• 沒有找到結果。

結論

在文檔中 中 華 大 學 (頁 51-96)

本文已以馮卡門大撓曲理論為基礎,完成預應力下含壓電層不對稱夾固圓型板件 之非線性大撓曲問題探討,並針對其簡化式之線性與原始之非線性問題分別求取其解 析解與數值解。其中線性問題係藉由修正貝索函數與貝索函數的相關定義並配合夾固 式邊界條件來求解,而非線性問題則運用有限差分與迭代技巧以求得其數值解。在各 式參數條件下,所得幾何與結構回應之參數化探討,則發現:

(1)

擬單層疊層板件在極低電壓下,不論是線性解析或非線性數值解,各式預拉伸力 或不同面壓條件下之結果均與Sheplak & Dugundji[13]所提純機械負荷下單層圓 型板件之解相當脗合,即本文所提之方法已獲得驗證。

(2)

在各式預拉伸力條件下之結果顯示,在特定電壓下,線性與非線性之解幾乎重 疊,唯於低預拉伸力(k=1)時,隨著電壓逐漸提高,則其差異漸趨明顯,而在較 高預拉伸力下,無論電壓大小如何,板件幾乎完全不受影響。是故線性解於低電 壓情況下仍有其相當準確性,且可適用於中高預拉伸力範圍,但低預拉伸力與較 高電壓下,則須仰賴非線性解來修正。

(3)

不同材質疊層板件在低電壓下會有明顯差異,此乃由於無因次定義之故,以致板 件所承受的面壓大小將有所不同。

(4)

在低預拉伸力與低面壓狀態下,壓電效應才有略微之影響,且隨著電壓提高影響 更趨顯著。唯提高機械負荷後,壓電效應之影響則被機械效應所涵蓋。

(5)

在特定電壓下,板件之預拉伸力與面壓均會影響板件之各式幾何回應,但若兩者 同時存在時,也會互相影響並降低彼此之效應。

由於微感測元件多為不對稱疊層材質之形式,且機電藕合效應也是今後發展主要 趨勢,然而在電流轉換過程中,會產生溫度的變化並使得板件產生熱殘留效應。

因此,不對稱疊層受壓電與熱效應合併影響之問題,亦是未來值得探討之主題。

參考文獻

1. Campabadal, F., Carreras, J. L., and Cabruja, E., 2006, “Flip-Chip Packaging of Piezoresistive Pressure Sensors,” Sensors and Actuators, A, Vol. 132, pp. 415-419.

2. Li, X., Bao, M., Shen, S., 1997, “Study on Linearization of Silicon Capacitive Pressure Sensors,” Sensor and Actuators, A, Vol. 63, pp. 1-6.

3. Bruyker, D. D., Puers, R., 2000, ”Thermostatic Control for Temperature Compensation of a Silicon Pressure sensor,” Sensors and Actuators, Vol. 82, pp.

120-127.

4. Voorthuyzen, J. A., and Bergveld, P., 1984, “The Influence of Tensile Forces on the Deflection Diaphragms in Pressure Sensors,” Sensors and Actuators A, Vol. 6, pp. 201-213.

5. Cho, S. T., Najafi, K., and Wise, K. D., 1992, “Internal Stress Compensation and Scaling in Ultra-sensitive Silicon Pressure Sensor,” IEEE Transaction of Electron Devices, Vol. 39, No. 4, pp. 836-842.

6. Chau, H.-L. and Wise, K.D., 1987, “Scaling Limits in Atch-Fabricated Silicon Pressure Sensors,” IEEE Transaction of Electron Devices, Vol. ED-34, pp.

850-858.

7. Olfatnia, M., Xu, T., Miao, J.M., Ong, L.S., Jing, X.M., and Norford, L., 2010,

“Piezoelectric Circular Microdiaphragm Based Pressure Sensors,” Sensors and Actuators, Vol. 163, pp. 32–36.

8. Yasukawa, A., Shmada, S., Matsuoka, Y., and Kanda, Y., 1982, “Design Considerations for Silicon Circular Diaphragm Pressure Sensor,” Jpn. J. Appl.

Phys., Vol. 21, pp. 1049-1052.

9. Brantley, W. A., 1973, “Calculated Elastic Contants for Stress Problems Associated with Semiconductor Devices,” Journal Applied Physics, Vol. 44, pp.

534-535.

10. Timoshenko, S., and Woinowski-Krieger, S., 1959, Theory of Plates and Shells, 2nd Ed., McGraw-Hill, New York.

11. Weil, N. A., and Newmark, N. M., 1956, “Large Deflection of Elliptical Plates,”

Journal of Applied Mechanics, Vol. 23, pp. 21-26.

12. Berger, H. M., and Wahshington, D. C., 1956, “A New Approach to the Large Deflections of Plates,” Journal of Applied Mechanics, Vol. 23, pp. 465-472.

13. Sheplak, M., and Dugundji, J., 1998, “Large Deflections of Clamped Circular Plates under Initial Tension and Transitions to Membrane Behavior,” Journal of Applied Mechanics, Vol. 65, pp. 107-115.

14. Su, Y. H., Chen, K. S., Roberts, D. C., and Spearing, S. M., 2001, “Large Deflection Analysis of a Pre-Stressed Annular Plate with a Rigid Boss under Axisymmetric Loadind,” Journal Micromech. Microeng., Vol. 11, pp. 645-653.

15. Yang, J. S., and Zhang, X., 2002, “A High Sensitivity Resonator Pressure Sensor,”

Sensors and Actuators, A, Vol. 101, pp. 332-337.

16. Marco, D. S., and Ugo, I., 1995, “Large Deflection of Adaptive Multilayered Timoshenko Beams,” Composite Structures, Vol. 31, pp. 49-60.

17. Oguibe, C. N., and Webb, D. C., 2000, “Large Deflection Analysis of Cantilever Beams Subject to Impulse Loading,” Computers and Structures, Vol. 78, pp.

537-547.

18. Kapuria, S., Dumir, P. C., 2005, “Geometrically Nonlinear Axisymmetric Response of Thin Circular Plate under Piezoelectric Actuation,” Communications in Nonlinear Science and Numerical Simulation, Vol. 10, pp. 411-423.

19. Li, Q. S., Liu, Jie., and Xiao, H. B., 2004, “A New Approach for Bending Analysis of Thin Circular Plates with Large Deflection,” International Journal of

Mechanical Sciences, Vol. 46, pp. 173-180.

20. Fox, C. H. J., Chen, X., and McWilliam, S., 2007, “Analyis of the Deflection of a Circular Plate with an Annular Piezoelectric Actuator,” Sensors and Actuators, A, Vol. 133, pp. 180-194

21. Zhao, Y., Zhao, L., and Jiang, Z., 2003, “A Novel High Temperature Pressure Sensor on the Basis of SOI Layers,” Sensors and Actuators A, Vol. 108, pp.108-111.

22. Oh, Il-K., and Lee, D.-W., 2007, “Resonant Frequency and Instability of Multi-Layered Micro-Resonators with Initial Imperfection Subject to Piezoelectric Loads,” Microelectronic Engineering, Vol. 84, pp. 1388-1392.

