• 沒有找到結果。

結論

在文檔中 中 華 大 學 (頁 69-88)

未來研究方向希望能以生物方面的考量,將把「受質引導構形變化」的情況 也考慮進去,使預測磷酸根活化部位更完善。並提高預測的數目,和降低和實際 磷酸根座標的距離。最後進一步的預測整個PTP 家族或所有的去磷酸化家族。

10 章 參考文獻

[1] Forrest AR, Taylor DF, Fink JL, Gongora MM, Flegg C, Teasdale RD, Suzuki H, Kanamori M, Kai C, Hayashizaki Y, Grimmond SM. “PhosphoregDB:the tissue and sub-cellular distribution of mammalian protein kinases and phosphatases.”

BMC Bioinformatics, 20:82, 2006.

[2] Hooft van Huijsduijnen R. “Protein tyrosine phosphatases:counting the trees in the forest.” Gene, 225:1-8, 1998.

[3] Petsko GA, Ringe D. “protein structure and function.” New Science Press,

Singapore.:29, 2004

[4] Kyosseva SV. “Mitogen-activated protein kinase signaling.” Int. Rev. Neurobiol., 59:201-220, 2004.

[5] Farooq A, Zhou MM. “Structure and regulation of MAPK phosphatases.” Cell.

Signal., 16:769-779, 2004.

[6]

Benson DA, Karsch-Mizrachi I, Lipman DJ, Ostell J, Wheeler DL. “GenBank.”

Nucleic Acids Res., 34:D16-D20, 2006.

[7]

Cochrane G, Aldebert P, Althorpe N, Andersson M, Baker W, Baldwin A, Bates K, Bhattacharyya S, Browne P, van den Broek A, Castro M, Duggan K, Eberhardt R, Faruque N, Gamble J, Kanz C, Kulikova T, Lee C, Leinonen R, Lin Q, Lombard V, Lopez R, McHale M, McWilliam H, Mukherjee G, Nardone F, Pastor MP, Sobhany S, Stoehr P, Tzouvara K, Vaughan R, Wu D, Zhu W, Apweiler R. “EMBL Nucleotide Sequence Database:developments in 2005.”

Nucleic Acids Res., 34:D10-D15, 2006.

[8]

Okubo K, Sugawara H, Gojobori T, Tateno Y. “DDBJ in preparation for

34:D6-D9, 2006.

[9] Bairoch A, Apweiler R, Wu CH, Barker WC, Boeckmann B, Ferro S, Gasteiger E, Huang H, Lopez R, Magrane M, Martin MJ, Natale DA, O'Donovan C, Redaschi N, Yeh LS. “The Universal Protein Resource (UniProt).” Nucleic

Acids Res., 33:D154–D159, 2005.

[10] Boeckmann B, Bairoch A, Apweiler R, Blatter MC, Estreicher A, Gasteiger E, Martin MJ, Michoud K, O'Donovan C, Phan I, Pilbout S, Schneider M. “The SWISS-PROT protein knowledgebase and its supplement TrEMBL in 2003.”

Nucleic Acids Res., 31:365–370, 2003.

[11] Benson DA, Karsch-Mizrachi I, Lipman DJ, Ostell J, Wheeler DL. “GenBank.”

Nucleic Acids Res., 33:D34–D38, 2005.

[12] Wu CH, Yeh LS, Huang H, Arminski L, Castro-Alvear J, Chen Y, Hu Z, Kourtesis P, Ledley RS, Suzek BE, Vinayaka CR, Zhang J, Barker WC. “The Protein Information Resource.” Nucleic Acids Res., 31:345–347, 2003.

[13] Kouranov A, Xie L, de la Cruz J, Chen L, Westbrook J, Bourne PE, Berman HM.

“The RCSB PDB information portal for structural genomics.” Nucleic Acids

Res., 34:D302 - D305, 2006.

[14] Hunter T. “Signaling – 2000 and beyond.” Cell, 100:113-127, 2000.

[15] Cheng A, Dube N, Gu F, Tremblay ML. “Coordinated action of protein tyrosine phosphatases in insulin signal transduction.” Eur. J. Biochem., 269:1050-1059, 2002.

