• 沒有找到結果。

本研究是利用[C4mim][PF6]當作萃取劑,藉由調控水溶液的 pH 值,蛋白質能在水溶液與乙酸乙酯和[C4mim][PF6]的混合物間進行正 向及反向萃取,並發現珠狀蛋白在低pH 值且有金屬鹽類存在所呈現 的熔珠態會明顯地影響蛋白質在低pH 值時的萃取;不過如果無金屬 鹽類存在,則不會在低pH 值時有影響萃取的現象發生。

另外,本實驗測試了水溶液中 KCl 對於蛋白質萃取的影響,由結 果可知,水溶液中的KCl 對細胞色素 c 及核糖核酸酶 A 存在遮蔽效 應而影響蛋白質的萃取,但是對於較疏水性的肌紅蛋白則無干擾的情 形產生。此外,嘗試在正丁醇裡加入有機鹽類TBAB 以模擬 IL 的性 質,當TBAB 濃度越高,肌紅蛋白萃取率越大,顯示 IL 能萃取蛋白 質或許是由於其近似醇類的極性及鹽類的特性。

至於萃取機制主要是蛋白質與 IL 之間的靜電作用力所致,但是 其他如蛋白質的疏水性、蛋白質與IL 間的其他作用力等等,可能也 是影響IL 萃取蛋白質的因素。此液相/液相萃取技術或許可使用於 蛋白質的純化及濃縮,並且開拓ILs 新的應用領域。

參考文獻

1. D. Sterzenbach, B. W. Wenclawiak, V. Weigelt, “Determination of Chlorinated Hydrocarbons in Marine Sediments at the Part-per Trillion Level with Supercritical Fluid Extraction” Anal. Chem. 69 (1997) 831.

2. L. A. Blanchard, D. Hancu, E. J. Beckman, J. F. Brennecke, “Green processing using ionic liquids and CO2” Nature 399 (1999) 28.

3. J. G. Huddleston, H. D. Willauer, R. P. Swatloski, A. E. Visser, R. D.

Rogers, “Room temperature ionic liquids as novel media for ‘clean’

liquid-liquid extraction” Chem. Commun. (1998) 1765.

4. T. Welton, “Room-Temperature Ionic Liquids. Solvents for Synthesis and Catalysis” Chem. Rev. 99 (1999) 2071.

5. P. Wasserscheid, W. Keim, “Ionic Liquids-New “Solutions” for Transition Metal Catalysis” Angew. Chem. Int. Ed. 39 (2000) 3772.

6. C. J. Adams, M. J. Earle, G. Roberts, K. R. Seddon, “Friedel-Crafts reaction in room temperature ionic liquids” Chem. Commun. (1998) 2097.

7. R. A. Sheldon, “Catalytic reactions in ionic liquids” Chem.

Commun. (2001) 2399.

8. M. Fremantle, Chem. Eng. News, March 30, 1998, p. 32; M.

Fremantle, Chem. Eng. News, May 15, 2000, p. 37; M. Fremantle, Chem. Eng. News, January 1, 2001, p. 21.

9. H. Waffenschmidt, Dissertation,Institut für Technische Chemie und Makromolekulare Chemie,, RWTH Aachen, Germany, 2000.

10. A. E.Visser, R. P. Swatloski, W. M. Reichert, S. T. Griffin, R. D.

Rogers, “Traditional Extractants in Nontraditional Solvents: Groups 1 and 2 Extraction by Crown Ethers in Room-Temperature Ionic Liquids” Ind. Eng. Chem. Res. 39 (2000) 3596.

11. S. N. Aki, J. F. Brennecke, A. Samanta, “How polar are room temperature ionic liquids?” Chem. Commun. (2001) 413.

12. P. Bonhote, A. Dias, N. Papageorgiou, K. Kalyanasundaram, M.

Grätzel, “Hydrophobic, Highly Conductive Ambient-Temperature Molten Salts” Inorg. Chem. 35 (1996) 1168.