23. Hong, E., Trolier-McKinstry, S., Smith, R. L., Krishnaswamy, S. V., and Freidhoff, C. B., 2006, “Design of MEMS PZT Circular Diaphragm Actuators to Generate Large Deflections,” Journal of Microelectromechanical Systems, Vol. 15, No. 4., pp. 832-839.

24. Duval, F. F. C., Wilson, S. A., Ensell, G., Evanno, N. M. P., Cain, M. G., and Whatmorea, R. W., 2007, “Characterisation of PZT Thin Film Micro-actuators Using a Silicon Micro-force Sensor,” Sensors and Actuators A, Vol. 133, pp.

35–44.

25. Sedaghati, R., Dargahi, J., and Singh, H., “Design and Modeling of an Endoscopic Piezoelectric Tactile Sensor,” International Journal of Solids and Structures, Vol. 42, pp. 5872–5886.

26. Anderson, D. A., Tannehill, J. C., and Pletcher, R. H., 1984, “Computational Fluid Mechanics and Heat Transfer,” Hemisphere, New York.

27. Wang, G., Sankar, B. V., Cattafesta, L., and Sheplak, M., 2002, “Analysis of a Composite Piezoelectric Circular Plate with Initial Stresses for MEMS,” Proc. of

ASME Paper IMECE2002-39337, pp.339-346.

28. Yao, K., and Uchino, K., 2001, “Analysis on a Composite Cantilever Beam Coupling a Piezoelectric Bimorph to an Elastic Blade,” Sensors and Actuators, A, Vol. 89, pp. 215-221.

29. Shen, H.-S., 1999, “Large Deflection of Composite Laminated Plates under Transverse and In-Plane Loads and Resting on Elastic Foundations,” Composite Structures, Vol. 45, pp. 115-123.

30. 朱惠祺, 1996, “表面微細加工之壓阻式壓力計,” 國立台灣大學應用力學研究 所碩士論文.

31. Ma, L.S., and Wang, T.J. 2004, “Relationships between Axisymmetric Bending and Buckling Solutions of FGM Circular Plates Based on Third-order Plate Theory and Classical Plate Theory,” International Journal of Solids and Structures Vol.41, pp. 85–101.

32. Tsouvalis, N.G., and Papazoglou, V.J., 1996,”Large Deflection Dynamics Response of Composite Laminated Plates under Lateral Loads,” Marine Structures, Vol. 9, pp. 852-848.

33. Zhou, F., Ogawa, A., and Hashimoto, R., 2001, “Deformation of Antisymmetric Laminate under Centrifugal Force and/or Thermal Load,” Composite Structures, Vol. 51, pp. 335-344.

34. Farzad E., and Abbas R., 2008, “An Analytical Study on the Free Vibration of Smart Circular Thin FGM Plate Based on Classical Plate Theory,” Thin-Walled Structures, Vol. 46, pp. 1402–1408.

35. Yu, M. , Balachandran, B., “Sensor Diaphragm Under Initial Tension Linear Analysis,” Society for Experimental Mechanics, Vol. 45, No. 2, pp. 123-129.

36. Yu, M., Longb, X., and Balachandrana B., “Sensor Diaphragm under Initial

Tension : Nonlinear Responses and Design Implications,” Journal of Sound and Vibration, Vol. 312, pp. 39–54.

37. 尤靖棋, 2004, “受熱面壓力下夾固式預力對稱疊層均向圓型板件之非線性 大撓曲分析,"中華大學機械與航太工程研究所碩士論文.

38. Zhao , L., Xu, C., and Shen, G., 2006, “Analysis for Load Limitation of Square - Shaped Silicon Diaphragms,” Solid-State Electronics, Vol. 50, pp. 1579-1583.

39. Nayak, A. K., Shenoi, R. A., and Moy, S. S., 2006, “Dynamic Response of Composite Sandwich Plates Subjected to Initial Stresses,” Composites: Part A, Vol.

37, pp. 1189-1205.

40. Chen, C.-S., Fung, C.-P., and Chien, R.-D., 2006, “A Further Study on Nonlinear Vibration of Initially Stressed Plates.” Applied Mathematics and Computation, Vol.

172, pp. 349-367.

41. Lo, K. H., Christensen, R. M., and Wu, E. M., 1977, “A Higher Order Theory of Plate Deformation, Part I: Homogeneous Plates,” J. Appl. Mech., Vol.44, pp.

663–668.

42. 黃建瑋, 2010, “音效薄膜應力釋放結構之分析與評估,” 臺灣大學機械工程學 研究所碩士論文.

43. Svedin, N., K., Edvard, S., E., and Stemme, G., 1998, “A Lift-Force Flow Sensor Designed for Acceleration Insensitivity,” Sensors and Actuators A, Vol. 68, pp.

263-268.

44. Dumir, P. C., Joshi, S., and Dube, G. P., 2001, “Geometrically Nonlinear Axisymmetric Analysis of Thick Laminated Annular Plate Using FSDT,”

Composites: Part B, Vol. 32, pp. 1-10.

45. Yao, L., Wang, L. L., Zhu, W., and Dai, Y., 2003, “Exact Solution of Multilayered Piezoelectric Diaphragms,” IEEE Transactions on Ultrasonics, Ferroelectrics, and

Frequency Control, Vol. 50, pp. 1262-1271.

46. Tanriover, H., Senocak, E., 2004, “Large Deflection Analysis of Unsymmetrically Laminated Composite Plates:Analytical-Numerical Type Approach,” International Journal of Non-Linear Mechanics, Vol. 39, pp. 1385-1392.

47. Xiang, S. anD Wang, K.-M. 2009, “Free Vibration Analysis of Symmetric Laminated Composite Plates by Trigonometric Shear Deformation Theory and Inverse Multiquadric RBF," Thin-Walled Structures, Vol. 47, pp. 304–310.

48. Upadhyay, A.K., Pandey, R., and Shukla, K.K., 2011, “Nonlinear Dynamic Response of Laminated Composite Plates Subjected to Pulse Loading, " Communications in Nonlinear Science and Numerical Simulation, Vol. 16, Issue 11, pp. 4530-4544.

49. Cezar G. Diaconu, and Paul M. Weaver, 2006, “ Postbuckling of Long Unsymmetrically Laminated Composite Plates Under Axial Compression, " International Journal of Solids and Structures, Vol. 43, pp. 6978-6997.

50. Aydogdu, M., 2006, “Conditions for Functionally Graded Plates to Remain Flat under In-Plane Loads by Classical Plate Theory,” Composite Structures, Vol. 82, No. 1, pp. 155-157.

51. 陳建仁, 2007, “壓電平順衝擊機構的研發,” 逢甲大學機械工程學研究所碩士 論文.

52. Lee, C. K., 1989, “Laminated Piezopolymer Plates for Torsion and Bending Sensors and Actuators,” Journal of the Acoustical Society of America, Vol. 85, pp.

2432-2439.

53. Kang, Y. K., Park, H. C., Hwang, W., and Han, K. S., 1992, “Optimum Placement of Piezoelectric Sensor/Actuator for Vibration Control of Laminated Beams,”

AIAA Journal, Vol. 30, No. 3, pp. 347-357.