[16] Alonso A, Sasin J, Bottini N, Friedberg I, Friedberg I, Osterman A, Godzik A, Hunter T, Dixon J, Mustelin T. “Protein tyrosine phosphatases in the human genome.” Cell, 117:699-711, 2004.

[17] Wang WQ, Sun JP, Zhang ZY. “An Overview of the Protein Tyrosine

[18] Echwald SM, Bach H, Vestergaard H, Richelsen B, Kristensen K, Drivsholm T, Borch-Johnsen K, Hansen T, Pedersen O. “A P387L variant in protein tyrosine phosphatase-1B (PTP-1B) is associated with type 2 diabetes and impaired serine phosphorylation of PTP-1B in vitro.” Diabetes, 51:1-6, 2002.

[19] Penninger JM, Irie-Sasaki J, Sasaki T, Oliveira-dos-Santos AJ. “CD45:new Jobs from an old acquaintance.” Nat. Immunol., 2:389-396, 2001.

[20] Draetta G, Eckstein J. “Cdc25 protein phosphatases in cell proliferation.”

Biochim. Biophys. Acta, 1332:53-63, 1997.

[21] Dutertre S, Cazales M, Quaranta M, Froment C, Trabut V, Dozier C, Mirey G, Bouche JP, Theis-Febvre N, Schmitt E, Monsarrat B, Prigent C, Ducommun B.

“Phosphorylation of CDC25B by Aurora-A at the centrosome contributes to the G2-M transition.” J. Cell. Sci., 117:2523-2531, 2004.

[22] Panara F, Pellegrini M. “Low molecular weight acid phosphatase/phosphotyrosyl protein phosphatase in the developing chick brain:partial characterization and levels during development.” J. Exp. Zool., 284:27-34., 1999.

[23] Bottini N, Bottini E, Gloria-Bottini F, Mustelin T. “Low-molecular-weight protein tyrosine phosphatase and human disease:in search of biochemical mechanisms.” Arch. Immunol. Ther. Exp., 50:95-104, 2002.

[24] Yuvaniyama J, Denu JM, Dixon JE, Saper MA. “Crystal structure of the dual specificity protein phosphatase VHR.” Science, 272:1328-1331, 1996.

[25] Saha S, Bardelli A, Buckhaults P, Velculescu VE, Rago C, St Croix B, Romans KE, Choti MA, Lengauer C, Kinzler KW, Vogelstein B. “A phosphatase associated with metastasis of colorectal cancer.” Science, 294:1343-1346, 2001.

[26] Li J, Yen C, Liaw D, Podsypanina K, Bose S, Wang SI, Puc J, Miliaresis C,

Hibshoosh H, Wigler MH, Parsons R. “PTEN, a putative protein tyrosine phosphatase gene mutated in human brain, breast, and prostate cancer.” Science, 275:1943-1947, 1997.

[27] Steck PA, Pershouse MA, Jasser SA, Yung WK, Lin H, Ligon AH, Langford LA, Baumgard ML, Hattier T, Davis T, Frye C, Hu R, Swedlund B, Teng DH, Tavtigian SV. “Identification of a candidate tumour suppressor gene, MMAC1, at chromosome 10q23 that is mutated in multiple advanced cancers.” Nat.

Genet., 15:356-362, 1997.

[28] Laporte J, Hu LJ, Kretz C, Mandel JL, Kioschis P, Coy JF, Klauck SM, Poustka A, Dahl N. “A gene mutated in X-linked myotubular myopathy defines a new putative tyrosine phosphatase family conserved in yeast.” Nat. Genet., 13:

175-182, 1996.

[29] Taylor GS, Maehama T, Dixon JE. “Myotubularin, a protein tyrosine phosphatase mutated in myotubular myopathy, dephosphorylates the lipid second messenger, phosphatidylinositol 3-phosphate.” Proc. Natl. Acad. Sci.

USA., 97:8910-8915, 2000.

