• 沒有找到結果。

為瞭解一冷卻渠道進行往復運動下,混合對流對ㄇ型渠道頂部的熱傳效率影

響,實際架設一組實驗設備來進來實驗,對ㄇ型渠道於靜止與往復運動狀態下,

探討不同雷諾數、不同溫差及搭配不同無因次振動頻率下的組合,並以數值模擬 比對,提高實驗結果的可信度。最後將結果歸納成以下結論:

1. ㄇ型渠道處於靜止狀態下時,由於受渠道幾何形狀及自然對流的影響,所以 前段加熱區熱傳效率最佳、中段加熱區次之、後段加熱區最差。

2. 當渠道進行振動時,壁面熱傳效率較靜止狀態時改善許多,在本實驗中最大 熱傳增益約為 51.3%。

3. 渠道在往復運動狀態下時,提升雷諾數不一定能有效提升其熱傳效應。

4. 本實驗以混合對流去探討熱傳效率的情形,與文獻陳[25]中以強制對流為主 的實驗比較,本實驗熱傳效率較佳,說明在冷卻渠道內自然對流對於熱傳效 率有一定的助益。

5. 在比較文獻中林[29]進口流體與重力同向的 U 型管道,本實驗由於進口流體 與重力反向且加熱區在上方,受自然對流效應影響較大,其熱傳效率低於 U 行 管道。

參考文獻

1. P. P. Grassmann, and M. Tuma, “Applications of the Electrolytic Method- . Ⅱ Mass Transfer within a Tube for Steady, Oscillating and Pulsating Flows,”

International Journal of Heat and Mass Transfer, Vol.22, pp.799-804, 1979.

2. A. T. Patera, and B. B. Mikic, “Exploiting Hydrodynamic Instabilities Resonant Heat Transfer Enhancement,” International Journal of Heat and Mass Transfer, Vol.29, No.8, pp.1127-1138, 1986.

3. S. Y. Kim, B. H. Kang, and A. E. Hyun, “Heat Transfer in the Thermally Developing Region of a Pulsating Channel Flow,” International Journal of Heat and Mass Transfer, Vol.36, No.17, pp.1257-1266, 1993.

4. T. Nishimura, A. Taurmoto, and Y. Kawamura, “Flow and Mass Transfer Characteristics in Wavy Channels for Oscillatory Flow,” International Journal of Heat Mass Transfer, Vol.30, pp.1007-1015, 1987.

5. T. Nishimura, S. Arakawa, D. Murakami, and Y. Kawamura, “Oscillatory Viscous Flow in Symmetric Sinusoidal Wavy-Walled channels”, Chemical Engineering Science, Vol. 44, pp. 2137-2148, 1989.

6. T. Nishimura, S. Arakawa, D. Murakami, and Y. Kawamura, “Oscillatory Flow in a Symmetric Sinusoidal Wavy-Walled Channel at Intermediate Strouhal Numbers,” Chemical Engineering Science, Vol. 46, pp. 757-771, 1991.

7. A. E. Bergles, “Heat Transfer Enhancement – The Encouragement and Accommodation of High Heat Fluxes,” ASME Journal of Heat Transfer, Vol.119, pp.8-19, 1997.

8. R. L. Webb, E. R. G. Eckert, and R. J. Goldstein, “Heat Transfer and Friction in Tubes with Repeated-Rib Roughness,” International Journal of Heat and Mass

Transfer, Vol.14, No.4, pp.601-617, 1971.

9. J. C. Han, “Heat Transfer and Friction in Channels with Two Opposite Rib-Roughed Walls,” ASME Journal of Heat Transfer, Vol.106, pp.774-781, 1984.

10. M. R. Mackley, G. M. Tweddle, and I. D. Wyatt, “Experimental Heat Transfer Measurements for Pulsatile Flow in Baffled Tubes,” Chemical Engineering Science, Vol.45, No.5, pp.1237-1242, 1990.

11. M. R. Mackley, and X. Ni, “Mixing and Dispersion in a Baffled Tube for Steady Laminar and Pulsatile Flow,” Chemical Engineering Science, Vol.46, No.12, pp.3139-3151, 1991.

12. S. W. Chang, and L. M. Su, “Influence of Reciprocating Motion on Heat Transfer Inside a Ribbed Duct with Application to Piston Cooling in Marine Diesel Engines,” Journal of Ship Research, Vol.41, No.4, pp.332-339, 1997.

13. S. W. Chang, L. M. Su, W. D. Morris, and T. M. Liou, “Heat Transfer in a Smooth-Walled Reciprocating Anti-Gravity Open Thermosyphon,” International Journal of Heat and Mass Transfer, Vol. 42, pp. 1089-1103, 2003.