54. Juuti, J., Kordas, K., Lonnakko, R., Moilanen, V.-P., and Leppavuori, S., 2005,

“Mechanically Amplified Large Displacement Piezoelectric Actuators,” Sensors and Actuators, A, Vol. 120, pp. 225-231.

55. 王湘均, 2009, “運用力量感測器實現六足機器人高度反射,” 逢甲大學機械工 程學研究所碩士論文.

56. Jiang, Q., Sui, Q., and Wang, J., 2007, “Experimental and Technical Study of Fiber Bragg Grating Vibration Detection Based on Linear Tilt Filter Method,”

Proceedings of the IEEE International Conference on Automation and Logistics, (Jinan, China), pp. 18-21.

57. 吳佳霖, 2009, “新型布拉格光纖光柵振動感測器之研製,” 國立高雄第一科技 大學光電工程研究所碩士論文.

58. Saini, R., Bhardwaj, S., Nishida, T. and Sheplak, M., 2000, “Scaling Relations for Piezoresistive Microphones,” Proc. of ASME IMECE 2002, pp. 241-248.

楊氏係數E( Gpa) 蒲松比ν 各層厚度(μm) [Si/Poly-Si](L

a

) E

1

=165、E

2

=170 ν

1

=0.27、ν

2

=0.22 h

1

=8

h

2

=10 [SiO

2

/ Poly-Si](L

b

) E

1

=75、E

2

=170 ν

1

=0.17、ν

2

=0.22 h

1

=8

h

2

=10

表一、含壓電疊層板疊層材質與厚度尺寸表

(a)

(b)

圖1、(a)預拉力下含壓電不對稱疊層圓型板承受面壓示意圖(b)不對稱疊層板自由體圖

0.1 1 10 100

k

0.0001 0.001 0.01 0.1 1

W

0

/P

Sheplak & Dugundji(98') Linear Solution

0 0.2 0.4 0.6 0.8 1

-2 -1.6 -1.2 -0.8 -0.4 0

 / W

0

Sheplak and Dugundji('98) V = 1

k = 1 k = 5 k = 10 k = 20 k = 50

Linear Solution

(a)中心撓度 (b)斜率

0 0.2 0.4 0.6 0.8 1

0 0.2 0.4 0.6 0.8 1

W/ W

0

Sheplak & Dugundji('98) V = 1

k = 1 k = 5 k = 10 k = 20 k = 50

Linear Solution

0 0.2 0.4 0.6 0.8 1

-2 -1 0 1 2 3

/P

Sheplak & Dugundji('98) V = 1

k = 1 k = 5 k = 10 k = 20 k = 50

Linear Solution

(c)撓度 (d)曲率

0 0.2 0.4 0.6 0.8 1

-1200 -800 -400 0 400 800

r

/p

0

Flowing Saini et al.(2000') Linear Solution(La)

k=1 k=5 k=10 k=20 k=30k=50

(e)壓力敏性

圖2、低電壓擬單層線性解析解與 Sheplak & Dugundji[13] 、Saini et al.[58]比較圖

0.1 1 10 100

k

0.0001 0.001 0.01 0.1 1

W

0

/P

V = 1 [Si/Poly-Si]

[SiO2/ Poly-Si]

0.1 1 10 100

k

0.0001 0.001 0.01 0.1 1

W

0

/P

V = 5 [Si/Poly-Si]

[SiO2/ Poly-Si]

(a)V=1 (b)V=5

0.1 1 10 100

k

0.0001 0.001 0.01 0.1 1

W

0

/P

V = 10 [Si/Poly-Si]

[SiO2/ Poly-Si]

0.1 1 10 100

k

0.0001 0.001 0.01 0.1 1 10

W

0

/P

V = 20 [Si/Poly-Si]

[SiO2/ Poly-Si]

(c)V=10 (d)V=20

3、不同疊層材質板件(L

a

L

b

)中心撓度線性解對預拉伸參數關係圖

0 0.2 0.4 0.6 0.8 1

-2 -1.6 -1.2 -0.8 -0.4 0

 / W

0

V = 1 [Si/Poly-Si]

[SiO2/ Poly-Si]

k = 1 k = 5 k = 10 k = 20 k = 50

0 0.2 0.4 0.6 0.8 1

-2 -1.6 -1.2 -0.8 -0.4 0

 / W

0

V = 5 [Si/Poly-Si]

[SiO2/ Poly-Si]

k = 1 k = 5 k = 10 k = 20 k = 50

(a)V=1 (b)V=5

0 0.2 0.4 0.6 0.8 1

-2 -1.6 -1.2 -0.8 -0.4 0

 / W

0

V = 10 [Si/Poly-Si]

[SiO2/ Poly-Si]

k = 1 k = 5 k = 10 k = 20 k = 50

0 0.2 0.4 0.6 0.8 1

-2 -1.6 -1.2 -0.8 -0.4 0

 / W

0

V = 20 [Si/Poly-Si]

[SiO2/ Poly-Si]

k = 1 k = 5 k = 10 k = 20 k = 50

(c)V=10 (d)V=20

0 0.2 0.4 0.6 0.8 1

-2 -1.6 -1.2 -0.8 -0.4 0

 / W

0

V = 30 [Si/Poly-Si]

[SiO2/ Poly-Si]