13. J. G. Huddleston, A. E. Visser, W. M. Reichert, H. D. Willauer, G.

A. Broker, R. D. Rogers, “Characterization and comparison of hydrophilic and hydrophobic room temperature ionic liquids incorporating the imidazolium cation” Green Chem. 3 (2001) 156.

14. H. Matsumoto, M. Yanagida, K. Tanimoto, M. Nomura, Y. Kitagawa, Y. Miyazaki, “Highly Conductive Room Temperature Molten Salts Based on Small Trimethylalkylammonium Cations and Bis(trifluoromethylsulfonyl)imide” Chem. Lett. (2000) 922.

15. S. Hayashi, H. Hamaguchi, “Discovery of a Magnetic Ionic Liquid [bmim]FeCl4” Chem. Lett. (2004) 1590.

16. F. H. Hurley, T. P. Wier, J. Electrochem. Soc. 98 (1951) 207.

17. H. L. Chum, V. R. Koch, L. L. Miller, R. A. Osteryoung, “An Electrochemical Scrutiny of Organometallic Iron Complexes and Hexamethylbenzene in a Room Temperature Molten Salt” J. Am.

Chem. Soc. 97 (1975) 3264.

18. T. B. Scheffler, C. L. Hussey, K. R. Seddon, C. M. Kear, P. D.

Armitage, “Molybdenum Chloro Complexes in Room-Temperature Chloroaluminate Ionic Liquids: Stabilization of [MoCl6l2-and [MoCl6]3-” Inorg. Chem. 22 (1983) 2099.

19. T. M. Laher, C. L. Hussey, “Copper(Ⅰ) and Copper(Ⅱ) Chloro Complexes in the Basic Aluminum

Chloride-1-Methyl-3-ethylimidazolium Chloride Ionic Liquid”

Inorg. Chem. 22 (1983) 3247.

20. D. W. Armstrong, L. He, Y. S. Liu, “Examination of Ionic Liquids and Their Interaction with Molecules, When Used as Stationary Phases in Gas Chromatography” Anal. Chem. 71 (1999) 3873.

21. E. G. Yanes, S. R. Gratz, M. J. Baldwin, S. E. Robison, A. M.

Stalcup, “Capillary Electrophoretic Application of 1-Alkyl-3-methylimidazolium-Based Ionic Liquids” Anal. Chem.

73 (2001) 3838.

22. D. W. Armstrong, L. Zhang, L. He, M. L. Gross, “Ionic Liquids as Matrixes for Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry” Anal. Chem. 73 (2001) 3679.

23. H. Luo, S. Dai, P. V. Bonnesen, A. C. Buchanan, J. D. Holbrey, N. J.

Bridges, R. D. Rogers, “Extraction of Cesium Ions from Aqueous Solutions Using Calix[4]arene-bis(tert-octylbenzo crown-6) in Ionic Liquids” Anal. Chem. 76 (2004) 3078.

24. H. Luo, S. Dai, P. V. Bonnesen, “Solvent Extraction of Sr2+ and Cs2+

Based on Room-Temperature Ionic Liquids Containing Monoaza-Substituted Crown Ethers” Anal. Chem. 76 (2004) 2773.

25. A. E.Visser, R. P. Swatloski, W. M. Reichert, R. Mayton, S. Sheff, A.

Wierzbicki, J. H. Davis, R. D. Rogers, “Task-specific ionic liquids for the extraction of metal ions from aqueous solutions” Chem.

Commun. (2001) 135.

26. G. T. Wei, Z. S. Yang, C. Y. Lee, H. Y. Yang, C. R. C. Wang,

“Aqueous-Organic Phase Transfer of Gold Nanoparticles and Gold Nanorods Using an Ionic Liquid” J. Am. Chem. Soc. 126 (2004) 5036.

