• 沒有找到結果。

Hf(hfo2) Hf-O Hf-O

18.29 16.63

Fig. 4-30 The Hf 4f ESCA spectra of the HfO2 LTPS-TFT without plasma treatment.

22 21 20 19 18 17 16 15 14 13

0 10000 20000 30000 40000 50000 60000

Cou nt s

Binding Energy (eV)

Hf(hfo2) Hf-O Hf-O Hf-F Hf-F

Fig. 4-31 The Hf 4f ESCA spectra of the HfO2 LTPS-TFT with dual plasma treatment.

159

675 680 685 690 695

2.3x105 2.3x105 2.3x105 2.3x105 2.3x105 2.4x105 2.4x105

Cou nt s

Binding Energy (eV)

F 1s

Fig. 4-32 The F 1s ESCA spectra of the HfO2.

160

References

[1]. S. Morozumi, K. Oguchi, S. Yazawa, Y. Kodaira, H. Ohshima, and T.

Mano,“B/W and color LC video display addressed by poly-Si TFTs,” in SID Tech.Dig., pp.156, 1983.

[2]. R. E. Proano, R. S. Misage, D. Jones, and D. G. Ast, “Guest-host active matrix liquid-crystal display using high-voltage polysilicon thin film transistors,” IEEE Trans. Electron Devices, vol. 38, no.8, pp. 1781-1786, Aug. 1991.

[3]. Y. Oana, “Current and future technology of low-temperature poly-Si TFT-LCDs,”

J. Soc. Inf. Disp., 9, pp. 169, 2001.

[4]. B.D. Choi, H.S. Jang, O.K. Kwon, H.G. Kim, and M.J. Soh, “Design of poly-Si TFT-LCD panel with integrated driver circuits for an HDTV/XGA projection system,” IEEE Trans. Consum. Electron., vol. 21, no. 3, pp. 100–103, 2000.

[5]. G. K. Guist and T. W. Sigmon, “High-performance thin-film transistors fabricated using excimer laser processing and grain engineering,” IEEE Trans.

Electron Devices, vol. 45 pp. 925-932, 1998.

[6]. Y. W. Choi, J. N. Lee, T. W. Jang, and B. T. Ahn, “ Thin-film transistors fabricated with poly-silicon films crystallized at low temperature by microwave annealing,” IEEE Electron Device Lett., vol. 20, pp. 2-4, 1999.

[7]. C. W. Lin, M. Z. Yang, C. C. Yeh, L. J. Cheng, T. Y. Huan, H. C. Cheng, H. C.

Lin, T. S. Chao, and C. Y. Chang, ”Effects of plasma treatments, substrate types, and crystallization methods on performance and reliability of low temperature polysilicon TFTs,” in IEDM Tech. Dig., pp. 305-308, 1999.

[8]. K. M. Chang, W. C. Yang, and C. P. Tsai, “Electrical characteristics of low temperature polysilicon TFT with a novel TEOS/oxynitride stack gate dielectric,”

IEEE Electron Device Lett., vol. 24, pp. 512-514, 2003.

[9]. J.H. Jeon, M.C. Lee, K.C. Park, S.H. Jung, and M.K. Han, “A new poly-Si TFT with selectively doped channel fabricated by novel excimer laser annealing,” in IEDM Tech. Dig., 2000, pp. 213-216.

[10]. W.G. Hawkins, “Polycrystalline-silicon device technology for large-area electronics,” IEEE Trans. Electron Devices, vol. 33, no. 4, pp. 477-481, Apr.1986.

161

[11]. T. Aoyama, G. Kawachi, N. Konishi, T. Suzuki, Y. Okajima, and K. Miyata,

“Crystallization of LPCVD Silicon Films by Low Temperature Annealing,” J.

Electrochem. Soc., 136, pp. 1169, 1989.

[12]. F. Hayashi, H. Ohkubo, T. Takahashi, S. Horiba, K. Noda, T. Uchida, T.Shimizu, N. Sugawara, and S. Kumashiro, “A highly stable SRAM memory cell with top-gated P-N drain poly-Si TFTs for 1.5 V operation,” in IEDM Tech. Dig., 1996, pp. 283-286.

[13]. H. J. Cho, F. Nemati, P. B. Griffin, and J. D. Plummer, “A novel pillar DRAM cell for 4 Gbit and beyond,” in Dig. Symp. VLSI Tech., 1998, pp. 38-39.

[14]. A. Takami, A. Ishida, J. Tsutsumi, T. Nishibe, and N. Ibaraki, in Proceedings of the International Workshop on AM-LCD, pp. 45, 2000.

[15]. G. D. Wilk, R. M. Wallace, and J. M. Anthony, ” High-κ gate dielectrics: Current status and materials properties considerations,” J. Appl. Phys. vol. 89, pp.5243, 2001.

[16]. J.P. Locquet, C. Marchiori, M. Sousa, J. Fompeyrine, and J.W. Seo, “High-K dielectrics for the gate stack,” J. Appl. Phys. vol. 100, pp. 051610, 2006.

[17]. J. Robertson, “High dielectric constant gate oxides for metal oxide Si transistors”

Rep. Prog. Phys., vol. 69, pp. 327, 2006.

[18]. J. Robertson, “Band offsets of wide-band-gap oxides and implications for future electronic devices” J. Vac. Sci. Technol. B, vol. 18, pp. 1785, 2000.

[19]. K.R. Olasupo, M.K. Hatalis, “Leakage current mechanism in submicron polysilicon thin-film transistors,” IEEE Trans Electron Dev, vol.43, pp.1218–23 1996.