k = 1 k = 5 k = 10 k = 20 k = 50

(e)V=30

4、不同疊層材質板件(L

a

L

b

)無因次斜率線性解之徑向分佈圖

0 5 10 15 20 25

-2 -1.6 -1.2 -0.8 -0.4 0

 / W

0

k=1 V=1 V=5 V=10 V=20 V=30

0 5 10 15 20 25

-2 -1.6 -1.2 -0.8 -0.4 0

 / W

0

k=5 V=1 V=5 V=10 V=20 V=30

(a)k=1 (b)k=5

0 5 10 15 20 25

-2 -1.6 -1.2 -0.8 -0.4 0

 / W

0

k=10 V=1 V=5 V=10 V=20 V=30

0 5 10 15 20 25

-2 -1.6 -1.2 -0.8 -0.4 0

 / W

0

k=20 V=1 V=5 V=10 V=20 V=30

(c)k=10 (d)k=20

0 5 10 15 20 25

-2 -1.6 -1.2 -0.8 -0.4 0

 / W

0

k=50 V=1 V=5 V=10 V=20 V=30

(e)k=50

5、L

a

疊層不同預拉伸力與各式電壓下無因次斜率線性解之徑向分佈圖

0 5 10 15 20 25

-2 -1.6 -1.2 -0.8 -0.4 0

 / W

0

k=1 V=1 V=5 V=10 V=20 V=30

0 5 10 15 20 25

-2 -1.6 -1.2 -0.8 -0.4 0

 / W

0

k=5 V=1 V=5 V=10 V=20 V=30

(a)k=1 (b)k=5

0 5 10 15 20 25

-2 -1.6 -1.2 -0.8 -0.4 0

 / W

0

k=10 V=1 V=5 V=10 V=20 V=30

0 5 10 15 20 25

-2 -1.6 -1.2 -0.8 -0.4 0

 / W

0

k=20 V=1 V=5 V=10 V=20 V=30

(c)k=10 (d)k=20

0 5 10 15 20 25

-2 -1.6 -1.2 -0.8 -0.4 0

 / W

0

k=50 V=1 V=5 V=10 V=20 V=30

(e)k=50

6、L

b

疊層不同預拉伸力與各式電壓下無因次斜率線性解之徑向分佈圖

0 0.2 0.4 0.6 0.8 1

-2 -1.6 -1.2 -0.8 -0.4 0

 / W

0

k=1(V=1) E1/E2=0.2 E1/E2=0.5 E1/E2=0.9

0 0.2 0.4 0.6 0.8 1

-2 -1.6 -1.2 -0.8 -0.4 0

 / W

0

k=5(V=1) E1/E2=0.2 E1/E2=0.5 E1/E2=0.9

(a)k=1 (b)k=5

0 0.2 0.4 0.6 0.8 1

-2 -1.6 -1.2 -0.8 -0.4 0

 / W

0

k=10(V=1) E1/E2=0.2 E1/E2=0.5 E1/E2=0.9

0 0.2 0.4 0.6 0.8 1

-2 -1.6 -1.2 -0.8 -0.4 0

 / W

0

k=20(V=1) E1/E2=0.2 E1/E2=0.5 E1/E2=0.9

(c)k=10 (d)k=20

0 0.2 0.4 0.6 0.8 1

-2 -1.6 -1.2 -0.8 -0.4 0

 / W

0

k=50(V=1) E1/E2=0.2 E1/E2=0.5 E1/E2=0.9

(e)k=50

7、低電壓(V=1)及各式預拉伸力下不同模數比板件之斜率線性解

0 0.2 0.4 0.6 0.8 1

0 0.2 0.4 0.6 0.8 1

W/ W

0

V = 1 [Si/Poly-Si]

[SiO2/ Poly-Si]

k = 1 k = 5 k = 10 k = 20 k = 50

0 0.2 0.4 0.6 0.8 1

0 0.2 0.4 0.6 0.8 1

W/ W

0

V = 5 [Si/Poly-Si]

[SiO2/ Poly-Si]

k = 1 k = 5 k = 10 k = 20 k = 50

(a)V=1 (b)V=5

0 0.2 0.4 0.6 0.8 1

0 0.2 0.4 0.6 0.8 1

W/ W

0

V = 10 [Si/Poly-Si]

[SiO2/ Poly-Si]

k = 1 k = 5 k = 10 k = 20 k = 50

0 0.2 0.4 0.6 0.8 1

0 0.2 0.4 0.6 0.8 1

W/ W

0

V = 20 [Si/Poly-Si]

[SiO2/ Poly-Si]

k = 1 k = 5 k = 10 k = 20 k = 50

(c)V=10 (d)V=20

0 0.2 0.4 0.6 0.8 1

0 0.2 0.4 0.6 0.8 1

W/ W

0

V = 30 [Si/Poly-Si]

[SiO2/ Poly-Si]

k = 1 k = 5 k = 10 k = 20 k = 50

(e)V=30

8、不同疊層材質板件(L

a

L

b

)無因次撓度線性解之徑向分佈圖

0 0.2 0.4 0.6 0.8 1

0 0.2 0.4 0.6 0.8 1

W/ W

0

k=1(La) V=1 V=5 V=10 V=20 V=30

0 0.2 0.4 0.6 0.8 1

0 0.2 0.4 0.6 0.8 1

W/ W

0

k=5(La) V=1 V=5 V=10 V=20 V=30

(a)V=1 (b)V=5

0 0.2 0.4 0.6 0.8 1

0 0.2 0.4 0.6 0.8 1

W/ W

0

k=10(La) V=1 V=5 V=10 V=20 V=30

0 0.2 0.4 0.6 0.8 1

0 0.2 0.4 0.6 0.8 1

W/ W

0

k=20(La) V=1 V=5 V=10 V=20 V=30

(c)V=10 (d)V=20

0 0.2 0.4 0.6 0.8 1

0 0.2 0.4 0.6 0.8 1

W/ W

0

k=50(La) V=1 V=5 V=10 V=20 V=30

(e)V=30

9、L

a

板件不同預拉伸力下無因次撓度線性解之徑向分佈圖

0 0.2 0.4 0.6 0.8 1

0 0.2 0.4 0.6 0.8 1

W/W

0

k=1(Lb) V=1 V=5 V=10 V=20 V=30

0 0.2 0.4 0.6 0.8 1

0 0.2 0.4 0.6 0.8 1

W/W

0

k=5(Lb) V=1 V=5 V=10 V=20 V=30

(a)V=1 (b)V=5

0 0.2 0.4 0.6 0.8 1

0 0.2 0.4 0.6 0.8 1

W/W

0

k=10(Lb) V=1 V=5 V=10 V=20 V=30

0 0.2 0.4 0.6 0.8 1

0 0.2 0.4 0.6 0.8 1

W/W

0

k=20(Lb) V=1 V=5 V=10 V=20 V=30

(c)V=10 (d)V=20

0 0.2 0.4 0.6 0.8 1

0 0.2 0.4 0.6 0.8 1

W/W

0

k=50(Lb) V=1 V=5 V=10 V=20 V=30

(e)V=30

10、L

b

板件不同預拉伸力下無因次撓度線性解之徑向分佈圖

0 0.2 0.4 0.6 0.8 1

-4 0 4

 /P

V = 1 [Si/Poly-Si]

[SiO2/ Poly-Si]

k = 1 k = 5 k = 10

k = 20 k = 50

0 0.2 0.4 0.6 0.8 1

-4 0 4

 /P

V = 5 [Si/Poly-Si]

[SiO2/ Poly-Si]

k = 1 k = 5 k = 10

k = 20 k = 50

(a)V=1 (b)V=5

0 0.2 0.4 0.6 0.8 1

-4 0 4

 /P

V = 10 [Si/Poly-Si]

[SiO2/ Poly-Si]

k = 1 k = 5 k = 10

k = 20 k = 50

0 0.2 0.4 0.6 0.8 1

-4 0 4

 /P

V = 20 [Si/Poly-Si]

[SiO2/ Poly-Si]

k = 1

k = 5 k = 10

k = 20 k = 50

(c)V=10 (d)V=20

0 0.2 0.4 0.6 0.8 1

-4 0 4

 /P

V = 30 [Si/Poly-Si]

