• 沒有找到結果。

本實驗以 MAR-M200+Hf 鎳基超合金進行不同下抽速度之單方向凝固製 程後,再經過熱處理條件進行熱處理,來觀察微觀組織對機械性質的影響,

將所得到的實驗結果加以分析討論後,得到結論如下:

1. 原材及經過 DS 鑄造後之試棒探討,原材的晶粒尺寸為 1.52mm,下拉速率 60mm/hr 晶 粒 尺 寸 約 為 5.59mm , 下 拉 速 率 120mm/hr 晶 粒 尺 寸 約 為 3.72mm,而下拉速率 180mm/hr 晶粒尺寸約為 3.54mm 冷卻速率慢造成晶 粒成長時間較長形成較大的晶粒尺寸且γ'形狀慢慢成長為 dendrite 形狀。 性質,下拉速率 60mm/hr 是由大面積的[001]優選方向所分佈,及有少部分 的[104]、[116]偏析方向所組成,角度上相差 15 度。

參考文獻

[1]. 李屏,性能恢復熱處理對 René 142 單方向凝固超合金高溫潛變之研 究,義守大學機械與自動化工程學系碩士論文,民國 99 年。

[2]. Matthew J. Donachie and Stephen J. Donachie, Superalloy a Technical Guide 2nd edition, ASM internaltional, USA, 2002.

[3]. C. T. Sims, N. S. Stoloff, and W. C. Hangel, Superalloy II, John Wiley &

Sons, Inc., New York, 1987, pp.4-8.

[4]. Chester T. Sims and William C. Hagel, The Superalloys, John Wiley &

Sons, 1972.

[5]. Chester T. Sims, Norman S. Stoloff and William C. Hagel, Superalloys II, John Wiley & Sons, 1987.

[6]. Yi-tong LONG, Pu-lin NIE, Zhu-guo LI, Jian HUANG, Xiang LI, Xin-mei XU, “Segregation of niobium in laser cladding Inconel 718 superalloy”, Trans. Nonferrous Met. Soc. China 26(2016),pp.431−436.

[7]. W. Kurz and D. J. Fisher, Fundamentals of Solidification 4th edition, Trans Tech Publications Ltd, 1998, pp.87-89.

[8]. S. Steinbach and L. Ratke, “The Influence of Fluid Flow on the Microstructure of Directionally Solidified AlSi-Base Alloys”, vol.38, 2007, pp.1388-1394.

[9]. http://www.msm.cam.ac.uk/phase-trans/2003/Superalloys/supersalloys.

[10]. J. R. Davis, Heat Resistant Materials 1st edition, Materials Park:ASM International, USA, 1997.

[11]. L. A. Chapman, “Application of high temperature DSC technique to nickel based superalloys”, Journal of Material Science, vol.39, 2004,

pp.7229-7236.

[12]. R.C. Reed, The Superalloy Fundamentals and Applications, Cambridge university press., New York, 2006, pp.19-20.

[13]. 王文修,René 77超合金真空單方向凝固鑄造之研究,義守大學機械 與自動化工程學系碩士論文,民國 98 年,第 1-3 頁。

[14]. D.C. Madeleine, The Microstructure of Superalloys1st edition, CRC press, USA, 1997.

[15]. M. Mclean, Directionally Solidified Materials for High Temperature Service, The Metals Society, London, 1983, pp.118-122,

[16]. A.P. Gordon, “ Crack Initiation Modeling of a Solidified Directionally Nickel-Base Superalloy”, Georgia Institute of Technology, 2006, p.10 [17]. 蔡玉林,高溫合金的金相研究,國防工業出版,1986 年,pp.3-4。

[18]. C. A. Keyser, Materials Science in Engineering 3rd edition, Prentice Hall, USA, 1956, pp.107-113.

[19]. 薄慧雲,A Study on the Elevated Temperature Brittleness and Fracture Mecnanism of Mar-M247 Superalloy,交通大學材料科學與工程所博士 論文,1998 年。

[20]. W. F. Smith, Foundation of materials science and engineering 2nd edition, McGraw-Hill, Inc., New York, 1994, pp.252-256.

[21]. 何為彬,熱處理對 MAR-M247 鎳基超合金單方向凝固之高溫機械性 質影響,義守大學材料科學與工程學系碩士論文,民國 102 年,第 27-28 頁。

[22]. T. H. Courtney, Mechanical Behavior of Materials 2nd edition, McGraw-Hill., New York, 2000.

[23]. S. Jason, Microstructure and High Temperature Creep of Platinum Group Metal Modified Nicel Base Superalloys, USA, 2010.

[24]. 邱茂盛,鋁元素及固溶熱處理冷卻速率對單方向凝固 CM247LC 鎳 基超合金之高溫潛變及氧化特性之研究,義守大學材料科學與工程學 系博士論文,民國 104 年。

[25]. S. Jason, Microstructure and High Temperature Creep of Platinum Group Metal Modified Nicel Base Superalloys, USA, 2010.

[26]. Matthew J.Donachie,Stephen J.Donachie, SUPERALLOY Atechnical Guide Second Edition,Prinred in the United States of America, 2002.

[27]. 何為彬,熱處理對 MAR-M247 鎳基超合金單方向凝固之高溫機械性 質影響,義守大學材料科學與工程學系碩士論文,民國 102 年,第 39 頁。

[28]. 高 性 能 超 合 金 特 殊 成 型 及 接 合 關 鍵 技 術 [29]. A.Berkovits and S.Nadiv and G.Shalev, Microstructural Processes in

High Temperture Low Cycle Fatigue of MAR-M200+Hf,Receiced 25 March 1994; in recised form 8 November 1994.

[30]. A. D. CETEL and D. N. DUHL,SECOND GENERATION COLUMNAR GRAIN NICKEL-BASE SUPERALLOY, 1992.

[31]. Dianyin Hu and Qihang Ma and Lihong Shang and Ye Gao and RongqiaoWang,Creep-fatigue behavior of turbine disc of superalloy GH720Li at 650°C and probabilisticcreep-fatiguemodeling, 2016.

[32]. K.Harris and G.L. Erickson and R.E. Schwer and Cannon-Muskegon Corporation,Directionally Solidified and Single-Crystal Superalloys.

[33]. L. Wang and D.Wang and T. Liu, X.W. Li and W.G. Jiang and G. Zhang

and L.H. Lou,Effect ofminor carbon additions on the high-temperature creep behavior of a single-crystal nickel-based superalloy, 2015.

[34]. Materials for Gas Turbines – An Overview.

[35]. G. Chen and Y.Zhang and D.K.Xu and Y.C.Lin and X.Chen, Low cycle fatigue and creep-fatigue interaction behavior of nickel-base superalloy GH4169 at elevated temperature of 650°C, 2016.

[36]. R.J. Quigg, New Alloy Developments in Single Crystal and DS Alloys, 1993.

[37]. Zheng Yunrong and Wang Yuping and Xie Jizhou and Pierre Caron and Tasadduq Khan, EFFECT OF CHEMISTRY MODIFICATIONS AND HEAT TREATMENTS ON THE MECHANICAL PROPERTIES OF DS MAR-M200 SUPERALLOY, 1988.

相關文件