• 沒有找到結果。

在本研究中,我們將銅墊層鍍上2 μm 的薄銲錫,並反應成介金屬化合 物,作為銅原子擴散的阻擋層。當試片再接上銲錫時,介金屬化合物的成 長將被抑止。在同樣的迴銲時間下,減少的介金屬化合物至少在1 μm 厚以 上,銅墊層的消耗也降低1~2 μm 厚,效果顯著。考慮迴銲前 10 分鐘的反 應速率 k 值,從中也可看到,有阻擋層的試片為3.12 10 ,較 無阻擋層的 5.40 10 少了一個數量級。

對於抑止的機制我們也作出多方的驗證。銅原子主要藉由介金屬化合物 之間的通道從銅墊層擴散至銲錫內反應,因為銅原子的擴散途徑在迴銲之 後大幅減少,達成抑止介金屬化合物成長的效果。

兩種錫銅介金屬化合物Cu6Sn5與 Cu3Sn,我們也作出抑止效果的比較與 分析。以密合的Cu6Sn5做為擴散阻擋層,在迴銲時間拉長時還是會有大量 的介金屬化合物生成。倘若以Cu3Sn 做阻擋層,則在迴銲時間前 10 分鐘時 幾乎沒有大量的介金屬化合物生成,但是在10 分鐘之後開始有部分位置形 成大塊的Cu6Sn5。考慮迴銲前10 分鐘的反應速率 k 值計算,以 Cu3Sn 做阻 擋層的試片為4.38 10 ,以密合的 Cu6Sn5做為擴散阻擋層的為 9.48 10 ,由此可觀察到抑止的現象的確是以Cu3Sn 做阻擋層 效果較好。

54 

除此之外由於純錫與銅的反應速率比錫銀銲錫與銅反應速率來的快,因 此在錫銀凸塊結構的試片得到的 n 值與 k 值皆與純錫薄膜結構的試片不 同。

最後,在迴銲時間拉長時,Cu3Sn 與銲錫之間會局部生成異常巨大的 Cu6Sn5,此異常晶粒成長(Selective Grain Growth)的現象在 Kim 等人[46]的 文獻中提到也發生在錫鎳介金屬化合物中,初步推斷造成此現象的原因來 自於Cu6Sn5晶體面向(Faceted)的不同,相關的問題尚待我們深入的研究與

克服。   

55 

參考文獻

1. Tomlinson, W. and A. Fullylove, “Strength of Sn-based soldered joints,” J. Mater. Sci., 27, 21, 5777-5782, 1992.

2. Abtew, M. and G. Selvaduray, “Lead-free solders in microelectronics,” Mater. Sci. Eng.: R:

Reports, 27, 5-6, 95-141, 2000.

3. B. F. Dyson, T. R. Anthony, D. Turnbull, “Interstitial Diffusion of Cu in Sn,” J. Appl.

Phys., 38, 8, 3408, 1967.

4. K.N. Tu, “Interdiffusion and Reaction in Bimetallic Cu-Sn Thin Films,” Acta Metal., 21, 4, 347-354, 1973.

5. K.N. Tu, R. D. Thompson, “Kinetics of Interfacial Reaction in Bimetallic Cu-Sn Thin Films,” Acta Metal., 30, 5, 947-952, 1982.

6. S. Bader, W. Gust, H. Hieber, “Rapid Formation of Intermetallic Compounds by Interdiffusion in the Cu-Sn and Ni- Sn Systems,” Acta Metal., 43, 1, 329-337, 1995.

7. Kim. H., K. N. Tu, “Kinetic Analysis of the Soldering Reation between Eutectic SnPb Alloy and Cu Accompanied by Ripening,” Phys. Rev. B, 53, 23, 16027, 1996.

8. J. Y. Song, J. Yu, T. Y. Lee, “Effect of Reactive Diffusion on Stress Evolution in Cu-Sn Films,“ Scripta Mater., 51, 2, 167-170, 2004.

9. H. F. Zou, H. J. Yang, Z. F. Zhang, “Morphologies, Orientation Relationships and Evolution of Cu6Sn5 Grains Formed between Molten Sn and Cu Single Crystals,” Acta Mater., 56, 11, 2649-2662, 2008.

10. T. Laurila, V. Vuorinen, and J. K. Kivilahti, “Interfacial Reactions between Lead-free Solders and Common Base Materials,” Mater. Sci. Eng. R., 49, 1-2, 1-60, 2005.

11. J. Gong, C. Liu, P. P. Conway, V. V. Silberschmidt, “Initial Formation of CuSn Intermetallic Compounds between Molten SnAgCu Solder and Cu Substrate,“ Scripta

56 

Mater., 60, 5, 333-335, 2009.

12. L. Jiang, N. Chawla, “Mechanical Properties of Cu 6Sn5 Intermetallic by Micropillar Compression Testing,” Scripta Mater., 63, 5, 480-483, 2010.

13. S.-H. Kim, J.-Y. Kim, J. Yu, and T.Y. Lee, “Residual Stress and Interfacial Reaction of the Electroplated Ni-Cu Alloy Under Bump Metallurgy in the Flip-Chip Solder Joint,” J.

Electron. Mater., 33, 9, 948-957, 2004.

14. W. T. Chen, C. E. Ho, and C. R. Kao, “Effect of Cu Concentration on the Interfacial Reactions between Ni and Sn–Cu Solders,” J. Mater. Res., 17, 263-266, 2002.

15. Intel Technology Journal, 9, 4, 2005.

16. V. B. Fiks, “On the Mechanism of the Ions in Metals,” Soviet Physics-Solid State, 1, 14-28, 1959.

17. K. N. Tu, “Irreversible Processes of Spontaneous Whisker Growth in Bimetallic Cu-Sn Thin Film Reactions,” Phys. Rev. B, 49, 3, 2030-2034, 1994.