[SiO2/ Poly-Si]

k = 1 k = 5 k = 10

k = 20 k = 50

(e)V=30

11、不同疊層材質板件(L

a

L

b

)無因次曲率線性解之徑向分佈圖

0 0.2 0.4 0.6 0.8 1

-4 0 4

 /P

k=1(La) V=1 V=5 V=10 V=20 V=30

0 0.2 0.4 0.6 0.8 1

-4 0 4

 /P

k=5(La) V=1 V=5 V=10 V=20 V=30

(a)V=1 (b)V=5

0 0.2 0.4 0.6 0.8 1

-4 0 4

 /P

k=10(La) V=1 V=5 V=10 V=20 V=30

0 0.2 0.4 0.6 0.8 1

-4 0 4

 /P

k=20(La) V=1 V=5 V=10 V=20 V=30

(c)V=10 (d)V=20

12、L

a

板件不同預拉身力下無因次曲率線性解之徑向分佈圖

0 0.2 0.4 0.6 0.8 1

-4 0 4

 /P

k=1(Lb) V=1 V=5 V=10 V=20 V=30

0 0.2 0.4 0.6 0.8 1

-4 0 4

 /P

k=5(Lb) V=1 V=5 V=10 V=20 V=30

(a)V=1 (b)V=5

0 0.2 0.4 0.6 0.8 1

-4 0 4

 /P

k=10(Lb) V=1 V=5 V=10 V=20 V=30

0 0.2 0.4 0.6 0.8 1

-4 0 4

 /P

k=20(Lb) V=1 V=5 V=10 V=20 V=30

(c)V=10 (d)V=20

13、L

b

板件不同預拉身力下無因次曲率線性解之徑向分佈圖

0 0.2 0.4 0.6 0.8 1

-3 -2 -1 0 1 2

V=1 V=5 V=10 V=20 V=30

0 0.2 0.4 0.6 0.8 1

-1.2 -0.8 -0.4 0 0.4 0.8

W

V=1 V=5 V=10 V=20 V=30

圖14、純斜率與撓度線性解之徑向分佈圖

0 0.2 0.4 0.6 0.8 1

-8000 -4000 0 4000

r

/p

0

V=1 La Lb k=1

k=5 k=10

k=20 k=50k=30

0 0.2 0.4 0.6 0.8 1

-8000 -4000 0 4000

r

/p

0

V=5 La Lb k=1

k=5 k=10

k=20k=30k=50

(a)V=1 (b)V=5

0 0.2 0.4 0.6 0.8 1

-8000 -4000 0 4000

r

/p

0

V=10 La Lb

k=1

k=5 k=10

k=20k=30 k=50

0 0.2 0.4 0.6 0.8 1

-8000 -4000 0 4000

r

/p

0

V=20 La Lb

k=1 k=5

k=10

k=20k=30 k=50

(c)V=10 (d)V=20

0 0.2 0.4 0.6 0.8 1

-8000 -4000 0 4000

r

/p

0

V=30 La Lb k=1

k=5 k=10

k=20k=30 k=50

(e)V=30

15、L

a

L

b

疊層不同之預拉伸力、電壓下壓力敏性線性解之徑向分佈圖

0 0.2 0.4 0.6 0.8 1

-8000 -4000 0 4000

r

/p

0

k=1 V=1 V=5 V=10 V=20 V=30

0 0.2 0.4 0.6 0.8 1

-8000 -4000 0 4000

r

/p

0

k=5 V=1 V=5 V=10 V=20 V=30

(a)k=1 (b)k=5

0 0.2 0.4 0.6 0.8 1

-8000 -4000 0 4000

r

/p

0

k=10 V=1 V=5 V=10 V=20 V=30

0 0.2 0.4 0.6 0.8 1

-8000 -4000 0 4000

r

/p

0

k=20 V=1 V=5 V=10 V=20 V=30

(c)k=10 (d)k=20

0 0.2 0.4 0.6 0.8 1

-8000 -4000 0 4000

r

/p

0

k=30 V=1 V=5 V=10 V=20 V=30

0 0.2 0.4 0.6 0.8 1

-8000 -4000 0 4000

r

/p

0

k=50 V=1 V=5 V=10 V=20 V=30

(e)k=30 (f)k=50

16、L

a

疊層不同預拉伸力與電壓下壓力敏性線性解之徑向分佈圖

0 0.2 0.4 0.6 0.8 1

-4000 -2000 0 2000 4000

r

/p

0

k=1 V=1 V=5 V=10 V=20 V=30

0 0.2 0.4 0.6 0.8 1

-4000 -2000 0 2000 4000

r

/p

0

k=5 V=1 V=5 V=10 V=20 V=30

(a)k=1 (b)k=5

0 0.2 0.4 0.6 0.8 1

-4000 -2000 0 2000 4000

r

/p

0

k=10 V=1 V=5 V=10 V=20 V=30

0 0.2 0.4 0.6 0.8 1

-4000 -2000 0 2000 4000

r

/p

0

k=20 V=1 V=5 V=10 V=20 V=30

(c)k=10 (d)k=20

0 0.2 0.4 0.6 0.8 1

-4000 -2000 0 2000 4000

r

/p

0

k=30 V=1 V=5 V=10 V=20 V=30

0 0.2 0.4 0.6 0.8 1

-4000 -2000 0 2000 4000

r

/p

0

k=50 V=1 V=5 V=10 V=20 V=30

(e)k=30 (f)k=50

17、L

b

疊層不同預拉伸力與電壓下壓力敏性線性解之徑向分佈圖

0.1 1 10 100

k

0.1 1 1x101 1x102 1x103 1x104 1x105

P

max

V=1 La Lb

Sheplak & Dugundji

Fit 1: Spline smoothing

0.1 1 10 100

k

0.1 1 1x101 1x102 1x103 1x104 1x105

P

max

V=5 La Lb

Sheplak & Dugundji

(a)V=1 (b)V=5

0.1 1 10 100

k

0.1 1 1x101 1x102 1x103 1x104 1x105

P

max

V=10 La Lb

Sheplak & Dugundji

0.1 1 10 100

k

0.1 1 1x101 1x102 1x103 1x104 1x105

P

max

V=20 La Lb

Sheplak & Dugundji

(c)V=10 (d)V=20

0.1 1 10 100

k

0.1 1 1x101 1x102 1x103 1x104 1x105

P

max

La V=1 V=5 V=10 V=20

0.1 1 10 100

k

0.1 1 1x101 1x102 1x103 1x104 1x105

P

max

Lb V=1 V=5 V=10 V=20

(e)L

a

(f)L

b

圖18、不同電壓下預拉伸參數對線性行為最大面壓圖

0.1 1 1x101 1x102 1x103 1x104 1x105 1x106

P

0.01 0.1 1 10 100

W

0

V=1 La Lb

Shplak &Dugundji

k=1k=5 k=10k=20 k=50k=100

0.1 1 1x101 1x102 1x103 1x104 1x105 1x106

P

0.01 0.1 1 10 100

W

0

V=5 La Lb

k=1k=5 k=10k=20 k=50k=100

(a)V=1 (b)V=5

0.1 1 1x101 1x102 1x103 1x104 1x105 1x106

P

0.01 0.1 1 10 100

W

0

V=10 La Lb

k=1k=5 k=10k=20 k=50k=100

0.1 1 1x101 1x102 1x103 1x104 1x105 1x106

P

0.01 0.1 1 10 100

W

0