27. P. Wasserscheid, R. van Hal, A. Bösmann,

“1-n-Butyl-3-methylimidazolium ([bmim]octylsulfate―an even

28. L. A. Blanchard, J. F. Brennecke, “Recovery of Organic Products from Ionic Liquids Using Supercritical Carbon Dioxide” Ind. Eng.

Chem. Res. 40 (2001) 287.

29. R. Madeira Lau, M. J. Sorgedrager, G. Carrea, F. van Rantwijk, F.

Secundo, R. A. Sheldon, “Dissolution of Candida antarctica lipase B in ionic liquid: effects on structure and activity” Green Chem. 6 (2004) 483.

30. R. A. Sheldon, R. Madeira Lau, M. J. Sorgedrager, F. van Rantwijk, K. R. Seddon, “Biocatalysis in ionic liquids” Green Chem. 4 (2002) 147.

31. J. L. Kaar, A. M. Jesionowski, J. A. Berberich, R. Moulton, A. J.

Russell, “Impact of Ionic Liquid Physical Properties on Lipase Activity and Stability” J. Am. Chem. Soc. 125 (2003) 4125.

32. M. Erbeldinger, A. J. Mesiano, A. J. Russell, “Enzymatic Catalysis of Formation of Z-Aspartame in Ionic Liquid― An Alternative to Enzymatic Catalysis in Organic Solvents” Biotechnol. Prog. 16 (2000) 1129.

33. S. N. Baker, T. M. McCleskey, S. Pandey, G. A. Baker,

“Fluorescence studies of protein thermostability in ionic liquids”

Chem.Commun. (2004) 940.

35. C. Larsson, “Isolation of membranes and organelles from plant cells” Academic Pr, New York chapter11 (1983) 277.

36. N. L. Abbott, D. Blankschtein, T. A. Hatton, “Protein Partitioning in Two-Phase Aqueous Polymer Systems. 5. Decoupling of the Effects of Protein Concentration, Salt Type, and Polymer Molecular Weight” Macromolecules 26 (1993) 825.

37. M. Carlsson, P. Linse, F. Tjerneld, “Temperature-Dependent Protein Partitioning in Two-Phase Aqueous Polymer Systems”

Macromolecules 26 (1993) 1546.

38. A. P. B. Rabelo, E. B. Tambourgi, A. Pessoa, “Bromelain partitioning in two-phase aqueous systems containing PEO–PPO–PEO block copolymers” J. Chromatogr. B 807 (2004) 61.

39. M. L. Magri, R. B. Cabrera, M. V. Miranda, H. M.

Fernández-Lahore, O. Cascone, “Performance of an aqueous two-phase-based countercurrent chromatographic system for horseradish peroxidase purification” J. Sep. Sci. 26 (2003) 1701.

40. K. Shinomiya, Y. Kabasawa, K. Yanagidaira, H. Sasaki, M. Muto, T.

Okada, Y. Ito, “Protein separation by nonsynchronous coil planet centrifuge with aqueous–aqueous polymer phase systems” J.

Chromatogr. A 1005 (2003) 103.

41. M. J. Pires, M. R. Aires-Barros, J. M. S. Cabral, “Liquid-Liquid Extraction of Proteins with Reverse Micelles” Biotechnol. Prog. 12 (1996) 290.

42. K. E. Goklen, T. A. Hatton, “Protein Extraction Using Reverse Micelles” Biotechnol. Prog. 1 (1985) 69.

43. D. G. Hayes, “Mechanism of Protein Extraction from the Solid State by Water-in-Oil Microemulsions” Biotechnol. Bioeng. 53 (1997) 583.

44. E. B. Leodidis, T. A. Hatton, “Effect of Average Molecular Charge on Amino Acids Interfacial Partitioning in Reversed Micelles” J.

Colloid Interface Sci. 147 (1991) 163.

45. M. Adachi, M. Harada, A. Shioi, Y. Sato, “Extraction of Amino Acids to Microemulsion” J. Phys. Chem. 95 (1991) 7925.

46. K. E. Goklen, T. A. Hatton, “Liquid-Liquid Extraction of Low Molecular Proteins by Selective Solubilization in Reversed Micelles” Sep. Sci. Technol. 22 (1987) 931.