[30] Blondeau F, Laporte J, Bodin S, Superti-Furga G, Payrastre B, Mandel JL.

“Myotubularin, a phosphatase deficient in myotubular myopathy, acts on phosphatidylinositol 3-kinase and phosphatidylinositol 3- phosphate pathway.”

Hum. Mol. Genet., 9:2223- 2229, 2000.

[31] Takagi T, Moore CR, Diehn F, Buratowski S. “An RNA 5’-triphosphatase related to the protein tyrosine phosphatases.” Cell, 89:867-873, 1997.

[32] Gross CH, Shuman S. “Characterization of a baculovirus encoded RNA 5’-triphosphatase.” J. Virol., 72:7057-7063, 1998.

[33] Deshpande T, Takagi T, Hao L, Buratowski S, Charbonneau H. “Human PIR1

diphosphatase activities.” J. Biol. Chem., 274:16590-16594, 1999.

[34] Huang TS, Nilsson CE, Punga T, Akusjarvi G. “Functional inactivation of the SR family of splicing factors during a vaccinia virus infection.” EMBO. Rep., 3:1088-1093, 2002.

[35] Waterston RH, Lindblad-Toh K et al. “Initial sequencing and analysis of the human genome.” Nature, 409:860-921, 2001.

[36] Chen Z, Gibson TB, Robinson F, Silvestro L, Pearson G, Xu B, Wright A, Vanderbilt C, Cobb MH. “MAP kinases.” Chem. Rev., 101:2449-2476, 2001.

[37] Pearson G, Robinson F, Beers Gibson T, Xu BE, Karandikar M, Berman K, Cobb MH. “Mitogen-activated protein (MAP) kinase pathways:regulation and physiological functions.” Endocr. Rev., 22:153-183, 2001.

[38] Saxena M, Williams S, Gilman J, Mustelin T. “Negative regulation of T cell antigen receptor signaling by hematopoietic tyrosine phosphatase (HePTP).”

J .Biol. Chem., 273:15340-15344, 1998.

[39] Saxena M, Williams S, Brockdroff J, Gilman J, Mustelin T. “Inhibition of T cell signaling by MAP kinase-targeted hematopoietic tyrosine phosphatase (HePTP).” J. Biol. Chem., 274:11693-11700, 1999.

[40] Alonso A, Rojas A, Godzik A, Mustelin T, “The dual-specific protein tyrosine phosphatase family.” Curr. Top. Genetics., 5:333-358, 2004.

[41] Theodosiou A, Ashworth A. “MAP kinase phosphatases.” Genome. Biol., 3:

REVIEWS3009, 2002.

[42] Camps M, Nichols A, Arkinstall S. “Dual specificity phosphatases:a gene family for control of MAP kinase function.” FASEB. J., 14:6-16, 2000.

[43] Babic AM, Kireeva ML, Kolesnikova TV, Lau LF. “CYR61, a product of a growth factor-inducible immediate early gene, promotes angiogenesis and tumor

[44] Camps M, Nichols A, Gillieron C, Anotonsson B, Muda M, Chabert C, Boschert U, Arkinstall S. “Catalttic activation of the phosphatase MKP-3 by ERK2 mitogen-activated protein kinase.” Science, 280:1262-1265, 1998.

[45] Dowd S, Sneddon AA, Keyse SM. “Isolation of the human genes encoding the pyst1 and Pyst2 phosphatases : characterization of Pyst2 as a cytosolic dual-specificity MAP kinase phosphatase and its catalytic activation by both MAP and SAP kinases.” J. Cell. Sci., 111:3389-3399, 1998.

[46] Farooq A, Plotnikova O , Chaturvedi G, Yan S, Zeng L, Zhang Q, Zhou MM.

“Solution structure of the MAPK phosphatase PAC-1 catalytic domain. Insights into substrate-induced enzymatic action of MKP.” Structure, 11:155-164, 2003.

[47] Alonso A, Rahmouni S, Williams S, van Stipdonk M, Jaroszewski L, Godzik A, Abraham RT, Schoenberger SP, Mustelin T. “Tyrosine phosphorylation of VHR phosphatase by ZAP-70.” Nat. Immunol., 4:44-48, 2003.