V=20 La Lb

k=1k=5 k=10k=20 k=50k=100

(c)V=10 (d)V=20

0.1 1 1x101 1x102 1x103 1x104 1x105 1x106

P

0.01 0.1 1 10 100

W

0

V=30 La Lb

k=1k=5 k=10k=20 k=100k=50

(e)V=30

19、L

a

L

b

板件不同面壓與電壓下中心撓度與面壓之關係圖

0.1 1 1x101 1x102 1x103 1x104 1x105 1x106

P

0.01 0.1 1 10 100

W

0

k=1(La) V=1 V=5 V=10 V=20 V=30

0.1 1 1x101 1x102 1x103 1x104 1x105 1x106

P

0.01 0.1 1 10 100

W

0

k=5(La) V=1 V=5 V=10 V=20 V=30

(a)k=1 (b)k=5

0.1 1 1x101 1x102 1x103 1x104 1x105 1x106

P

0.01 0.1 1 10 100

W

0

k=10(La) V=1 V=5 V=10 V=20 V=30

0.1 1 1x101 1x102 1x103 1x104 1x105 1x106

P

0.01 0.1 1 10 100

W

0

k=20(La) V=1 V=5 V=10 V=20 V=30

(c)k=10 (d)k=20

0.1 1 1x101 1x102 1x103 1x104 1x105 1x106

P

0.01 0.1 1 10 100

W

0

k=50(La) V=1 V=5 V=10 V=20 V=30

0.1 1 1x101 1x102 1x103 1x104 1x105 1x106

P

0.01 0.1 1 10 100

W

0

k=100(La) V=1 V=5 V=10 V=20 V=30

(e)k=50 (f)k=100 圖20、L

a

板件不同面壓與電壓下中心撓度與面壓之關係圖

0.1 1 1x101 1x102 1x103 1x104 1x105 1x106

P

0.01 0.1 1 10 100

W

0

k=1(Lb) V=1 V=5 V=10 V=20 V=30

0.1 1 1x101 1x102 1x103 1x104 1x105 1x106

P

0.01 0.1 1 10 100

W

0

k=5(Lb) V=1 V=5 V=10 V=20 V=30

(a)k=1 (b)k=5

0.1 1 1x101 1x102 1x103 1x104 1x105 1x106

P

0.01 0.1 1 10 100

W

0

k=10(Lb) V=1 V=5 V=10 V=20 V=30

0.1 1 1x101 1x102 1x103 1x104 1x105 1x106

P

0.01 0.1 1 10 100

W

0

k=20(Lb) V=1 V=5 V=10 V=20 V=30

(c)k=10 (d)k=20

0.1 1 1x101 1x102 1x103 1x104 1x105 1x106

P

0.01 0.1 1 10 100

W

0

k=50(Lb) V=1 V=5 V=10 V=20 V=30

0.1 1 1x101 1x102 1x103 1x104 1x105 1x106

P

0.01 0.1 1 10 100

W

0

k=100(Lb) V=1 V=5 V=10 V=20 V=30

(e)k=50 (f)k=100 圖21、L

b

板件不同面壓與電壓下中心撓度與面壓之關係圖

0.1 1 1x101 1x102 1x103 1x104 1x105 1x106

P

0.01 0.1 1 10 100 1000

 (0)

V=1 La

Lb

Sheplak & Dugundji

k=1k=5 k=10k=20 k=50k=100

0.1 1 1x101 1x102 1x103 1x104 1x105 1x106

P

0.01 0.1 1 10 100 1000

 (0)

V=5 La

Lb

k=1k=5 k=10k=20 k=50k=100

(a)V=1 (b)V=5

0.1 1 1x101 1x102 1x103 1x104 1x105 1x106

P

0.01 0.1 1 10 100 1000

 (0)

V=10 La

Lb

k=1k=5 k=10k=20 k=50k=100

0.1 1 1x101 1x102 1x103 1x104 1x105 1x106

P

0.01 0.1 1 10 100 1000

 (0)

V=20 La

Lb

k=1k=5 k=10k=20 k=50k=100

(c)V=10 (d)V=20

0.1 1 1x101 1x102 1x103 1x104 1x105 1x106

P

0.01 0.1 1 10 100 1000

 (0)

V=30 La

Lb

k=1k=5 k=10k=20 k=50k=100

(e)V=30

22、L

a

L

b

板件不同面壓與電壓下中心曲率非線性解與面壓之關係圖

0.1 1 1x101 1x102 1x103 1x104 1x105 1x106

P

0.01 0.1 1 10 100 1000

 (0)

k=1(La) V=1 V=5 V=10 V=20 V=50

0.1 1 1x101 1x102 1x103 1x104 1x105 1x106

P

0.01 0.1 1 10 100 1000

 (0)

k=5(La) V=1 V=5 V=10 V=20 V=50

(a)k=1 (b)k=5

0.1 1 1x101 1x102 1x103 1x104 1x105 1x106

P

0.01 0.1 1 10 100 1000

 (0)

k=10(La) V=1 V=5 V=10 V=20 V=50

0.1 1 1x101 1x102 1x103 1x104 1x105 1x106

P

0.01 0.1 1 10 100 1000

 (0)

k=20(La) V=1 V=5 V=10 V=20 V=50

(c)k=10 (d)k=20

0.1 1 1x101 1x102 1x103 1x104 1x105 1x106

P

0.01 0.1 1 10 100 1000

 (0)

k=50(La) V=1 V=5 V=10 V=20 V=50

0.1 1 1x101 1x102 1x103 1x104 1x105 1x106

P

0.01 0.1 1 10 100 1000

 (0)

k=100(La) V=1 V=5 V=10 V=20 V=50

(e)k=50 (f)k=100

23、L

a

板件不同面壓與電壓下中心曲率非線性解與面壓之關係圖

0.1 1 1x101 1x102 1x103 1x104 1x105 1x106

P

0.01 0.1 1 10 100 1000

 (0)

k=1(Lb) V=1 V=5 V=10 V=20 V=50

0.1 1 1x101 1x102 1x103 1x104 1x105 1x106

P

0.01 0.1 1 10 100 1000

 (0)

k=5(Lb) V=1 V=5 V=10 V=20 V=50

(a)k=1 (b)k=5

0.1 1 1x101 1x102 1x103 1x104 1x105 1x106

P

0.01 0.1 1 10 100 1000

 (0)

k=10(Lb) V=1 V=5 V=10 V=20 V=50

0.1 1 1x101 1x102 1x103 1x104 1x105 1x106

P

0.01 0.1 1 10 100 1000

 (0)

k=20(Lb) V=1 V=5 V=10 V=20 V=50

(c)k=10 (d)k=20

0.1 1 1x101 1x102 1x103 1x104 1x105 1x106

P

0.01 0.1 1 10 100 1000

 (0)

k=50(Lb) V=1 V=5 V=10 V=20 V=50

0.1 1 1x101 1x102 1x103 1x104 1x105 1x106

P

0.01 0.1 1 10 100 1000

 (0)