47. R. B. G. Wolbert, R. Hilhorst, G. Voskuilen, H. Nachtegaaal, M.

Dekker, K. van’t Riet, B. H. Bijsterbosch, “Protein Transfer from an Aqueous Phase into Reversed Micelles-The Effect of Protein Size and Charge Distribution” Eur. J. Biochem. 184 (1989) 627.

by Reverse Micelles: A Study of the Factors Affecting the Forward and Backward Transfer of α -Chymotrypsin and Its Activity”

Biotechnol. Bioeng. 38 (1991) 1239.

49. E. M. Leser, G. Wei, P. L. Lusis, M. Maestro, “Application of Reversed Micelles for the Extraction of Proteins” Biochem.

Biophys. Res. Commun. 135 (1986) 629.

50. G. Wanger, K. Wüthrich, “Amide proton exchange and surface conformation of the basic pancreatic trypsin inhibitor in solution:

studies with two-dimensional nuclear magnetic resonance” J. Mol.

Biol. 160 (1982) 343.

51. G. Bohm, R. Muhr, R. Jaenicke, “Quantitative analysis of protein far UV circular dichroism spectra by neural networks” Protein Eng. 5 (1992) 191.

52. N. Sreerama, R. W. Woody, “A self-consistent method for the analysis of protein secondary structure from circular dichroism”

Anal. Biochem. 209 (1993) 32.

53. http://www.mariecurie.org/annals/volume3/berthod.pdf

54. D. Paul, A. Suzumura, H. Sugimoto, J. Teraoka, S. Shinoda, H.

Tsukube, “Chemical Activation of Cytochrome c Proteins via Crown Ether Complexation: Cold-Active Synzymes for Enantiomer Selective Sulfoxide Oxidation in Methanol” J. Am. Chem. Soc. 125

55. R. Vazquez-Duhalt, P. M. Fedorak, D. W. S. Westlake, “Role of enzyme hydrophobicity in biocatalysis in organic solvents” Enzyme Microb. Technol. 14 (1992) 837.

56. M. Ohgushi, A. Wada, “Molten-globule state: a compact form of globular proteins with mobile side-chains” FEBS Lett. 164 (1983) 21.

57. G. Riddihough, Nat. Struct. Biol. 367 (1994) 98.

58. J. G. Lyubovitsky, H. B. Gray, J. R. Winkler, “Structural Features of the Cytochrome c Molten Globule Revealed by Fluorescence Energy Transfer Kinetics” J. Am. Chem. Soc. 124 (2002) 14840.

59. A. K. Bhuyan, J. B. Udgaonkar, “Multiple Kinetic Intermediates Accumulate during the Unfolding of Horse Cytochrome c in the Oxidized State” Biochemistry 37 (1998) 9147.

60. J. Wang, Y. Pei, Y. Zhao, Z. Hu, “Recovery of amino acids by imidazolium based ionic liquids from aqueous media” Green Chem.

7 (2005) 196.

61. J. L. Anderson, J. Ding, T. Welton, D. W. Armstrong,

“Characterizing Ionic Liquids On the Basis of Multiple Solvation Interactions” J. Am. Chem. Soc. 124 (2002) 14247.

表一、陽離子對稱性對於Ionic Liquids 熔點的影響5

表二、陰離子團大小對於Ionic Liquids 熔點的影響5

資料來源: http://www.mariecurie.org/annals/volume3/berthod.pdf

20°C的物理化學性質

[TBAB] added Extraction efficiency increased (%)