18. 張淑如,「勞工安全衛生簡介」,第 12 期,第 17 頁,民國 84 年。

19. B. Trumble, “Get the Lead Out!” IEEE Spectrum, 35, 55, 1998.

20. 賴金玄,「工業材料」,第 158 期,第 99 頁,民國 90 年。

21. W. Guo, S.M. Kuo, C. Zhang “Reliability evaluations of under bump metallurgy in two solder systems,” IEEE Trans. CPT, 24, 4, 655-660, 2001.

22. P. Elenius, “Flex on Cap - Solder paste bumping,” Proc. 47th Electron. Components Technology Conf. (Piscataway, NJ: IEEE), 248-253, 1997.

23. Integrated Circuit Engineering Corp., IC Packaging Update 1999.

24. W. J. Choi, et. al., “Structure and Kinetics of Sn Whisker Growth on Pb-free Solder Finish,” IEEE, Piscataway, N. J., USA, 628, 2002.

25. Baker, H., “ASM handbook: Alloy Phase Diagrams,” ASM International, 3, 1992.

26. K. N. Tu, T. Lee, “Morphological Stability of Solder Reaction Products in Flip Chip

57 

Technology,” J. Electron. Mater., 30, 9, 1129-1132, 2001.

27. M.S. Park, R. Arro´yave, “Concurrent nucleation, formation and growth of two

intermetallic compounds (Cu6Sn5 and Cu3Sn) during the early stages of lead-free soldering,”

Acta Mater., 60, 3, 923-934, 2012.

28. J. Schiøtz, K. W. Jacobsen, “A maximum in the Strength of Nanocrystalline Cu,“ Science, 301, 1357, 2003.

29. S. J. Zhou, D. L. Preston, P. S. Lomdahl, D. M. Beazley, “Large-scale Molecular Dynamics Simulations of Dislocation Intersection in Cu,“ Science, 279, 1525, 1998.

30. L. Lu, M. L. Sui, K. Lu, “Superplastic Extensibility of Nanocrystalline Cu at Room Temperature,“ Science, 287, 1463, 2000.

31. K. Lu, L. Lu, S. Suresh, “Strengthening Materials by Engineering Coherent Internal Boundaries at the Nanoscale,“ Science, 324, 349, 2009.

32. K. C. Chen, W. W. Wu, C. N. Liao, L. J. Chen, K. N. Tu, “Observation of Atomic Diffusion at Twin-modified Grain Boundaries in Cu,“ Science 321, 1066, 2008.

33. L. Lu, Y. Shen, X. Chen, L. Qian, K. Lu, “Ultrahigh Strength and High Electrical Conductivity in Cu,“ Science, 304, 422, 2004.

34. L. Lu, X. Chen, X. Huang, K. Lu, “Revealing the Maximum Strength in Nanotwinned Cu,“ Science, 323, 607, 2009.

35. X. Li, Y. Wei, L. Lu, K. Lu, H. Gao, “Dislocation Nucleation Governed Softening and Maximum Strength in Nano-twinned Metals,“ Nature, 464, 877, 2010.

36. O. Anderoglu et al., “Thermal Stability of Sputtered Cu Films with Nanoscale Growth Twins,” Appl. Phys. Lett., 103, 9, 094322, 2008.

37. Hsiang-Yao Hsiao et al., “Unidirectional Growth of Microbumps on (111)-Oriented and Nanotwinned Cu,” Science, 336, 1007, 2012.

38. T.R. Bieler and H. Jiang, “Influence of Sn Grain Size and Orientation on the

58 

Thermomechanical Response and Reliability of Pb-free Solder Joints,” IEEE EPTC, 1462, 2006.

39. D. C. Yeh and H. B. HunSngton, “Extreme Fast-Diffusion System : Nickel in Single-Crystal Sn,” Phys. Rev. Lett., 53, 15, 1469-1472, 1984.

40. Jin Yu, J.Y. Kim, “Effects of Residual S on Kirkendall Void Formation at Cu/Sn–3.5Ag Solder Joints,” Acta Mater., 56, 19, 5514-5523, 2008.

41. Kejun Zeng, Roger Stierman, Tz-Cheng Chiu, Darvin Edwards, Kazuaki Ano, and K. N.

Tu, “Kirkendall Void Formation in Eutectic SnPb Solder Joints on Bare Cu and Its Effect on Joint Reliability,” J. Appl. Phys., 97, 2, 024508, 2005.

42. K. N. Tu, J.W. Mayer, and L.C. Feldman, Electronic Thin Film Science, Macmillan Publishing, New York, 1992.

43. Chuan Seng Tan, Ronald J., Wafer Level 3-D ICs Process Technology, Gutmann, L. Rafael Reif, Springer 2008.

44. L. Snugovsky, C. Cermignani, D. D. Perovic and J. W. Rutter, “The Solid Solubility of Ag and Cu in the Sn Phase of Eutectic and Near-eutectic Sn-Ag-Cu Solder Alloys,” J.

Electron. Mater., 33, 11, 1313-1315, 2004.

45. J.O. Suh , K. N. Tu, G.V. Lutsenko , A.M. Gusak, “Size Distribution and Morphology of Cu6Sn5 Scallops in Wetting Reaction between Molten Solder and Cu,” Acta Mater., 56, 5, 1075-1083, 2008.

46. Jong Hoon Kim, Sang Won Jeong and Hyuck Mo Lee, “Selective Grain Growth of Ni3Sn4 at Sn-3.5Ag/Ni Interface,” Materials Transactions, 45, 3, 710-713, 2004.

相關文件