materials Science and Technology, 10 (1994), p. 1.

2. R. W. Cahn, P. Hasssen, and E. J. Kramer, “Structure and Properties of Nonferrous Alloys”, Materials Science and Technology, 8 (1996), p. 131.

3. M. M. Avedesian and H. Baker, ASM Specialty Handbook— Magnesium and Magnesium Alloys, ASM Metals Park, OH (1999), p. 13.

4. 李信委,“AZ31B 鎂合金室溫至 500oC 之拉伸性質與其變形組織探討”,國立成 功大學材料科學及工程學系,碩士論文,2002。

5. 戴國政,郭晉全,詹德泉,“鎂合金高溫性質之基礎研究”,中國材料科學學會 論文集,2001。

6. 張志坤,黃庭彬,陳復國,“鎂合金 AZ31 板材之沖壓製程”,工業材料雜誌,186 期,91 年 6 月,p. 99。

7. 葉圳轍,“鎂合金成型產業現況”,工業材料雜誌,186 期,2002 年 6 月,p. 82。]

8. T. Lyman, H. E. Boyer, P. M. Unterweiser, J. E. Foster, J. P. Ho ntas, and H. Lawton,

“Magnesium and Magnesium Alloys ”, Metals Handbook, 1, Properties and Selection of Metals, 9th.(1977), p. 1067.

9. 陳盈志,吳炳興,廖芳俊,“AZ31B 鎂合金銲補制製程的探討”,工業材料雜誌,

186 期,91 年 6 月,p. 106。

10. Y. Kojima, “Project of Platform Science and Technology for Advanced Magnesium Alloys”, Materials Transactions, 42, 7 (2001), p. 7.

11. 馬寧元,“鎂於電子工業之應用”,中華民國鍛造協會會刊,第 10 卷,第 3 期,

90 年 9 月,p. 28。

12. S. F. Su, J. C. Huang, H. K. Lin, and N. J. Ho, “Electron-Beam Welding Behavior in Mg-Al- Based Alloys ”,Metallurgical and Materials Transactions A, 33A (2002), P.

1461.

13. 高永洲,“鎂合金鍛造技術簡介”,中華民國鍛造協會會刊,第 8 卷,第 2 期,

88 年 6 月,p. 18。

14. 曾寶貞,“壓鑄用鎂合金的特性與動向”工業材料雜誌,156 期,1999 年 12 月,

p. 153.

15. 王建義,“鎂合金之環保化”,工業材料雜誌,186 期,2002 年 6 月,p.125。

16. H. K. Lin, S. F. Su, and J. C. Huang, “On Superplasticity and Welding Behavior in Mg-Al- Zn Base Alloys”,中國材料科學學會論文集,2001。

17. 曾義豐,“鎂合金 AZ31B 的脈衝 Nd: YAG 雷射疊焊接技術開發”,中國機械工程 學會,第十七屆全國學術研討會,89 年。

18. 蔡幸甫,“筆記型電腦應用鎂合金的幾個重大理由”,工業材料雜誌,154 期,88 年 10 月,p. 116。

19. H Zenner and F. Renner, “International Material Behavior of Magnesium Die Castings and Extrusions”, 24 (2002), p. 1255.

20. 林鉉凱,“析出型 AZ91 低溫超塑性之研究”,國立中山大學材料科學與工程研究 所,碩士論文,2001。

21. M. C. Kuo, J. C. Huang, M. Chen, and M. H. Jen,中國材料科學學會論文集,2002。

22. G. V. Raynor, “The Physical Metallurgy of Magnesium and Its Alloys”, Pergamon Press, London, (1957), p. 1.

23. N. Ogawa, M. Shiomi, and K. Osakada, “Forming Limit of Magnesium Alloy at Elevated Temperatures for Precision forging”, International Journal of Machine Tools &

Manufacture, 42 (2002), p. 607.