k=100(Lb) V=1 V=5 V=10 V=20 V=50

(e)k=50 (f)k=100

24、L

b

板件不同面壓與電壓下中心曲率非線性解與面壓之關係圖

0 0.2 0.4 0.6 0.8 1

-2.5 -2 -1.5 -1 -0.5 0

/ W

0

La

V=1 P=1 P=10 P=100 P=1000 P=10000 P=100000

Lb

Sheplak & Dugundji

0 0.2 0.4 0.6 0.8 1

-2.5 -2 -1.5 -1 -0.5 0

/ W

0

La

V=5 P=1 P=10 P=100 P=1000 P=10000 P=100000

Lb

(a)V=1 (b)V=5

0 0.2 0.4 0.6 0.8 1

-2.5 -2 -1.5 -1 -0.5 0

/ W

0

La

V=10 P=1 P=10 P=100 P=1000 P=10000 P=100000

Lb

0 0.2 0.4 0.6 0.8 1

-2.5 -2 -1.5 -1 -0.5 0

/ W

0

La

V=20 P=1 P=10 P=100 P=1000 P=10000 P=100000

Lb

(c)V=10 (d)V=20

0 0.2 0.4 0.6 0.8 1

-2.5 -2 -1.5 -1 -0.5 0

/ W

0

La

V=30 P=1 P=10 P=100 P=1000 P=10000 P=100000

Lb

(e)V=30

25、L

a

L

b

板件不同面壓與電壓下無因次斜率非線性解之徑向分佈圖

0 0.2 0.4 0.6 0.8 1

-2.5 -2 -1.5 -1 -0.5 0

/ W

0

P=1(La) V=1 V=5 V=10 V=20 V=30

0 0.2 0.4 0.6 0.8 1

-2.5 -2 -1.5 -1 -0.5 0

/ W

0

P=10(La) V=1 V=5 V=10 V=20 V=30

(a)P=1 (b) P=10

0 0.2 0.4 0.6 0.8 1

-2.5 -2 -1.5 -1 -0.5 0

/ W

0

P=100(La) V=1 V=5 V=10 V=20 V=30

0 0.2 0.4 0.6 0.8 1

-2.5 -2 -1.5 -1 -0.5 0

/ W

0

P=1000(La) V=1 V=5 V=10 V=20 V=30

(c) P=100 (d) P=1000

0 0.2 0.4 0.6 0.8 1

-2.5 -2 -1.5 -1 -0.5 0

/ W

0

P=10000(La) V=1 V=5 V=10 V=20 V=30

0 0.2 0.4 0.6 0.8 1

-2.5 -2 -1.5 -1 -0.5 0

/ W

0

P=100000(La) V=1 V=5 V=10 V=20 V=30

(e) P=10000 (f) P=100000

26、L

a

板件不同面壓與電壓下無因次斜率非線性解之徑向分佈圖

0 0.2 0.4 0.6 0.8 1

-2.5 -2 -1.5 -1 -0.5 0

/ W

0

P=1(Lb) V=1 V=5 V=10 V=20 V=30

0 0.2 0.4 0.6 0.8 1

-2.5 -2 -1.5 -1 -0.5 0

/ W

0

P=10(Lb) V=1 V=5 V=10 V=20 V=30

(a) P=1 (b) P=10

0 0.2 0.4 0.6 0.8 1

-2.5 -2 -1.5 -1 -0.5 0

/ W

0

P=100(Lb) V=1 V=5 V=10 V=20 V=30

0 0.2 0.4 0.6 0.8 1

-2.5 -2 -1.5 -1 -0.5 0

/ W

0

P=1000(Lb) V=1 V=5 V=10 V=20 V=30

(c) P=100 (d) P=1000

0 0.2 0.4 0.6 0.8 1

-2.5 -2 -1.5 -1 -0.5 0

/ W

0

P=10000(Lb) V=1 V=5 V=10 V=20 V=30

0 0.2 0.4 0.6 0.8 1

-2.5 -2 -1.5 -1 -0.5 0

/ W

0

P=100000(Lb) V=1 V=5 V=10 V=20 V=30

(e) P=10000 (f) P=100000

27、L

b

板件不同面壓與電壓下無因次斜率非線性解之徑向分佈圖

0 0.2 0.4 0.6 0.8 1

0 0.2 0.4 0.6 0.8 1

W /W

0

La

V=1 P=1 P=10 P=100 P=1000 P=10000 P=100000

Lb

Sheplak & Dugundji

0 0.2 0.4 0.6 0.8 1

0 0.2 0.4 0.6 0.8 1

W /W

0

La

V=5 P=1 P=10 P=100 P=1000 P=10000 P=100000

Lb

(a)V=1 (b)V=5

0 0.2 0.4 0.6 0.8 1

0 0.2 0.4 0.6 0.8 1

W /W

0

La

V=10 P=1 P=10 P=100 P=1000 P=10000 P=100000

Lb

0 0.2 0.4 0.6 0.8 1

0 0.2 0.4 0.6 0.8 1

W /W

0

La

V=20 P=1 P=10 P=100 P=1000 P=10000 P=100000

Lb

(c)V=10 (d)V=20

0 0.2 0.4 0.6 0.8 1

0 0.2 0.4 0.6 0.8 1

W /W

0

La

V=30 P=1 P=10 P=100 P=1000 P=10000 P=100000

Lb

(e)V=30

28、L

a

L

b

板件不同面壓與電壓下無因次撓度非線性解之徑向分佈圖

0 0.2 0.4 0.6 0.8 1

0 0.2 0.4 0.6 0.8 1

W /W

0

P=1(La) V=1 V=5 V=10 V=20 V=30

0 0.2 0.4 0.6 0.8 1

0 0.2 0.4 0.6 0.8 1

W /W

0

P=10(La) V=1 V=5 V=10 V=20 V=30

(a) P=1 (a) P=10

0 0.2 0.4 0.6 0.8 1

0 0.2 0.4 0.6 0.8 1

W /W

0

P=100(La) V=1 V=5 V=10 V=20 V=30

0 0.2 0.4 0.6 0.8 1

0 0.2 0.4 0.6 0.8 1

W /W

0

P=1000(La) V=1 V=5 V=10 V=20 V=30

(c) P=100 (d) P=1000

0 0.2 0.4 0.6 0.8 1

0 0.2 0.4 0.6 0.8 1

W /W

0

P=10000(La) V=1 V=5 V=10 V=20 V=30

0 0.2 0.4 0.6 0.8 1

0 0.2 0.4 0.6 0.8 1

W /W

0

P=100000(La) V=1 V=5 V=10 V=20 V=30

(e) P=10000 (f) P=100000

29、L

a

板件不同面壓與電壓下無因次撓度非線性解之徑向分佈圖

0 0.2 0.4 0.6 0.8 1

0 0.2 0.4 0.6 0.8 1

W /W

0

P=1(Lb) V=1 V=5 V=10 V=20 V=30

0 0.2 0.4 0.6 0.8 1

0 0.2 0.4 0.6 0.8 1

W /W

0

P=10(Lb) V=1 V=5 V=10 V=20 V=30

(a) P=1 (a) P=10

0 0.2 0.4 0.6 0.8 1

0 0.2 0.4 0.6 0.8 1

W /W

0

P=100(Lb) V=1 V=5 V=10 V=20 V=30

0 0.2 0.4 0.6 0.8 1

0 0.2 0.4 0.6 0.8 1

W /W

0

P=1000(Lb) V=1 V=5 V=10 V=20 V=30

(c) P=100 (d) P=1000

0 0.2 0.4 0.6 0.8 1

0 0.2 0.4 0.6 0.8 1

W /W

0

P=10000(Lb) V=1 V=5 V=10 V=20 V=30

0 0.2 0.4 0.6 0.8 1

0 0.2 0.4 0.6 0.8 1

W /W

0

P=100000(Lb) V=1 V=5 V=10 V=20 V=30

(e) P=10000 (f) P=100000

30、L

b

板件不同面壓與電壓下無因次撓度非線性解之徑向分佈圖

0 0.2 0.4 0.6 0.8 1

-4 0 4

/P

Sheplak & Dugundji(98') V=1(Volt)

