• 沒有找到結果。

[1] Hibbs RH. An operation for progressive spinal deformities. New York Med J, 93:1013-1016, 1911.

[2] 鍾政成,腰椎椎間融合器之設計與生物力學評估,國立陽明大學復健 科技輔具研究所碩士論文,2004 年。

[3] Bagby GW. Arthrodesis by the distraction-compression method using a stainless steel implant. Orthopedics, 11:931-934, 1988.

[4] 陳振昇,腰椎融合手術的生物力學分析,國立陽明大學醫學工程研究 所博士論文,2001 年。

[5] Adam C, Pearcy M and McCombe P, Stress of interbody fusion - finite element modelling of intervertebral implant and vertebral body. Clinical Biomechanics, 18:265-272, 2003.

[6] Niebur GL, et al., High-resolution finite element models with tissue strength asymmetry accurately predict failure of trabecular bone. Journal of Biomechanics, 33:1575-1583, 2000.

[7] Vadapalli S, et al., Biomechanical rationale for using polyetheretherketone (PEEK) spacers for lumbar interbody fusion-A finite element study. Spine, 31:E992-998, 2006.

[8] Stender W, Meissner HJ and Thomas W, Ventral interbody spondylodesis using a new plug-shaped implant. Neurosurg Rev, 13 :25–34, 1990.

[9] Rauzzino MJ, et al., Anterior lumbar fusion with titanium threaded and mesh interbody cages. Neurosurg Focus, 7:e7, 1999.

[10] Tsantrizos, Biomechanical stability of five stand-alone anterior lumbar interbody fusion constructs. Eur Spine J, 9:14–22, 2000.

[11] McAfee PC, Interbody fusion cages in reconstructive operations on the spine. J Bone Joint Surg Am, 81:859–880, 1999.

[12] Pavlov PW, et al., Anterior lumbar interbody fusion with threaded fusion cages and autologous bone grafts. Eur Spine J, 9:224–229, 2000.

[13] Lund T, et al., Interbody cage stabilisation in the lumbar spine:

biomechanical evaluation of cage design, posterior instrumentation and bone density. J Bone Joint Surg Br. 80:351–359, 1998.

[14] Oxland TR, et al., A comparative biomechanical investigation of anterior lumbar interbody cages: central and bilateral approaches. J Bone Joint Surg Am, 82: 383–393, 2000.

[15] Cain CM, et al., New Stand-Alone Anterior Lumbar Interbody Fusion Device: Biomechanical Comparison with Established Fixation Techniques.

Spine, 30:2631-2636, 2005.

[16] Silcox DH, et al., Early clinical results of anterior lumbar interbody fusion in a randomized prospective study comparing the Stabilis device versus the BAKcage. U.S.A. FDA study.

[17] Marieb EN and Mallatt J, Human Anatomy, The Benjamin/Cummings Publishing Company, Inc., Redwood City, California. 1992.

[18] Augustus A, et al., Clinical Biomechanics of the Spine, 2ed edition, J.B Lippincott Company, United States of America, 1990.

[19] Patwardhan AG, et al., A follower load increases the load-carrying capacity of the lumbar spine in compression. Spine, 24:1003-1009, 1999.

[20] Rohlmann A, et al., Determination of trunk muscle forces for flexion and extension by using a validated finite element model of the lumbar spine and measured in vivo data. J Biomech, 39:981-989, 2006.

[21] Rohlmann A, et al., Influence of a follower load on intradiscal pressure and intersegmental rotation of the lumbar spine. Spine, 26:E557-561, 2001.

[22] Kim Y, Finite element analysis of anterior lumbar interbody fusion:

threaded cylindrical cage and pedicle screw fixation. Spine, 32:2558-2568, 2007.

[23] Lee KK, et al., Finite-element analysis for lumbar interbody fusion under axial loading, IEEE Transaction on Biomedical Engineering, 50:393-400, 2004.

[24] Goel VK, et al., Interlaminar shear stresses and laminae separation in a disc.

