• 沒有找到結果。

羧化奈米碳管水中分散性測試

第四章 結果與討論

4.1 羧化奈米碳管水中分散性測試

多壁奈米碳管其結構如同樹的年輪般由同心管束組成,其結構完整化 學性質穩定,難以其他化學物質做結合,加上奈米碳管本身有凡得瓦爾力 相互吸引,容易聚集在一起。為了增加奈米碳管的溶解性與分散性,藉由 硫酸與硝酸混合溶液,進行奈米碳管表面官能基化,利用羧化的羧酸基 (-COOH),賦予奈米碳管溶解性與分散性,羧化示意圖如下圖 4.1,主要是 利用強酸混合液在奈米碳管表面產生氧化作用,破壞奈米碳管的碳原子環 狀結構,於奈米碳管管壁產生羧基。

量秤等重的奈米碳管與羧化的奈米碳管,置入相同體積的去離子水的 試瓶當中,將兩個試瓶放入超音波震盪3 小時,如下圖 4.2,最後將兩試瓶 靜至一天後,觀察奈米碳管在水中的分散情形,如下圖4.3,兩圖中左邊均 為未羧化的奈米碳管,由圖中可以發現,當靜置一天後未羧化的奈米碳管 沉澱在水的底部並聚集在一起,羧化過的奈米碳管經由一天的靜置,奈米 碳管幾乎沒有沉澱的現象,且分散於水中。

圖4.1 羧化碳管示意圖

圖4.2 奈米碳管與羧化奈米碳管超音波震盪 3 小時後比較圖

圖4.3 奈米碳管與羧化奈米碳管靜置一天後比較圖

4.2 複合材料傅立葉光譜儀分析

將含 5wt.%奈米碳管與聚苯胺(圖中紅線部分)與 10wt.%奈米碳管與聚 苯胺(圖中藍線部分)兩種不同碳管比例的複合材料薄膜作傅立葉光譜分析,

如下圖4.4,圖中兩種碳管比例的複合材料薄膜曲線圖幾乎呈現相同的趨勢,

圖中在 835cm-1的波峰為 N-H 的面外吸收,1500 和 1600cm-1的波峰分別為 醌型環與苯環震動吸收,此為聚苯胺本身特性,1240cm-1的波峰為 C-N 延 伸震動吸收,此為質子摻雜的聚苯胺特性峰,在3100cm-1附近的波峰乃 C-H 的延伸震動吸收,此信號顯示出原本奈米碳管的sp2鍵結受到破壞,使的碳 原子與氫原子的鍵結出現,此形成原因為奈米碳管的部分C=C 鍵結結構在 羧化過成中受到強酸混合液的破壞,因此當形成複合物時而產生 C-H 特性 峰。而一般多壁奈米碳管直接做傅立葉光譜分析其波峰位置出現在 2200 cm-1附近,但是在本實驗的複合材料經由傅立葉光譜分析並在2200 cm-1位 置未出現明顯的特性峰,其原因之一可能是奈米碳管在羧化過程中表面遭 到破壞使其特性峰不明顯,其二可能是因為奈米碳管外部由聚苯胺所包覆,

導致其特性峰無法藉由傅立葉光譜儀所分析。

圖 4.4 複合材料傅立葉光譜分析圖

4.3 複合材料掃描電子顯微鏡觀測

將含 5wt.%奈米碳管的聚苯胺複合材料與含有 10wt.%奈米碳管的聚苯

胺複合材料薄膜,以掃描電子顯微鏡觀察其表面材料狀況,首先將兩種複 合材料薄膜置入鍍金機中,在複合材料表面鍍上一層金以利掃描電子顯微 鏡觀測,直接將兩複合材料薄膜置入掃描電子顯微鏡中觀測,因為是直接 以薄膜型是觀測,所以在觀測時有許多地方是鑲在薄膜裡面較不易觀測,

而圖中觀測到表面有層狀類似珊瑚形狀的結構體,此珊瑚狀乃聚苯胺本身 聚合體的形貌,圖4.5 中長條形狀為奈米碳管被聚苯胺包覆而成,由圖中可 知奈米碳管外層被包覆一層聚苯胺,並非一般由掃描電子顯微鏡所觀測到 呈現中空管狀,由此可判定在聚合聚苯胺時,聚苯胺確實包覆於奈米碳管 之上。在使用SEM 觀測複合材料表面形貌時,奈米碳管並未容易可觀察到,