[48] Andersen JN, Mortensen OH, Peters GH, Drake PG, Iversen LF, Olsen OH, Jansen PG, Andersen HS, Tonks NK, Moller NP. “Structural and evolutionary relationships among protein tyrosine phosphatase domains.” Mol. Cell. Biol., 21:7117-7136, 2001.

[49] Kallunki T, Deng T, Hibi M, Karin M. “c-Jun can recruit JNK to phosphorylate dimerization partners via specific docking interactions.” Cell, 87:929-939, 1996.

[50] Stewart AE, Dowd S, Keyse SM, McDonald NQ. “Crystal structure of the MAPK phosphatase Pyst1 catalytic domain and implications for regulated activation.” Nat. Struct. Biol., 6:174-181, 1999.

[51] Denu JM, Stuckey JA, Saper MA, Dixon JE. “Form and function in protein dephosphorylation.” Cell, 87:361-364, 1996.

on substrate protein form a modular system that mediates recognition by ERK MAP kinase.” Genes. Dev., 13:163-175, 1999.

[53] Keyse SM. “Protein phosphatases and the regulation of mitogen-activated protein kinase signalling.” Curr. Opin. Cell. Biol., 12:186-192, 2000.

[54] Nichols A, Camps M, Gillieron C, Chabert C, Brunet A, Wilsbacher J, Cobb M, Pouyssegur J, Shaw JP, Arkinstall S. “Substrate recognition domains within extracellular signal-regulated kinase mediate binding and catalytic activation of mitogen-activated protein kinase phosphatase-3.” J. Biol. Chem., 275 : 24613-24621, 2000.

[55] Saxena M, Williams S, Tasken K, Mustelin T. “Crosstalk between cAMP-dependent kinase and MAP kinase through a protein tyrosine phosphatase.” Nat. Cell. Biol., 1:305-311, 1999.

[56] Farooq A, Chaturvedi G, Mujtaba S, Plotnikova O, Zeng L, Dhalluin C, Ashton R, Zhou MM. “Solution structure of ERK2 binding domain of MARK phosphatase MKP-3:structural insights into MKP-3 activation by ERK2.” Mol.

Cell, 7:387-399, 2001.

[57] Aoyama K, Nagata M, Oshima K, Matsuda T, Aoki N. “Molecular cloning and characterization of a novel dual specificity phosphatase, LMW-DSP2, that lacks the cdc25 homology domain.” J. Biol. Chem., 276:27575-27583, 2001.

[58] 林宏仁,”蛋白質表面結構模型及其搜尋演算法”,中華大學資訊工程研究 所碩士論文,2005。

[59] Porter CT, Bartlett GJ, Thornton JM. “The Catalytic Site Atlas:a resource of catalytic sites and residues identified in enzymes using structural data.” Nucleic

Acids Res., 32:D129-D133, 2004.

[60] Orengo CA, Todd AE, Thornton JM. “From protein structure to function.” Curr.

[61] Thornton JM, Todd AE, Milburn D, Borkakoti N, Orengo CA. “From structure to function:Approaches and limitations.” Nat. Struct. Biol.:991-994, 2000.

[62] Kauvar LM, Villar HO. “Deciphering cryptic similarities in protein binding sites.” Curr. Opin. Biotechnol., 9:390-394, 1998.

[63] Via A, Ferre F, Brannetti B, Helmer-Citterich M. “Protein surface similarities:a survey of methods to describe and compare protein surfaces.” Cell. Mol.Life.

Sci., 57:1970-1977, 2000.

[64] Lee B, Richards FM. “The interpretation of protein structures:Estimation of static accessibility.” J. Mol. Biol., 55:379-400, 1971.

[65] Richards FM, Richmond T. “Solvents, interfaces and protein structure.” Ciba.

Found. Symp.:23-45, 1977.