Finite element analysis of the L3-L4 motion segment subjected to axial compressive loads. Spine, 20:689-698, 1995.

[25] Shirazi-Adl A, Ahmed AM and Shrivastava SC, Mechanical response of a lumbar motion segment in axial torque alone and combined with compression, Spine, 11:914-927, 1986.

[26] Agur AMR and Lee MJ, Grant’s atlas of anatomy, 10th edition, Williams&Wilkins Lippincott, 1999.

[27] Lu YM, Hutton WC and Gharpuray VM, Do bending, twisting, and diurnal fulid change in the disc affect the propensity to prolapse? A viscoelastic finite element model, Spine, 21:2570-2579, 1996.

[28] Rohlmann A, Zander T and Bergmann G, Effects of fusion-bone stiffness on the mechanical behavior of the lumbar spine after vertebral body replacement.

Clinical Biomechanics, 21:221-227, 2006.

[29] Felon L, et al., Effects of disc height decrease on the degenerated segment biomechanics – a finite element investigation. 52th ORS conference, Chicago, USA, 2006.

[30] Schmidt H, et al., Application of a new calibration method for a three-dimensional finite element model of a human lumbar annulus fibrosus.

Clinical Biomechanics, 21:337-344, 2006.

[31] Yamamoto I, et al., Three-dimension movement of the whole lumbar spine and lumbosacral joint. Spine, 14:1256-1260, 1989.

[32] Polikeit A, et al., Factors influencing stresss in the lumbar spine after the insertion of intervertebral cages: finite element analysis. Eur Spine J, 12:413-420, 2003.

[33] Wang ST, et al., Posterior instrumentation reduces differences spine stability as a result of different cage orientations: an in vitro study. Spine, 30(1):62-67, 2004.

[34] Harris BM, et al., Transforaminal lumbar interbody fusion: the effect of various instrumentation techniques on the flexibility of the lumbar spine. Spine, 29:65-70, 2004.

[35] Kettler A, et al., In vitro stabilizing effect of a transforaminal compared with two posterior lumbar interbody fusion cages. Spine, 30:665-670, 2005.

[36] Ames CP, et al., Biomechanical comparison of posterior lumbar interbody fusion and transforaminal lumbar interbody fusion performed at 1 and 2 levels.

Spine, 30:562-566, 2005.

[37] Fantigrossi A, et al., Biomechanical analysis of cages for posterior limbar interbody fusion. Medical Engineering & Physics, 29:101-109, 2006.

[38] Panjabi MM, et al., StabilimaxNZ versus simulated fusion: evaluation of adjacent-level effects. Eur Spine J, 16:2159-2165, 2007.

[39] Leivseth G, et al., Mobility of lumbar segments instrumented with a ProDisc II prosthesis: a two-year follow-up study. Spine, 31:1726-33, 2006.

[40] Pitzen T, et al., The influence of cancellous bone density on load sharing in human lumbar spine: a comparison between an intact and a surgically altered motion segment. Eur Spine J, 10:23-29, 2001.

[41] Polikeit A, et al., Factors influencing stresses in the lumbar spine after the insertion of intervertebral cages: finite element analysis. Eur Spine J, 12:413-420, 2003.

[42] Polikeit A, Ferguson SJ and Nolte LP, Simulated influence of osteoporosis and disc degeneration on the load transfer in a lumbar functional spinal unit. J Biomech, 37:1061-1069, 2004.

[43] Oxland TR and Lund T, Biomechanics of stand-alone cages and cages in combination with posterior fixation: a literature review. Eur Spine J, 9:S95-101, 2000.

[44] Chen SH, et al., Biomechanical comparison of a new stand-alone anterior lumbar interbody fusion cage with established fixation techniques - a three-dimensional finite element analysis. BMC Musculoskelet Disord, 9:88, 2008.

[45] Schleicher P, et al., Biomechanical comparison of two different concepts for stand alone anterior lumbar interbody fusion. Eur Spine J, 17:1757-1765, 2008.

 

相關文件