其原因乃奈米碳管被聚苯胺包覆且嵌入在複合材料薄膜內,所以在使用 SEM 觀測表面形貌時,奈米碳管較不容易被觀察到。圖中的顆粒狀和塊狀 物,應該是在運用電弧放電法製備多壁奈米碳管時,所生成碳粒與奈米碳 球等的碳雜質,在聚合奈米碳管/聚苯胺複合材料時並沒有將奈米碳管加以 純化而留下的碳雜質。

圖4.5 5%奈米碳管與聚苯胺複合材料 SEM 照

圖 4.6 10%奈米碳管與聚苯胺複合材料 SEM 照

4.4 複合材料生化需氧量測試

將奈米碳管與聚苯胺複合材料塗佈在鋁箔紙上,置入烘箱中以80℃烤乾 12小時,並將每個試片裁切成5x5公分的大小,置入大腸桿菌中做生化需氧 量(Biochemical oxygen demand, BOD)測試,其測試條件如下:

(1)起始菌濃度:Fix OD600 nm=1.084

(2)培養條件:LB 30℃ 125 rpm (前培),0.1x LB(10 g L-1 NaCl) 30℃ 110 rpm (測試)

(3)滅菌條件:120℃、20 min (4)測試體積:50 ml

試片代號 試片物

DH5a_0.1xLB 大腸桿菌

Tinfoil 鋁箔紙

PANI_0_I 不含奈米碳管

之聚苯胺 PANI_0_II

PANI_5_I 含5%奈米碳管 之聚苯胺 PANI_5_II

PANI_10_I 含10%奈米碳管 之聚苯胺 PANI_10_II

表4.1 試片編號表

圖4.7 巨觀的呼吸曲線圖

圖4.8 微觀的呼吸曲線圖

4.5 複合極板電性測試

將不鏽鋼極板、含5wt.%奈米碳管的複合材料極板、含10wt.%奈米碳管 的複合材料極板分別置入微生物燃料電池系統中,並利用Jiehan 5600 Electrochemical Workstation做微生物燃料電池I-V曲線量測(圖4.9),量測結 果如圖4.10,使用不鏽鋼陽極板的微生物燃料電池(圖4.10綠線部分),其量 測電池最大輸出電壓為0.12V,最大Power Density為1.561mW/m2;使用5wt.%

奈米碳管複合材料陽極板(圖4.10紅線部分),量測電池最大電壓輸出為 0.219V,最大Power Density為3.395 mW/m2;使用10wt.%奈米碳管複合材料 陽極板(圖4.10藍線部分),量測電池最大輸出電壓為0.239V,最大Power Density為6.506 mW/m2。將含有奈米碳管的複合材料陽極板與不鏽鋼陽極板 電池系統的Power Density做比較,5wt.%奈米碳管的複合材料陽極板與不鏽 鋼陽極板電池Power Density提升117%,10wt.%奈米碳管的複合材料陽極板 與不鏽鋼陽極板電池Power Density提升了317%。

圖4.9 微生物燃料電池I-V曲線量測

圖4.10 複合極板 I-V 曲線圖

第五章 結論

由實驗的結果顯示,以奈米碳管/聚苯胺的複合材料做為微生物燃料電 池之陽極板,確實能夠提升微生物燃料電池之效能。將奈米碳管摻入聚苯 胺之中,而奈米碳管本身管狀的結構與優良的長寬比,分散於聚苯胺之中 扮演起橋梁之作用,增加聚苯胺電子傳遞與集電的效果,也提升了微生物 燃料電池中陽極的電化學反應,摻入 10wt.%的奈米碳管的複合材料陽極板,

在置入微生物燃料系統中有最佳的電壓輸出 0.239V 與最佳的功率密度 6.506 mW/m2,功率密度與使用未塗佈複合材料的極板相比提升了 317%,

因此奈米碳管/聚苯胺複合材料,相當適合作為微生物燃料系統中陽極板使 用。

參考文獻

[1] Bruce E. Logan, Microbial Fuel Cells, John Wiley&Sons,Inc., 2008.

[2] 松浦一雄, 高分子材料最前線, 全華科技圖書, 2006.