附錄 A DSP 命名對照表

表12 典型DSPs分類表

DSPs 人類蛋白質名稱 DSP 名稱 異種同源基因 PDB 資料庫編號 CL100/HVH1 DUSP1 MKP-1 (r), 3CH134 (m),

PTPN10, erp 尚未解出 HVH2/TYP1 DUSP4 MKP-2 (r) 尚未解出

PAC-1 DUSP2 無 尚未解出

A 組

HVH3/B23 DUSP5 無 尚未解出

MKP-5 DUSP10 MKP-5 尚未解出

HVH5 DUSP8 M3/6 (m) 尚未解出

B 組

MKP-7 DSUP16 MKP-M (m) 尚未解出

PYST1 DUSP6 MKP-3/rVH6 (r) 1MKP

PYST2/B59 DUSP7 MKP-X 尚未解出

C 組

MKP-4 DUSP10 Pyst3 (m) 尚未解出

DSPs 人類蛋白質名稱 受質名稱 參考文獻

CL100/HVH1 Erk, Jnk, p38 Keyse and Emslie 1992; Sun et al. 1993; Kwak et al. 1994

HVH2/TYP1 Erk, Jnk, p38 Guan and Butch 1995; King et al. 1995;

Misra-Press et al. 1995;Smith et al. 1997 PAC-1 Erk, p38 Rohan et al. 1993; Martell et al. 1994; Yi et al.

1995 A 組

HVH3/B23 Erk Ishibashi et al.1994; Kwak and Dixon 1995 MKP-5 Jnk, p38α&β Tanoue et al. 1999; Theodosiou et al. 1999;

Masuda et al.2000

HVH5 Jnk, p38 Martell et al. 1995; Theodosiou et al. 1996;

Nesbit et al. 1997 B 組

MKP-7 Jnk, p38α&β Masuda et al. 2001; Matsuguchi et al. 2001;

Tanoue et al. 2001b; Montpetit et al. 2002 PYST1 Erk Groom et al. 1996; Wiland et al. 1996;

Furukawa et al. 1998 PYST2/B59 Erk Shin et al. 1997; Dowd et al. 1998 C 組

表13 非典型DSPs分類表,“─”符號表示尚無DUSP編號

人類蛋白質名稱 DSP 名稱 異種同源基因 PDB 資料庫編號 VHR DUSP3 T-DSP11 (m) 1J4X, 1VHR MKPX/JSP1/VHX ─ LMW-DSP2 (m), TS-DSP2,

JKAP 尚未解出

DUSP13 DUSP13 LMW-DSP2 (m), TS-DSP6

(m) 尚未解出

HSSH-1 ─ SSH1(fly) 尚未解出

HSSH2 ─ SSH2(fly) 尚未解出

HSSH3 ─ SSH3(fly) 尚未解出

HYVH1 DUSP12 GKAP (r), LMW_DSP4 (m) 尚未解出 SKRP1 DUSP19 LDP-2 (m)/ TS-DSP1 (m)/

SKRP1 (m) 尚未解出

LMW-DSP20 DUSP20 無 尚未解出

LMW-DSP21 DUSP21 BJ-HCC-26 tumor antigen 尚未解出 MKP6/MK DUSP14 DSUP14 (m) 尚未解出

人類蛋白質名稱 受質名稱 參考文獻

VHR Erk, Jnk Ishibashi et al. 1992 MKPX/JSP1/VHX Inhibits Erk, Jnk , p38 and

activates Jnk

Aoyama et al. 2001; Shen et al. 2001;

Alonso et al. 2002; Chen et al. 2002 DUSP13 Unknown Nakamura et al. 1999 HSSH-1 ADF/Cofilin Niwa et al. 2002 HSSH-2 ADF/Cofilin Niwa et al. 2002 HSSH-3 ADF/Cofilin Niwa et al. 2002

HYVH1 Glucokinase Muda et al. 1999; Munoz-Alonso et al.