N N CH 3

C 4 H 9 Cl

N N

CH 3

C 4 H 9 Cl

-+

K + PF 6 - H 2 O

phase separation

N N

CH 3

C 4 H 9

+ PF 6

-圖四、1-butyl-3-methyl imidazolium hexafluorophosphate, ([C4mim][PF6]) 合成示意圖

HE 3.73 singlet 圖五、 [C4mim][PF6] NMR圖譜

HA 0.72 triplet HB 1.15 sextet

HC 1.68 quintet

HD 4.05 triplet HG 7.22 singlet

HH 7.30 singlet HF 8.26 singlet

HE 3.73 singlet

Cytochrome c

Cytochrome c

Cytochrome c

Mixture of Ethyl Acetate and [C4mim][PF6]

Mixture of Ethyl Acetate and [C4mim][PF6] Mixture of Ethyl Acetate

and [C4mim][PF6]

0 1 2 3 4 5 6 7 8 9 10 11 12 0

20 40 60 80 100

Extr action ( % )

pH

圖七、pH 值對蛋白質細胞色素 c 正向萃取率的效應 (■) 以手搖晃混合 10 秒 (●) 以磁石攪拌 1 小時

300 350 400 450

Wavelength (nm) J. Am. Chem. Soc. 124 (2002) 14840.

4

450 500 550 600 650 700 750

0.0 0.1 0.2

Absorbance (AU)

Wavelength (nm)

(a)

(b) (d) (c)

圖九、蛋白質細胞色素c 在不同 pH 值水溶液的吸收光譜( 450-750 nm )。

Molten Globule pH 2

pH 2

pH 7

Wavelength (nm) J. Am. Chem. Soc. 124 (2002) 14840.

250 300 350 400 450 500 550 600

300 350 400 450 500 0

1 2 3 4 5 6

Fluor escence I n tensity

Wavelength (nm)

(a)

(b) (c) (d)

圖十二、蛋白質細胞色素c 在不同 pH 值水溶液的螢光光譜圖 (a) pH 1 (b) pH 2.7 (c) pH 7 (原始態) (d) pH 11

激發波長: 280 nm

200 220 240

0 1 2 3 4 5 6 7 8 9 10 0

20 40 60 80 100

Extraction (%)

pH

200 400 600

0 1 2 3

Absorbance (AU)

Wavelength (nm) (d)

(a) (b) (c)

圖十四、pH 值對蛋白質肌紅蛋白正向萃取率的效應

圖十五、蛋白質肌紅蛋白在不同pH 值水溶液的吸收光譜圖

300 400 500 600 700 0

1 2 3

Absorbance (AU)

Wavelength (nm) Myoglobin in Aqueous ( pH = 5 ) Myoglobin in Mixture of IL and EA (forward extraction at pH 5)

5 6 7 8 9 10 11 12 13

0 10 20 30 40 50

Back-extraction (%)

pH

圖十六、蛋白質肌紅蛋白在不同相中的吸收光譜圖

300 400 500 7 (native state)

13

1

222 nm 208 nm

圖十八、蛋白質肌紅蛋白在不同pH 值水溶液的螢光光譜圖,激發波長: 280 nm

1 2 3 4 5 0

10 20 30 40 50 60

Extraction (%)

pH

2 3 4 5 6 7 8 9 10 11 12 13

0 10 20 30 40 50 60

Back-Extraction (%)

pH

圖二十、pH 值對蛋白質核糖核酸酶 A 正向萃取率的效應

300 350 400 450

0.0 0.2 0.4 0.6 0.8 1.0

200 300 400 500 600 700

0.0

0.0 0.2 0.4 0.6 0.8 1.0 0

20 40 60 80 100

Extraction (%)

KCl (M)

0.0 0.2 0.4 0.6 0.8 1.0

0 20 40 60 80 100

Extraction (%)

KCl (M)

圖二十六、pH 值及 KCl 濃度對蛋白質肌紅蛋白的萃取效應 (■) pH 5 (●) pH 1

圖二十八、不同pH 值時,胺基酸進入[C6mim][BF4]的分佈係數 與胺基酸疏水性的關係。。

圖二十九、胺基酸進入[C6mim][BF4]的分佈係數與 pH 值的關係

資料來源: Green. Chem. 7 (2005) 196.

相關文件