24. I. J. Polmear, “Recent Developments in Light Alloys ”, Materials Transactions, JIM, 37 1 (1996), p. 12.

25. 蘇勢方,“鎂基材料電子束和焊接冶金特性與織構研究”,國立中山大學材料科 學與工程研究所,碩士論文,2001。

26. A. A. Luo, “Magnesium: Current and Potential Automative Applications ”, JOM, (2002) 2, p. 42.

27. 陳錦修,“鎂合金在汽車工業之應用”,工業材料雜誌,186 期,2002 年 6 月,

p. 148。

28. 林東毅,魏振仁,林義翔,“鎂合金時效行為之研究”,中國材料科學學會論文 集,2001。

29. 王建義,“鎂合金板材之壓型加工技術”,工業材料雜誌,170 期,2001 年 2 月,

p.132。

30. M. H. Yoo, S. R. Agnew, J. R. Morris, and K. M. Ho, “Non-Basal Slip System in HCP Metals and Alloys: Source Mechanisms”, Materials Science and Engineering, 319-321 (2001), p. 87.

31. 范元昌、蘇健忠、翁震灼、陳俊沐,“鋁、鎂合金半固態觸變鑄造技術”,工業 材料雜誌,186 期,2002 年 6 月,p. 131。

32. 王文寬,“鎂板材的製造方法”,工業材料雜誌,192 期,91 年 12 月,p. 125。

33. 邱垂泓,“鎂板的應用及其製造方法”,工業材料雜誌,190 期,91 年 10 月,p. 164。

34. C. Y. Wu and Y. C. Hsu, “The Influence of Die Shape on The Flow Deformation of Extrusion Forging”, Journal of Materials Processing Technology, 124 (2002), p. 67.

35. G.. E. Dieter and D. Bacon, “Mechanical Metallurgy”, SI Metric Edition, (2001), p. 616.

36. S. Lee, Y. H. Chen, and J. Y. Wang, “Isothermal Sheet Formability of Magnesium Alloy AZ31 and AZ61”, Journal of Materials Processing Technology, 124 (2002), p. 19.

37. 施詠堯,郭敏郎,曹紀元,“噴覆成型散熱片 6063 鋁合金擠型性質研究”,中國 材料科學學會論文集,2001。

38. 賴詩文,“鋁合金擠型製程技術”,工業材料雜誌,134 期,87 年 2 月,p.101。

39. 廖招順,“園管熱間擠製加工研究”,國立台灣工業技術學院,機械工程技術研

究所,碩士論文,1995。

40. Y. M. Hwang and M. T. Yang, “Study of Hydrostatic Extrusion Processes with Extra-High Extrusion Ratio”, Journal of Key Engineering Materials, 233-236 (2003), p.

311.

41. S. Kalpakjian, “Bulk Deformation Processes”, Manufacturing Processes for Engineering Materials (Third Edition), Addison-Wesley Publishing Company, Menlo Park, California, USA, (1997), p. 295.

42. 李少濠,“靜液壓擠壓成形技術之發展現況及其應用介紹”,中華民國鍛造協會 會刊,第 10 卷,第 1 期,90 年 4 月,p. 18。

43. G.. E. Dieter, Mechanical Metallurgy, McGraw-Hill Book Co., (1988), p. 633.

44. K. Laue and H. Stenger, “Extrusion Processes”, Extrusion Processes, Machinery, Tooling, (1989), p. 63.

45. T. Murakami, J. X. Xie, H. Takahashi, K. Ikeda, and K. I. Takaku, “Forming of A7475 and A5056 Pipes by Hot Multi-Billet Extrusion: Hollow Section Forming by Multi- Billet Extrusion”, J. of JSTP Vol. 33, No. 380, Sep., (1992), p. 1045.

46. S. H. Hsiang and C. S. Liao, “Study on Hot Extrusion”, Journal of Materials Technology, 63 (1997), p. 254.

47. A. Mwembela, E. B. Konopleva, and H. J. McQueen, “Microstructural Development in Mg Alloy AZ31 During Hot Working”, Scripta Materialia, 37,11(1997), p. 1789.