2000

SKRP1 Jnk Zama et al. 2002b; Zama et al. 2002a LMW-DSP20 Unknown Hood et al. 2002

LMW-DSP21 Unknown Hood et al. 2002 MKP6/MK Erk, Jnk Marti et al. 2001

附錄B 胺基酸之縮寫與特性分類對照表

表14 胺基酸之縮寫與特性分類對照表

分類 名稱 縮寫 中文名稱 R 基團

Glycine Gly / G 甘胺酸 -H Alanine Ala / A 丙胺酸 -CH3

Valine Val / V 結胺酸 -C(C)-C Leucine Leu / L 亮胺酸 -C-C(C)-C 脂肪族

Isoleucine Ile / I 異亮胺酸 -C(C)-C-C Serine Ser / S 絲胺酸 -C-OH Cysteine Cys / C 胱胺酸 -C-SH Threoine Thr / T 酥胺酸 -C(OH)-C 支鏈含羥基或含硫

Methionine Met / M 甲硫胺酸 -C-C-S-C 環狀族 Proline Pro / P 脯胺酸 (imino acid)

Phenylalanine Phe / F 苯丙胺酸 -C-[C6H5] Tyrsine Tyr / Y 酪胺酸 -C-[C6H4]-OH 芳香族

Trptophan Trp / W 色胺酸 -C-[indole]

Histidine His / H 組胺酸 -C-[imidazole]

Lysine Lys / K 離胺酸 -C-C-C-C-NH2

鹼性族

Arginine Arg / R 精胺酸 -C-C-C-[guanidine]

Aspartate Asp / D 天冬胺酸 -C-COOH 酸性族

Glutamate Glu / E 麩胺酸 -C-C-COOH Asparagine Asn / N 天冬醯胺酸 -C-CONH2

醯胺族

Glutamine Gln / Q 麩醯胺酸 -C-C-CONH2

附錄C 磷酸根團範圍值

表15 DSP活化部位收集的基本資料

代表類組 酵素 PDB 資料庫編號

VHR 1J4X 非典型DSP,似 VHR 類

VHR 1VHR 典型DSP,似 VHR 類 Pyst1-CD 1MKP

KAPt 1FPZ DSP,似 Cdc14 類

KAPt/pCDK2 1FQ1

MTMR2 1LW3 DSP,磷酸肌醇類

MTMR2 1M7R Cdc25B 1CWS Cdc25B 1CWT PTP,Cdc25 類

Cdc25B 1QB0

表16 磷酸根團範圍值-磷酸根團的O-1

PDB 資料 庫編號

O-1 和胺基酸形成氫 鍵的距離

O-1 與磷原子 的距離

O-1 與磷原子的距離加 氫鍵的距離

磷酸根與胺基酸之間 的距離 1J4X R130; R130-NH 1.61 4.66; 4.16 4.2; 3.84 1VHR R125; E126;

R130-NH2+ 1.52 4.61; 4.41; 4.5 4.44; 3.97; 3.65

1MKP 無資料 無資料 無資料 無資料

1FPZ R146-NH 1.45 3.81 3.69

1FQ1 G143; L144 1.49 5.35; 5.78 4.25; 4.95 1LW3 S418; D419;

R423-NH2+ 1.47 4.35; 4.43; 4.66 4.26; 3.96; 3.94 1M7R G420; W421; D422 1.47 4.43; 4.37; 4.63 4.12; 4.32; 3.95 1CWS F475; S476; S477 1.92 4.93; 4.92; 4.58 4.02; 4.53; 4.25 1CWT S476; S477; S478 1.6 5.06; 4.25; 4.59 4.49; 4.18; 3.9

1QB0 無資料 1.61 無資料 無資料

平均值 1.57 4.62 4.15

表17 磷酸根團範圍值-磷酸根團的O-2

PDB 資料 庫編號

O-2 和胺基酸形成氫鍵 的距離

O-2 與磷原 子的距離

O-2 與磷原子的距離加 氫鍵的距離

磷酸根與胺基酸之間 的距離 1J4X R125; E126; R130-NH2+ 1.56 4.63; 4.46; 4.41 4.39; 4.02; 3.45 1VHR G127; Y128; S129 1.45 5.13; 4.35; 4.32 4.59; 4.31; 3.85