[20]. Y. Morimoto, Y. Jinno, K. Hirai, H. Ogata, T. Yamada, and K. Yoneda,

“Influence of the Grain Boundaries and Intragrain Defects on the Performance of Poly-Si Thin Film Transistors” J. Electrochem. Soc., vol. 144, pp. 2495, 1997.

[21]. I.W. Wu, W.B. Jackson, T.Y. Huang, A.G. Lewis, and A. Ciang, “Passivation kinetics of two types of defects in polysilicon TFT by plasma hydrogenation,”

IEEE Electron Device Lett., vol. 12, pp. 181, 1991.

[22]. I. W. Wu, W. B. Jackson, T. Y. Huang, A. G. Lewis, and A. Ciang, “Mechanism of device degradation in n- and p-channel polysilicon TFTs by electrical stressing,” IEEE Electron Device Lett., vol. 11, pp. 167, 1990.

162

[23]. H.N. Chern, C.L. Lee, and T.F. Lei, “The effects of fluorine passivation on polysilicon thin-film transistors” IEEE Trans. Electron Devices, vol. 41, pp. 698, 1994.

[24]. C. K. Yang, T. F. Lei, and C. L. Lee, “Characteristics of Top-Gate Polysilicon Thin-Film Transistors Fabricated on Fluorine-Implanted and Crystallized Amorphous Silicon Films” J. Electrochem. Soc., vol. 143, pp. 3302, 1996.

[25]. K.R. Olasupo, M.K. Hatalis, “Leakage current mechanism in submicron polysilicon thin-film transistors,” IEEE Trans Electron Dev, vol. 43, pp. 1218–

23, 1996.

[26]. C.A. Dimitriadis, P.A. Coxon, L. Dozsa, L. Papadimitriou, N. Economou,

“Performance of thin-film transistors on polysilicon films grown by low-pressure chemical vapor deposition at various pressures,” IEEE Trans Electron Dev vol.

39, pp.598–606, 1992.

[27]. J. Levinson, F. R. Shepherd, P. J. Scanlon, W. D. Westwood, G. Este, M. Rider,

“Conductivity behavior in polycrystalline semiconductor thin-film transistors,” J Appl. Phys., vol. 53, pp. 1193-1202, 1982

[28]. R. E. Proano, R. S. Misage, D. G. Ast, “Development and electrical properties of undoped polycrystalline-silicon thin-film transistor,” IEEE Trans Electron Dev., vol. 36, pp. 1915-1937, 1989.

[29]. C. L. Fan and M. C. Chen, “Performance improvement of excimer laser annealed poly-Si TFTs using fluorine ion implantation,” Electrochem. Solid-State Lett., vol. 5, no. 8, pp. G75–G77, Aug. 2002.

[30]. A. Corradetti, R. Leoni, R. Carluccio, G. Fortunato, C. Reita, F. Plais, and D.

Pribat, “Evidence of carrier number fluctuation as origin of 1/f noise in polycrystalline silicon thin film transistors,” Appl. Phys. Lett., vol. 67, no. 12, pp.

1730–1732, Sep. 1995.

[31]. T. Hashimoto, M. Aoki, T. Yamanaka, Y. Kamigaki, and T. Nishida, “1/f noise in poly-Si MOSFET and strong correlation with oxide traps and grain boundaries,”

Symposium on VLSI Technology, pp. 87 – 88, Jun 1994

[32]. D.K. Schroder, and J.A. Babcock, “Negative bias temperature instability: Road to cross in deep submicron silicon semiconductor manufacturing,” J. Appl. Phy., vol 94, no 1, pp. 1-18, 2003

[33]. S. Zhu, and A. Nakajima, “Bias temperature instability in

163

metal-oxide-semiconductor field-effect transistors with atomic-layer-deposited Si-nitride/SiO2 stack gate dielectrics,” J. Appl. Phy., vol 103, pp. 84512, 2003 [34]. M.A. Alam, and S. Mahapatra, “A comprehensive model of PMOS NBTI

degradation,” Microelectronics Reliability, vol 45, pp.71-81, 2005.

[35]. H. Kufluoglu, and M.A. Alam, “A Generalized Reaction–Diffusion Model With Explicit H–H2 Dynamics for Negative-Bias Temperature-Instability (NBTI) Degradation,” IEEE Trans. Electron Devices, vol. 54, pp. 1101-1107, 2002.

[36]. K. R. Plasupo and M. K. Hatalis, “Leakage current mechanisms in submicron polysilicon thin-film transistors,” IEEE Trans. Electron Devices, vol. 43, pp.

1218-1223, 1996.

[37]. M.W. Ma, C.Y. Chen, W.C. Wu, C.J. Su, K.H. Kao, T.S. Chao, and T.F. Lei,

“Reliability Mechanisms of LTPS-TFT With HfO2 Gate Dielectric: PBTI, NBTI, and Hot-Carrier Stress,” IEEE Trans. Electron Devices, vol. 55, pp. 1153-1160, 2008.

[38]. F.V. Farmakis, J. Brini, G. Kamarinos, and C.A. Dimitriadis “Anomalous Turn-On Voltage Degradation During Hot-Carrier Stress in Polycrystalline Silicon Thin-Film Transistors,” IEEE Trans. Electron Devices, vol. 22, no. 2, pp. 74-76, 2001.

[39]. A.T. Hatzopoulos, D.H. Tassis, N.A. Hastas, C.A. Dimitriadis, and G.

Kamarinos, “An analytical hot-carrier induced degradation model in polysilicon TFTs,” IEEE Trans. Electron Devices, vol. 52, no. 10, pp. 2182–2187, 2005.

164

Chapter 5