14. Wu-Shung Fu, Wen-Wang Ke, and Ke- Nan Wang, “Laminar forced convection in a channel with a moving block,” International Journal of Heat and Mass Transfer, Vol.44 pp.2385-2394,2001

15. L.A. Florio, “Use of a plate to enhance natural convection cooling of a discrete heat source in a vertical channel,” Applied Thermal Engineering, Vol.27, pp.2276-2293, 2007

16. Wu-Shung Fu, and Wen-Jiann Shieh, “A study of thermal convection in an enclosure induced simultaneously by gravity and vibration,” International Journal of Heat and Mass Transfer, Vol.35 , No.7, pp1695-1710, 1992

17. Wu-Shung Fu, and Wen-Jiann Shieh, “Transient thermal convection in an enclosure induced simultaneously by gravity and vibration,” International Journal of Heat and Mass Transfer, Vol.36, No.2, pp437-452, 1993

18. Sung Ki Kim, Seo Young Kim, and Young Don Choi, “Resonance of natural convection in a side heated enclosure with a mechanically oscillating bottom wall,” International Journal of Heat and Mass Transfer, Vol.45, pp3155-3162, 2002

19. Wu-Shung Fu, and Chien-Ping Huang “Effects of a vibrational heat surface on natural convection in a vertical channel flow “ International Journal of Heat and Mass Transfer 49 (2006) 1340–1349

20. Wu-Shung Fu, and Chien-Ping Huang “Limitation enhancement of a mixed convection by a vibrational heat surface in a vertical channel” Heat mass transfer

21. 廖英皓,”活塞頂部之熱傳分析”,國立交通大學機械工程學系碩士論文,

2003。

22. 賴昱志,”增進活塞熱傳效益之數值模擬” ,國立交通大學機械工程學系碩 士論文,2004。

23. 連信宏,”利用多孔性介質增強活塞頂面之熱傳效率”,國立交通大學機械工 程學系碩士論文,2005。

24. 余政倫,”往復式冷卻渠道之熱流實驗”,國立交通大學機械工程學系碩士論 文,2006。

25. 陳沅佑,” 實驗探討ㄇ型振動管之熱傳現象”, 國立交通大學機械工程學系 碩士論文,2007。

26. W. J. Yang, Handbook of Flow Visualization, Hemisphere Publishing

Corporation, 1989.

27. S. J. Kline, “The Purpose of Uncertainty Analysis,” ASME Journal of Heat Transfer, Vol.117, pp.153-160, 1985.

28. W. S. Fu, S. H. Lian, and Y. H. Liao, “An investigation of heat transfer of a reciprocating piston,” International Journal of Heat and Mass Transfer, Vol.49, pp.4360-4371, 2006.

29. 林敬倫,”垂直往復式冷卻渠道之混合對流實驗”, 國立交通大學機械工程 學系碩士論文,2008。

附錄一:實驗不準度分析

為提供有效的測試結果,並說明當次測試結果的信賴度,所以實驗不 準度的計算和分析是必要的,一般不準度的表示方式有絕對不準度與相對 不準度兩種,本文採用 Kline[27]之相對不準度來分析第四章實驗結果,

根據 Kline 之研究

1.1 熱傳量Qair之不準度:

(ii) 巴沙木尺寸 62.00mm*12.00mm,游標尺最小刻度 0.05mm

(iii) 溫差最大範圍 45.775-44.875=0.9℃,DA2500E 之準確度為

0.1℃

因此其不準度為

F. 加熱片 2 與加熱片 5 間熱傳量之不準度

加熱片面積 62.00mm×12.00mm,游標尺最小刻度 0.05mm

2

加熱片與室溫溫度差最大範圍 35.1-25.8=10.3℃,DA2500E 之準 確度為 0.1℃,平均溫差容許的誤差為 0.3℃

Q為流量計之流量,其最小刻度 20cc/s

入口高度 29.90mm,游標尺最小刻度 0.05mm

2

加熱片與室溫溫度差最大範圍 35.7-25.8=10.3℃,DA2500E 之準確 度為 0.1℃,平均溫差容許的誤差為 0.3℃

Q為流量計之流量,其最小刻度 20cc/s

B. 熱量散逸之不準度:

(ii) 巴沙木尺寸 62.00mm*12.00mm,游標尺最小刻度 0.05mm

(iii) 溫差最大範圍 45.05-44.20=0.9℃,DA2500E 之準確度為 0.1℃

(ii) 加熱片接觸面積 62.00mm × 2mm,游標尺最小刻度 0.05mm

%

加熱片與室溫溫度差最大範圍 45.05-25.15=19.9℃,DA2500E 之 準確度為 0.1℃,平均溫差容許的誤差為 0.3℃

十二、 雷諾數之不準度分析

由式(3-2),無因次振動振幅Lclc/W

2

10.3 溫度差Tw之不準度:

加熱片與室溫溫度差最大範圍 35.18-25.15=10.3℃,DA2500E 之準確度為 0.1℃,平均溫差容許的誤差為 0.3℃

附錄二

目前主流的 Sulzer 大型柴油引擎之轉速與輸出功率 REF: http://www.wartsila.com/

本實驗的實際參數

組數 Re W Gr/ReW2  (℃)Tw F c f (1/s) c Case1 300 0.40 10 0.0 0.0 Case2 300 0.81 20 0.0 0.0 Case3 300 1.21 30 0.0 0.0 Case4 300 1.62 40 0.0 0.0 Case5 200 0.91 10 0.0 0.0 Case6 200 1.82 20 0.0 0.0 Case7 200 2.73 30 0.0 0.0 Case8 200 3.64 40 0.0 0.0 Case9 100 4.85 30 0.0 0.0 Case10 300 0.40 10 0.2 1.04 Case11 300 1.62 40 0.2 1.04 Case12 300 0.40 10 0.4 2.08 Case13 300 1.62 40 0.4 2.08 Case14 200 0.91 10 0.2 0.69 Case15 200 3.64 40 0.2 0.69 Case16 200 0.91 10 0.4 1.38 Case17 200 3.64 40 0.4 1.38

相關文件