[3] X. Wei, Z.V. Vardeny, E. Ehrenfreund, D. Moses and Y. Cao,

〝Magneto-optical characterization of excited states in short trans chains of partially isomerized polyacetylene,〞 Synthetic. Metals, 54, 321-326, 1993.

[4] A.G. MacDiarmid and Arthur J. Epstein, 〝The concept of secondary doping as applied to polyaniline,〞Synthetic Metals, 65, 103-116, 1994.

[5] G. Piao, H. Goto, K. Akagi and H. Shirakawa, 〝Novel liquid-crystalline titanocene complexes with catalytic activity for polymerizations of acetylene and phenylacetylene,〞Polymer,39, 3559-3564, 1998.

[6] M. Sak-Bosnar, M. V. Budimir, S. Kovac, D. Kukulj and L. Duic,

〝Chemical and electrochemical characterization of chemically synthesized conducting polypyrrole,〞 Polymer Science Part A:Polymer Chemistry, 30,

1609-1614, 1992.

[7] M. E. Toimil Molares, V. Buschmann, D. Dobrev, R. Neumann, R. Scholz, I.

U. Schuchert and J. Vetter, 〝 Single-Crystalline Copper Nanowires Produced by Electrochemical Deposition in Polymeric Ion Track

Membranes,〞 Adv. Mater., 13, 62-65, 2001.

[8] L. Zhai and R.D. McCullough, 〝 Layer-by-Layer Assembly of Polythiophene,〞 Adv. Mater., 14, 889-901, 2002

[9] S. Iijima, 〝Helical microtubules of graphitic carbon,〞 Nature, 354, 56-58, 1991

[10] S. Komarneni, 〝Feature article. Nanocomposites,〞 J. Mater. Chem., 2, 1219-1230 , 1992.

[11] 廖建勛, 〝奈米高分子複合材料,〞 工業材料, 125 期, 109-120, 1997 [12] Hong Liu, Ramanathan Ramnarayanan and Bruce E. Logan., 〝Production of Electricity during Wastewater Treatment Using a Single Chamber Microbial Fuel Cell,〞Environ. Sci. Technol., 38, 2281-2285

[13] Hong Liu and Bruce E. Logan., 〝 Electricity Generation Using an Air-Cathode Single Chamber Microbial Fuel Cell in the Presence and Absence of a Proton Exchange Membrane,〞Environ. Sci. Technol., 38, 4040-4046, 2004

[14] Hong Liu, Shaoan Cheng and Bruce E. Logan., 〝Production of Electricity from Acetate or Butyrate Using a Single-Chamber Microbial Fuel Cell,〞

Environ. Sci. Technol., 39, 658-662, 2005

[15] Jae Kyung Jang, The Hai Pham, In Seop Chang, Kui Hyun Kang, Hyunsoo

Moon, Kyung Suk Cho and Byung Hong Kim., 〝 Construction and operation of a novel mediator- and membrane-less microbial fuel cell,〞

Process Biochem., 39, 1007-1012, 2004

[16] M.E. Hernandez and D.K. Newman., 〝Extracellular electron transfer,〞

Cell. Mol. Life. Sci., 58, 1562-1571, 2001

[17] Booki Min and Bruce E. Logan, 〝Continuous Electricity Generation from Domestic Wastewater and Organic Substrates in a Flat Plate Microbial Fuel Cell,〞Environ. Sci. Technol., 38, 5809-5814, 2004

[18] Uwe Schröder, Juliane Nießen and Fritz Scholz, 〝 A Generation of Microbial Fuel Cells with Current Outputs Boosted by More Than One Order of Magnitude,〞 Angew. Chem.Int. Edit., 42, 2880-2883, 2003

[19] Ioannis Ieropoulos, John Greenman, Chris Melhuish and John Hart,

〝Energy accumulation and improved performance in microbial fuel cells,〞

J. Power Sources., 145, 253-256, 2005

[20] Doo Hyun Park and J. Gregory Zeikus, 〝Improved fuel cell and electrode designs for producing electricity from microbial degradation,〞Biotechnol.

Bioeng., 81, 348-355, 2003

[21] Swades K Chaudhuri and Derek R Lovley, 〝Electricity generation by direct oxidation of glucose in mediatorless microbial fuel cells,〞 Nat.