1MKP 無資料 無資料 無資料 無資料

1FPZ 無資料 1.47 無資料 無資料

1FQ1 Y141; G142; R146-NH2+ 1.41* 4.22; 4.36; 4.07 4.29; 3.67; 3.17 1LW3 G420; W421; D422 1.48 4.73; 4.39; 4.15 4.14; 4.32; 3.75 1M7R R423; R423-NH 1.48 4.37; 4.14 3.95; 3.88 1CWS E478; R479; R479-NH 1.78 5.01; 4.35; 5.28 3.98; 4.24; 3.96 1CWT R479; R479-NH 1.61 4.65; 4.62 4.39; 3.9

1QB0 E474; F475; R479-NH2+ 1.6 4.3; 4.53; 4.64 4.19; 3.9;4

平均值 1.54 4.51 4.21

表18 磷酸根團範圍值-磷酸根團的O-3

PDB 資料 庫編號

O-3 和胺基酸形成氫鍵的距 離

O-3 與磷原 子的距離

O-3 與磷原子的距離 加氫鍵的距離

磷酸根與胺基酸之 間的距離 1J4X G127; Y128; S129 1.46 4.86; 4.42; 4.34 4.53; 4.42; 3.8 1VHR R130; R130-NH 1.49 4.62; 5.29 4.22; 3.81

1MKP 無資料 無資料 無資料 無資料

1FPZ Y141; G142; G143;

R147-NH2+ 1.48 5.26; 4.88; 5.8*; 5.45 4.9; 4.78; 5.12; 4.39 1FQ1 G145; R146; R146-NH 1.52 4.83; 3.88; 6.32 4.17; 3.77; 4.99

1LW3 無資料 1.48 無資料 無資料

1M7R S418; D419; R423-NH2+ 1.48 4.47; 4.8;4 4.29; 4.09; 3.2

1CWS E474; R479-NH2+ 1.79 4.8; 4.27 4.29; 4.1 1CWT E474; F475; R479- NH2+ 1.59 4.54; 4.76; 4.63 4.37; 4.02; 4.02

1QB0 479R; 479R-NH 1.6 4.39; 4.46 4.08; 3.77

平均值 1.54 4.78 4.23

表19 磷酸根團範圍值-磷酸根團的O-4

PDB 資料 庫編號

O-4 和胺基酸形成氫鍵 的距離

O-4 與磷原子的 距離

O-4 與磷原子的距離 加氫鍵的距離

磷酸根與胺基酸之 間的距離

1J4X 無資料 1.72 無資料 無資料

1VHR 無資料 1.81 無資料 無資料

1MKP 無資料 無資料 無資料 無資料

1FPZ L144; G145; R146 1.47 4.77; 4.5; 4.05 4.32; 4.21; 3.51

1FQ1 無資料 1.47 無資料 無資料

1LW3 R423; R423-NH 1.48 4.5; 4.17 3.88; 3.8

1M7R 無資料 1.47 無資料 無資料

1CWS 無資料 1.77 無資料 無資料

1CWT 無資料 1.59 無資料 無資料

1QB0 S476; S477; E478 1.6 5.03; 4.19; 4.44 4.41; 4.14; 3.1

平均值 1.6 4.46 3.92

表 16~表 19 中則為磷酸根團內部氧的距離加氫鍵的距離的統計,第一欄為 DSP 家族其中 10 個蛋白質在 PDB 中的編號。第二欄為磷酸根團上的氧原子和胺 基酸形成氫鍵的距離,欄中的英文為胺基酸的縮寫,數字代表在蛋白質結構上的 位置。精胺酸(R)後的-NH 和-NH2+

為精胺酸的支鏈。第三欄為中心磷原子和磷酸 根團四個氧原子中心的距離。第四欄為中心磷原子和磷酸根團四個氧原子的距離 加氫鍵的距離。第五欄為中心磷原子與胺基酸之間的距離。距離的單位都為Å。