48. 向四海,廖招順,“圓管熱間擠製加工之研究”,中國機械工程學會第十二屆學術 研討會論文集,民國 84 年 11 月,p. 423。

49. 向四海,楊學奇,“異種金屬在熱擠製加工中之結合狀態分析”,中國機械工程學 會第十四屆學術研討會論文集,民國 86 年 12 月,p. 183。

50. K. T. Chang and J. C. Choi, “Upper-Bound Solutions to Tube Extrusion Problems through Curved Dies”, J. Eng. Industry, Trans, ASME, Nov. (1972), p. 1108.

51. M. Mabuchi, K. Kubota, and K. Higashi, “New Recycling Process by Extrusion for

Machined Chips of AZ91 Magnesium and Mechanical Properties of Extruded Bars”, Materials Transactions, JIM, 36, 11 (1995), p. 1249.

52. M. M. Potapenko, V. A. Drobishev, V. Y. Filkin, I. N. Gubkin, V. V. Myasnikov, A. D.

Nikulin, E. N. Shingarev, G. P. Vedernikov, S. N. Votinov, V. S. Zurabov, and A. B.

Zolotarev, “Manufacture of Semifinished items of Alloys V-4Ti-4Cr and V-10Ti-5Cr for Use as a Structural Material in Fusion Applications”, Jour nal of Nuclear Materials, 233-237 (1996), p. 438.

53. E. F. Kukovitsky, S. G. L’vov, N. A. Sainov, V. A. Shustov, and L. A. Chernozatonskii,

“Correlation Between Metal Catalyst Particle Size and Carbon Nanotube Growth”, Chemical Physics Letters, 355 (2002), p. 497.

54. C. W. Wu and R. Hsu, “Extrusion of Three- layer Composite Hexagonal Clad Rods”, Journal of Materials Processing Technology, 123 (2002), p.47.

55. J. L. Alcaraz, J. M. Martinez-Esnaola, and J. G.. Sevillano, “An Analytical Approach to The Stress Field in The Extrusion of Bimetallic Tubes”, Int. J. Solids Structures, 33, 14 (1996), p. 2075.

56. 黃建成,“管材液壓鼓脹成形之力學解析”,國立中山大學機械與機電工程研究 所,碩士論文,2000。

57. M. Ahmetoglu, K. Sutter, X. J. Li, and T. Alan, “Tube Hydroforming: Current Research, Applications and Need for Training”, Journal of Materials Processing Technology, 98(2000), p. 224.

58. Y. K. Fuh, “Current Status of the Tube Hydroforming (THF) Technology and Applications ”, Forging, 12, 1(2003), p. 37.

59. 蔡錦文,“管材液壓鼓脹之實驗與模擬”,國立中山大學機械與機電工程研究所,

碩士論文,2002。

60. M. Ahmetoglu and T. Altan, “Tube Hydroforming: State-of-the-Art and Future Trends”, Journal of Materials Processing Technology, 98(2000), p. 25.

61. F. Dohman and C. Hartl, “Tube Hydorforming – Research and Practical Application”, Journal of Materials Processing Technology, 71 (1997), p.187.

62. Y. K. Lin, C.C. Huang, and Y.M. Hwang, “Analysis on Tube Bulge Hydroforming Process with Consideration of Ellipsoidal Tube Surface”, Proceedings, International Conference on Advanced Materials Processing Technologies (AMPT'01), 2 (2001), p.

931, Madrid, Spain.

63. 陳文智,“管材於方形模具內液壓鼓脹成形之解析”,國立中山大學機械與機電 工程研究所,碩士論文,2002。

64. 林瑞彰,“管材之成形極限研究”,國立中山大學機械與機電工程研究所,碩士 論文,2003。

65. Y. M. Hwang, Y. K. Lin, H. C. Wu, and H. C. Chen, “FE-Simulations on T-shape Tube Hydroforming, "Proceeding, the 18th National Conference of CSME, (2001), p. 311, Taipei, Taiwan, R.O.C.