P=1 P=10 P=100 P=1000 P=10000 P=100000

La Lb

0 0.2 0.4 0.6 0.8 1

-4 0 4

/P

V=5(Volt) P=1 P=10 P=100 P=1000 P=10000 P=100000

La Lb

(a)V=1 (b)V=5

0 0.2 0.4 0.6 0.8 1

-4 0 4

/P

V=10(Volt) P=1 P=10 P=100 P=1000 P=10000 P=100000

La Lb

0 0.2 0.4 0.6 0.8 1

-4 0 4

/P

V=20(Volt) P=1 P=10 P=100 P=1000 P=10000 P=100000

La Lb

(c)V=10 (d)V=20

0 0.2 0.4 0.6 0.8 1

-4 0 4

/P

V=30(Volt) P=1 P=10 P=100 P=1000 P=10000 P=100000

La Lb

(e)V=30

31、L

a

L

b

板件不同面壓與電壓下無因次曲率非線性解之徑向分佈圖

0 0.2 0.4 0.6 0.8 1

0 0.2 0.4 0.6 0.8 1

S

r

/S

0

Sheplak & Dugundji V=1(Volt)

P=1 P=10 P=100 P=1000 P=10000 P=100000

La

Lb

0 0.2 0.4 0.6 0.8 1

0 0.2 0.4 0.6 0.8 1

S

r

/S

0

V=5(Volt) P=1 P=10 P=100 P=1000 P=10000 P=100000

La

Lb

(a)V=1 (b)V=5

0 0.2 0.4 0.6 0.8 1

0 0.2 0.4 0.6 0.8 1

S

r

/S

0

V=10(Volt) P=1 P=10 P=100 P=1000 P=10000 P=100000

La

Lb

0 0.2 0.4 0.6 0.8 1

0 0.2 0.4 0.6 0.8 1

S

r

/S

0

V=20(Volt) P=1 P=10 P=100 P=1000 P=10000 P=100000

La

Lb

(c)V=10 (d)V=20

0 0.2 0.4 0.6 0.8 1

0 0.2 0.4 0.6 0.8 1

S

r

/S

0

V=30(Volt) P=1 P=10 P=100 P=1000 P=10000 P=100000

La

Lb

(e)V=30

32、L

a

L

b

板件不同面壓與電壓下無因次徑向力合之分佈圖

0 0.2 0.4 0.6 0.8 1

0 0.2 0.4 0.6 0.8 1

S

/S

0

Sheplak & Dugundji V=1(Volt)(La)

P=1 P=10 P=100 P=1000 P=10000 P=100000

0 0.2 0.4 0.6 0.8 1

0 0.2 0.4 0.6 0.8 1

S

/S

0

V=5(Volt)(La) P=1 P=10 P=100 P=1000 P=10000 P=100000

(a)V=1 (b)V=5

0 0.2 0.4 0.6 0.8 1

0 0.2 0.4 0.6 0.8 1

S

/S

0

V=10(Volt)(La) P=1 P=10 P=100 P=1000 P=10000 P=100000

0 0.2 0.4 0.6 0.8 1

0 0.2 0.4 0.6 0.8 1

S

/S

0

V=20(Volt)(La) P=1 P=10 P=100 P=1000 P=10000 P=100000

(c)V=10 (d)V=20

0 0.2 0.4 0.6 0.8 1

0 0.2 0.4 0.6 0.8 1

S

/S

0

V=30(Volt)(La) P=1 P=10 P=100 P=1000 P=10000 P=100000

(e)V=30

33、L

a

板件不同面壓與電壓下壓環向力合之徑向分佈圖

0 0.2 0.4 0.6 0.8 1

0 0.2 0.4 0.6 0.8 1

S

/S

0

V=1(Volt)(Lb) P=1 P=10 P=100 P=1000 P=10000 P=100000

0 0.2 0.4 0.6 0.8 1

0 0.2 0.4 0.6 0.8 1

S

/S

0

V=5(Volt)(Lb) P=1 P=10 P=100 P=1000 P=10000 P=100000

(a)V=1 (b)V=5

0 0.2 0.4 0.6 0.8 1

0 0.2 0.4 0.6 0.8 1

S

/S

0

V=10(Volt)(Lb) P=1 P=10 P=100 P=1000 P=10000 P=100000

0 0.2 0.4 0.6 0.8 1

0 0.2 0.4 0.6 0.8 1

S

/S

0

V=20(Volt)(Lb) P=1 P=10 P=100 P=1000 P=10000 P=100000

(c)V=10 (d)V=20

0 0.2 0.4 0.6 0.8 1

0 0.2 0.4 0.6 0.8 1

S

/S

0

V=30(Volt)(Lb) P=1 P=10 P=100 P=1000 P=10000 P=100000

(e)V=30

34、L

b

板件不同面壓與電壓下壓環向力合之徑向分佈圖

0 0.2 0.4 0.6 0.8 1

0 0.2 0.4 0.6 0.8 1

S

/S

0

Sheplak & Dugundji V=1(Volt)

P=1 P=10 P=100 P=1000 P=10000 P=100000

La

Lb

0 0.2 0.4 0.6 0.8 1

0 0.2 0.4 0.6 0.8 1

S

/S

0

V=5(Volt) P=1 P=10 P=100 P=1000 P=10000 P=100000

La

Lb

(a)V=1 (b)V=5

0 0.2 0.4 0.6 0.8 1

0 0.2 0.4 0.6 0.8 1

S

/S

0

V=10(Volt) P=1 P=10 P=100 P=1000 P=10000 P=100000

La

Lb

0 0.2 0.4 0.6 0.8 1

0 0.2 0.4 0.6 0.8 1

S

/S

0

V=20(Volt) P=1 P=10 P=100 P=1000 P=10000 P=100000

La

Lb

(c)V=10 (d)V=20

0 0.2 0.4 0.6 0.8 1

0 0.2 0.4 0.6 0.8 1

S

/S

0

V=30(Volt) P=1 P=10 P=100 P=1000 P=10000 P=100000

La

Lb

(e)V=30

35、L

a

L

b

板件不同面壓與電壓下壓環向力合之徑向分佈圖

0 0.2 0.4 0.6 0.8 1

-4000 -2000 0 2000 4000

r

/p

0

Flowing Saini et al.(2000') Linear Solution(La)

k=1 k=5k=10 k=20

k=30k=50

Nonlinear Solution(La)

0 0.2 0.4 0.6 0.8 1

-4000 -2000 0 2000 4000

r

/p

0

V=5 Linear Solution(La)

k=1 k=10 k=5

k=20

k=50k=30

Nonlinear Solution(La)

(a)V=1 (b)V=5

0 0.2 0.4 0.6 0.8 1

-4000 -2000 0 2000 4000

r

/p

0

V=10 Linear Solution(La)

k=1 k=5k=10 k=20

k=50k=30

Nonlinear Solution(La)

0 0.2 0.4 0.6 0.8 1

-4000 -2000 0 2000 4000

r

/p

0

V=20

Linear Solution(La) k=1

k=5k=10 k=20

k=50k=30

Nonlinear Solution(La)

(c)V=10 (d)V=20

36、各式電壓下之 L

a

板件之線性解與非線性解壓力敏性之徑向分佈圖。

在文檔中 中 華 大 學 (頁 51-96)

相關文件