Biotechnol., 21, 1229-1232, 2003

[22] Hyunsoo Moon, In Seop Chang, Jae Kyung Jang and Byung Hong Kim,

〝Residence time distribution in microbial fuel cell and its influence on COD removal with electricity generation,〞 J. Biochem. Eng., 27, 59-65, 2005

[23] Korneel Rabaey, Nico Boon, Monica Höfte, and Willy Verstraete,

〝Microbial Phenazine Production Enhances Electron Transfer in Biofuel Cells,〞 Environ. Sci. Technol., 39, 3401-3408, 2005

[24] Young-Jin Choi, Joo-Young Song, Seun-Ho Jung and Sung-Hyun Kim,

〝Optimization of the Performance of Microbial Fuel Cells Containing Alkalophilic Bacillus sp.,〞 J. microb. Biotechnol., 11, 863-869, 2001

[25] Isao Karube, Hideaki Matsuoka, Hideki Murata, Kazuhito Kajiwara, Shuichi Suzuki and Mitsuo Maeda, 〝Large-Scale Bacterial Fuel Cell Using Immobilized Photosynthetic Bacteria,〞 Annals of the N.Y. Academy of Sciences, 434, 427-436, 1984

[26] Byung Hong Kim, In Seop Chang, Geun Cheol Gil, Hyung Soo Park and Hyung Joo Kim, 〝Novel BOD (biological oxygen demand) sensor using mediator-less microbial fuel cell,〞 Biotechm. Lett., 25, 541-545, 2003 [27] Hyung Joo Kim, Hyung Soo Park, Moon Sik Hyun, In Seop Chang, Mia

Kim and Byung Hong Kim, 〝A mediator-less microbial fuel cell using a metal reducing bacterium, Shewanella putrefaciens,〞 Enzyme. Microbial.

Technol., 30, 145-152, 2002

[28] Bruce E. Logan, Bert Hamelers, René Rozendal, Uwe Schröder, Jürg Keller, Stefano Freguia, Peter Aelterman, Willy Verstraete and Korneel Rabaey,

Microbial Fuel Cells: Methodology and Technology,〞 Environ. Sci.

Technol., 40, 5181-5192, 2006

[29] M.M. Ghangrekar and V.B. Shinde, 〝 Performance of membrane-less microbial fuel cell treating wastewater andeffect of electrode distance and area on electricity production,〞 Bioresource Technology, 98, 2879-2885, 2007

[30] G. Kolb, J. Schürer, D. Tiemann, M. Wichert, R. Zapf, V. Hessel and H.

Löwe, 〝Fuel processing in integrated micro-structured heat-exchanger reactors,〞 J. Power Sour., 171, 198-204, 2007

[31] S. Venkata Mohan, G. Mohanakrishna, B. Purushotham Reddy, R.

Saravanan and P.N. Sarma, 〝Bioelectricity generation from chemical wastewater treatment in mediatorless(anode) microbial fuel cell (MFC) using selectively enriched hydrogen producing mixed culture under acidophilic microevironment,〞 J. Biochemical Engineering, 39, 121-130,

2008

[32] Booki Min and Irini Angelidaki, 〝Innovative microbial fuel cell for electricity production from anaerobic reactors,〞 J. Power Sour., 180, 641-647, 2008

[33] Stefano Freguia, Korneel Rabaey, Zhiguo Yuan and Jürg Keller,

〝Sequential anode–cathode configuration improves cathodic oxygen reduction and effluent quality of microbial fuel cells,〞 Water Res., 42, 1387-1396, 2008

[34] D. Chapman, R. J. Warn, A. G. Fitzgerald and A. D. Yoffe, 〝Spectra and the semi-conductivity of the [SN]x polymer,〞 J. Chem. Soc. Faraday Trans., 60, 294, 1964

[35] Hideki Shirakawa and Sakuji Ikeda, 〝Infrared Spectra of Poly(acetylene),〞

Polymer Journal, 2, 231-244, 1971

[36] B Wessling, 〝On the structure of binary conductive polymer/solvent systems,〞 Synth. Met., 41, 907-910, 1991

[37] J. Stejskal, 〝Polyaniline Preparation of a Conducting Polymer,〞 Pure Appl.

Chem., 74, 857-867, 2002

[38] 成會明, 奈米碳管, 五南出版社, 2004 [39] http://en.wikipedia.org/wiki/Carbon

相關文件