66. Y. M. Hwang and Y. K. Lin, "FE-Simulations of T-Shape Tube Hydroforming”, Key Engineering Materials, 233-236 (2003), p. 317.

67. H. J. Kim, B. H. Jeon, and J. J. Kim, Advanced Technology of Plasticity, Proceeding of the Fourth Internation Conference on Technology of Plasticity, (1993), p. 545.

68. M. Ahmed and M. S. J. Hashmi, “Estimation of Machine Parameters for Hydraulic bulge Forming of Tubular Components”, Journal of Materials Processing Technology, 64, (1997), p. 9.

69. Hideo Abe, “The State of the Art in Tube Hydroformation Technology in Japan”, International Workshop on Tube Hydroforming Proceeding of The TUBEHYDRO, Sep.

(2003), p. 42, Aichi, Japan.

70. C. Y. Chuang, P. K. Cheng, and M. F. Li, “Introduction to the Tube Hydroforming Die”, Forging, 12, 1 (2003), p. 14.

71. M. Ahmed and M. S. J. Hashmi, “Finite-element Analysis of Bulge Forming Applying

Pressure and In-plane Compressive Load”, Journal of Materials Processing Technology, 77 (1998), p. 95.

72. M. Koc and T. Altan, “A Overall Review of the Tube Hydroforming (THF) Technology”, Journal of Materials Processing Technology, 108 (2001), p. 25.

73. S. Fuchizawa, M. Narazaki, and A. Shirayori, “Bulge Forming of Aluminum Alloy Tubes by Internal Pressure and Axial Compression”, Advanced Technology of Plasticity, 5th ICTP, Columbus, Ohio, USA, 1, Oct. (1996), p. 497.

74. Y. M. Huang, Y. K. Lin, and C. Y. Chung, “Experiment of Tube Bulging Forming and Determination of the Flow Stress of Tubular Materials”, Forging, 12, 4 (2003), p. 6.

75. Y. M. Huang, “Process Fusion: Tube Hydroforming and Crushing”, International Workshop on Tube Hydroforming Proceeding of The TUBEHYDRO, Sep. (2003), p.

105, Aichi, Japan.

76. K. I. Mori, A. U. Patwari, and S. Maki, “Finite Element Simulation of Hammering Hydroforming of Tubes”, International Workshop on Tube Hydroforming Proceeding of The TUBEHYDRO, Sep. (2003), p. 84, Aichi, Japan.

77. T. Altan, M. Koc, Y. Aueulan, and K. Tibari, “Formability and Design Issues in Tube Hydroforming”, Hydroforming of Tubes, Extrusion and Sheet Metals, 1 (1999), p. 105.

78. J. Kim and B. S. Kang, “Numerical Prediction of Bursting Failure in Bulge Forming of a Seamed Tube Using FEM ”, International Workshop on Tube Hydroforming Proceeding of The TUBEHYDRO, Sep. (2003), p. 36, Aichi, Japan.

79. A. Shirayori, S. Fuchizawa, and M. Narazaki, “A Trial Design Method of Loading Paths by FEM Simulator for Free Hydraulic Bulging”, International Workshop on Tube Hydroforming Proceeding of The TUBEHYDRO, Sep. (2003), p. 18, Aichi, Japan.

80. Y. C. Wen, “The Introduction and Application of Tube Hydroforming Technology”, Forging, 9, 1 (2000), p. 50.

81. 鄭炳國,周金龍,“參加「第六屆國際塑性加工技術會議」及工廠訪問考察心得”,

中華民國鍛造協會會刊,第 9 卷,第 1 期,89 年 3 月,p. 63。

82. E. Bollinger and D. W. Jutten, “Tubes for Hydroforming”, Hydroforming of Tubes, Extrusions and Sheet Metals, 1 (1999), p. 97.

83. 賴耿陽,管材加工二次成形,復漢出版社,2001,p. 2。

84. T. Altan, M. Koc, Y. Aue-u- lan, and K. Tibari, “Formability and Design Issues in Tube Hydroforming”, Hydroforming of Tubes, Extrusions and Sheet Metals, 1 (1999), p. 105.

