• 沒有找到結果。

5.1 結論

從先前的研究[15]得知,若陀螺儀系統只存在一個頻率的動態,參數估測的極限為 四個,[7]提出了參考模型法,而此模型為具有兩個頻率的系統,所以可以估測到七個參 數(即Ω 、z k 、xx kyykxyd 、xx dyydxy),由系統觀察性矩陣可以發現,只要系統存 在有兩個頻率以上的動態,則觀察性矩陣必定呈滿秩的情況。有別於過去參數估測需要 以兩軸控制輸入,或是單軸輸入[8]做角速度的估測,利用一具「跨軸的彈性力」或是「跨 軸的阻尼力」的機械結構,提出單軸輸入兩頻率的訊號或是兩頻率以上的訊號,來估測 微機電陀螺儀系統參數及待量測的角速度。

再者,機械結構製造過程造成的尺寸誤差,感測電路所造成的瑕疵包含寄生電容、

運算放大器的電壓飄移量,這些非理想效應會造成輸出訊號比例常數(scale factor)的誤 差、偏壓飄移量(bias drift)的誤差,透過觀察器的設計將系統動態、系統參數以及輸出訊 號比例常數、偏壓飄移量等同時估測出來,並藉由回授控制來即時補償陀螺儀系統。

模擬中感測電路輸出訊號,x軸的速度訊號因透過感測電路而被放大了 1.967 倍,

電壓偏移為 2.4mV , y 軸的速度訊號則被放大了 1.986 倍,電壓偏移為 2.5mV ,利用 觀察器的設計來估測這些非理想因素,並透過回授控制將這些因素補償掉,進而估測到 欲量測的角速度 4 sin(2× ×π 10 )t rad/sec,在訊號比例常數與偏壓飄移量以 0.1Hz 變化的 情況下,其相對估測精度為1.87×102

藉由將機械結構、感測電路與控制法則整合的方式,利用狀態觀察器將機械結構瑕 疵、感測電路的非理想效應與欲量測的角速度同時估測出來,並予以補償成理想陀螺儀 系統。

5.2 未來計畫

此論文中所量測的訊號為兩軸的速度,在速度轉換成電壓的電路中,為了輸出電壓 夠大,回授電阻的電阻值需要很大,但這也會使得雜訊有被放大的效果,而使得感測精 度下降;可以採用量測兩軸的位移,使得精度提高。

參考文獻

[1] Yazdi, N., Ayazi, F., and Najafi, K., “Micromachined Inertial Sensors,” Proceedings of the IEEE, Vol. 86, No. 8, August 1998.

[2] P.W. Loveday and C. A. Rogers, “Modification of piezoelectric vibratory gyroscope resonator parameters by feedback control,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, Vol. 45, No. 5, pp.1211-1215, 1998.

[3] A. M. Shkel, R. Horowitz, A. A. Seshia, S. Park, and R. T. Howe, “Dynamics and control of micromachined gyroscopes,” Proceeding of American Control Conference, San Diego, California, USA, pp. 2119-2124, 1999.

[4] R. P. Leland, “Adaptive mode tuning for vibrational gyroscopes,” IEEE Transactions on Control Systems Technology, Vol. 11, No. 2, pp. 242-247, 2003.

[5] S. Park and R. Horowitz, “Adaptive control for the conventional mode of operation of MEMS gyroscopes,” Journal of Microelectromechanical Systems, Vol. 12, No. 1, pp.

101-108, 2003.

[6] R. P. Leland, “Adaptive control of a MEMS gyroscope using Lyapunov methods,”

IEEE Transactions on Control Systems Technology, Vol. 14, No. 2, pp. 278-283, 2006.

[7] S. Park, “Adaptive Control Strategies for MEMS Gyroscopes,” University of California at Berkeley, Ph.D. Thesis, 2000.

[8] Dong L., and Avanesian D., “Drive-Mode Control for Vibrational MEMS Gyroscopes,”

IEEE Transactions on Industrial Electronics, Vol. 56, No. 4, April 2009.

[9] L. Dong and R. P. Leland, “The adaptive control system of a MEMS gyroscope with time-varying rotation rate,” Proceeding of American Control Conference, Portland, OR, USA, pp. 3592-3597, 2005.

[10] M. Salah, M. McIntyre, D. Daeson, and J. Wagner, “Time-varying angular rate sensing for a MEMS Z-axis gyroscope,” Proceeding of 45th IEEE Conference on Decision and Control, pp. 2165-2170, 2006.

[11] L. Dong, Q. Zheng, and Z. Gao, “On control system design for the conventional mode of operation of vibrational gyroscopes,” IEEE Sensors Journal, Vol. 8, No. 11, pp.

1871-1878, 2008.

[12] K. Liu, W.P. Zhang, W.Y. Chen, K. Li, F.Y. Dai, F. Chu, X.S. Wu, G.Y. Ma and Q.J.

Xiao, “The development of micro-gyroscope technology,” Journal of micromechanics and microengineering, October 2009.

[13] Park, S., and Horowitz, R., “New adaptive mode of operation for MEMS gyroscopes,”

Journal of Dynamic Systems, Measurement, and Control, Vol. 126, Issue 4, pp.800-810, 2004.

[14] Boser, B., “Electronics for Micromachined Inertial Sensors,” International Conference

on Solid-state Sensors and Actuators, June 1997.

[15] C.Y. Chi, Y.P. Peng, and T.L. Chen, “Compensation of interface circuit errors for MEMS gyroscopes using state observers,” The 3rd IEEE International Conference on Sensing Technology, pp.25-30, 2008.

附錄一 數值模擬用參數

參數 數值

V 10 volt

Co 885 fF

1

C o 993.2 fF

2

C o 973.5 fF

Cp 2 pF

V os 2.4 mV

N 100

R 10 MΩ

表 5 感測電路參數

參數 數值(normalized)

Ωz 1 rad/ sec

kxx (2× ×π 3000)2 sec2 k yy (2× ×π 3674)2 sec2 k xy (2× ×π 1341)2 sec2 dxx 30 sec1

d yy 20 sec1

d xy 2 sec1

m 0.9

表 6 數值模擬用參數

相關文件