附錄D 活化部位與互動測量值

表20 活化部位測量值的結果

酵素 PDB 資料庫 編號

胺基酸C 和 R 兩者 的中心碳Cα 距離

胺基酸R 和 D 兩者 的中心碳Cα 距離

胺基酸C 和 D 兩者的中 心碳Cα 距離

VHR 1J4X 6.41 5.9 9.41

VHR 1VHR 6.12 6.22 9.53

Pyst1-CD 1MKP *6.87 *10.3 *12.07

KAPt 1FPZ 6.35 7.22 8.58

KAPt/pCDK2 1FQ1 6.26 7.86 9.09

MTMR2 1LW3 6.56 3.8 8.1

MTMR2 1M7R 6.61 3.9 8.29

Cdc25B 1CWS 5.84 9.32 5.74

Cdc25B 1CWT 6.04 9.27 5.68

Cdc25B 1QB0 5.81 9.35 5.68

平均值 6.364 7.314 8.263

標準差 0.106 6.07 5.461

胱胺酸(C)、精胺酸(R)、天冬胺酸(D)兩兩間的距離,其中各距離的單位都為 Å。“*”符號為本論文所設計之程式中DSP活化部位預測中所需的預設值之根據。

表21 互動測量值的結果

酵素 PDB 資料 庫編號

胺基酸C 的 S 和磷酸 根P 的最接近距離

胺基酸R 的 NH 與 NH2+

和磷酸根P 的距離

胺基酸D 的 OH 和磷 酸根P 的距離

VHR 1J4X 3.25 3.84; 3.45 3.62

VHR 1VHR 3.62 3.81; 3.65 4.56

Pyst1-CD 1MKP 3.04 4.75; 3.58 *9.61 KAPt 1FPZ *4.26 3.69; 4.39* 5.58 KAPt/pCDK2 1FQ1 3.54 *4.99; 3.17 5.36

MTMR2 1LW3 3.29 3.94; 3.8 3.72

MTMR2 1M7R 3.45 3.88; 3.2 3.72

Cdc25B 1CWS 3.28 3.96; 4.1 9.44

Cdc25B 1CWT 3.61 3.9; 4.02 9.4

Cdc25B 1QB0 3.29 3.77; 4 9.44

平均值 3.463 4.05; 3.74 6.445

標準差 0.114 0.175; 0.143 6.5

胱胺酸(C)、精胺酸(R)、天冬胺酸(D)分別和磷酸根的距離,其中各距離的單 位都為Å。“*”符號為本論文所設計之程式中DSP活化部位預測中所需的預設值之 根據。

附錄E DSP蛋白質結構預測座標與實際磷酸根座標相差距離

表22 原始DSP蛋白質結構預測座標與實際磷酸根座標相差距離

PDB 資料庫編號 \ α-ball 半徑 2.15Å 2.35Å 2.55Å 2.75Å 2.95Å 3.15Å 1J4X 2.235Å 4.075Å 無 無 無 無 1VHR 0.515Å 0.587Å 3.424Å 無 無 無 1MKP 2.621Å 3.983Å 4.601Å 無 無 無 1FPZ 0.676Å 1.886Å 無 無 無 無

1FQ1 無 無 無 無 無 無

1LW3 1.67Å 3.094Å 3.59Å 4.137Å 無 無 1M7R 2.294Å 2.969Å 3.511Å 無 無 無 1CWS 0.797Å 0.947Å 1.603Å 2.238Å 2.839Å 無

1CWT 0.412Å 1.432Å 2.11Å 2.604Å 3.076Å 3.46Å 1QB0 0.697Å 1.316Å 2.144Å 2.673Å 3.887Å 3.658Å

表23 新DSP蛋白質結構預測座標與實際磷酸根座標相差距離

PDB 資料庫編號 \ α-ball 半徑 2.15Å 2.35Å 2.55Å 2.75Å

1yz4 0.266Å 0.786Å 2.943Å 3.658Å 1wrm 0.478Å 1.74Å 2.903Å 3.643Å

1ym9 無 無 無 無

1ymd 無 無 無 無

1yml 無 無 無 無

2a2k 0.265Å 1.592Å 2.217Å 3.282Å

在文檔中 中 華 大 學 (頁 69-88)

相關文件