85. 王之佑,“管材液壓成形試驗機之設計與製作”,國立中山大學機械與機電工程 研究所,碩士論文,2003。

86. B. J. Kim, D. I. Hyun, S. M. Oak, S. K. Choi, and Y. H. Moon, “Effect of Process Parameters on Tubular Hydroformability”, Key Engineering Materials, 233-236 (2003), p. 457.

87. 王宗鼎,“Ti3Al 基超塑薄板之超塑性特性分析”,國立中山大學材料科學與工程 研究所,碩士論文,1996。

88. 蕭一清,“5083 鋁合金低溫超塑性研發與變形機構分析”,國立中山大學材料科 學與工程研究所,博士論文,2001。

89. T. G. Nieh, J. Wadsworth, and O. D. Sherby, “Superplasticity in Metals and Ceramics”, Printed in the United Kingdom at University Press, Cambridge, USA, (1997).

90. 李敬仁,“鎂合金超塑變形之裂孔成核成長研究”,國立中山大學材料科學與工 程研究所,碩士論文,2003。

91. 陳宗榮,“鋁鋰合金板材超塑成形因子與晶界滑移機構之分析”,國立中山大學 材料科學與工程研究所,博士論文,1997。

92. 普翰屏,“8090 鋁鋰合金低溫與高溫超塑板材之製程開發與形變機構分析”,國 立中山大學材料科學與工程研究所,博士論文,1995。

93. 林鉉凱,“Material Development and Property Analysis of High Strain Rate and Low Temperature Superplasticity in AZ31 Mg Alloys”,國立中山大學材料科學與工程研究

所博士論文計劃書,2002。

94. H. P. Pu and J. C. Huang, “Processing Routes for Intertransformation Between Low-and High-Temperature 8090 Al-Li Superplastic Sheets”, Scripta Metallurgica et Materiala, 33 (1995), p. 383.

95. H. P. Pu, F. C. Liu, and J. C. Huang, “Characterization and Analysis of Low-Temperature Superplasticity in 8090 Al-Li Alloys ”, Metallurgy Material Transition, 26A (1995), p. 1153.

96. H. P. Pu and J. C. Huang, “Low-Temperature Superplasticity in 8090 Al- Li Alloys ”, Scripta Metallurgical et Materiala, 28 (1993), p. 1125.

97. M. Mabuchi, H. Iwasaki, K. Yanase, and K. Higashi, “Low Temperature Superplasticity in AZ91 Magnesium Alloy Processed by ECAE”, Scripta Materialia, 36 (1997), p. 681.

98. M. Mabuchi, K. Ameyama, H. Iwasaki, and K. Higashi, “Low Temperature Superplasticity of AZ91 Magnesium Alloy with Non-equilibrium Grain Boundaries”, Acta Materialia, 47 (1999), p. 2047.

99. H. K. Lin and J. C. Huang, “Fabrication of Low Temperature Superplasticity AZ91 Mg Alloys Using Simple High-Ratio Extrusion Method”, Key Engineering Materia ls., 233-236 (2003), p. 875.

100. H. K. Lin and J. C. Huang, “High Strain Rate and/ or Low Temperature Superplasticity in AZ31 Mg Alloys Processed by Simple High- Ratio Extrusion Methods”, Materials Transactions, 43, 10 (2002), p. 2424.

101. A. Bussiba, A. Ben Artzy, A. Shtechman, S. Ifergan, and M. Kupiec, “Grain Refinement of AZ31 and ZK60 Mg Alloys— Towards Superplasticity Studies”, Materials Science and Engineering A, 302A (2001), p. 56.

102. H. Watanabe, T. Mukai, K. Ishikawa, M. Mabuchi, and K. Higashi, “Realization of High-Strain-Rate Superplasticity at Low Temperatures in a Mg-Zn-Zr Alloy”, Materials Science and Engineering A, 307A (2001), p. 119.