• 沒有找到結果。

We succeed in introducing optimum window layer material to fabricate a-Si:H solar cells. The solar cells of window layer which used high energy band gap material would improve Voc and conversion efficiency. The window layer of a-SiO which is a kind of high energy band gap material is effective in obtaining high Voc. The maximum efficiency obtained so far is 5.75%.

In addition, we have shown that deposition pressure plays a key role in determining Jsc of μc-Si:H solar cells fabricated using high deposition rate plasma process. High pressure deposition at 8Torr is effective in obtaining high Jsc. The maximum efficiency obtained so far is 5.045%. We propose that low oxygen concentration behavior associated with the microstructure of high pressure grown μc-Si:H is responsible for the excellent charge collection behavior in p-i-n junction solar cells. Otherwise, we also succeed in utilizing a method technology of DLCP to extract number of detects from intrinsic layer for thin film solar cells. High deposition pressure is effective in suppressing number of detects in the vicinity of p/i interface.

27

Reference

[1]. M.A. Green. Photovoltaics : technology overview. Energy Policy; 28: 989-998, 2000

[2]. H.Sakai,T. Yoshida, s. Fujikake, T. Hama, and Y. lchikawa. Effect of p/I interface layer on dark J-V characteristics and Voc in p-i-n a-Si solar cells. Journal of Applied Physics; 67(7):3494-3499, 1990

[3]. S. Guha, J. Yang, P. Nath, and M. Hack. Enhancement of open circuit voltage in high efficiency amorphous silicon alloy solar cells Applied Physics Letters ; 49:218, 1986

[4].W. Ma, T. Saida, C. C. Lim, S. Aoyama, H. Okamoto, and Y. Hamakawa.

Proceedings of the First World Conference on Photovoltaic Solar Energy Conversion, Hawaii. IEEE; 417,.1994

[5].J. K. Rath, C. H. M. Van der Werf, F. A. Rubinelli, and R. E. I. Schropp,25th IEEE Photovoltaic Specialists’ Conference, Washington DC, IEEE, New York, , p.

1101, 1996

[6]. J. K. Rath and R. E. I. Schropp, Sol. Energy Mater. Sol. Cells; 53:189. 1998 [7]. S.Veprek, F-A. Sarrot, S. Rambert, and E. Taglauer,J.Vac.Sci. Technol.A.; 7:2614,

1989

[8]. Michelson C E, Gelatos A V and Cohen J D .Drive-level capacitance profiling- Its application to determining gap state densities in hydrogenated amorphous silicon films. Applied Physics Letters; 47 (4): 412, 1985

[9]. Chopra KL, Major S, Pandya DK. Transparent conductors–a status review. Thin Solid Films; 102 (1): 1–46, 1983

[10]. Major S, Kumar S, Bhatnagar M, Chopra KL. Effect of hydrogen plasma treatment on transparent conducting oxides. Applied Physics Letters; 49:

28

394–396, 1986

[11]. Major S, Chopra KL. Indium-doped zinc oxide films as transparent electrodes for solar cells. Solar Energy Materials; 17 (5): 319–327, 1988

[12]. Gordon RG. Criteria for choosing transparent conductors. MRS Bulletin; 52–57, 2000

[13]. Ginley DS, Bright C. Transparent conducting oxides. MRS Bulletin; 15–18, 2000

[14]. Romeo N, Bosio A, Canevari V, Terheggen M, Vaillant RL. Comparison of different conducting oxides as substrates for CdS/CdTe thin-film solar cells.

Thin Solid Films; 431–432: 364–368, 2003

[15]. McCandless BE, Hegedus SS. Influence of CdS window layer on thin-film CdS/CdTe solar cell performance. Proceedings of the 22th IEEE Photovoltaic Specialists Conference ; 967–972, 1991

[16]. Tawada T, Kondo M, Okamoto H, Hamakawa Y. Hydrogenated amorphous silicon carbide as a window material for high efficiency a-Si solar cells. Solar Energy Materials; 6: 299–315, 1982

[17]. Tsu DV, Chao BS, Ovshinsky SR, Guha S, Yang J. Effect of hydrogen dilution on the structure of amorphous silicon alloys. Applied Physics Letters; 71:

1317–1319, 1997

[18]. Mahan AH, Yang J, Guha S,Williamson DL. Structural changes in a-Si:H film crystallinity with high dilution. Physical Review B; 61: 1677–1680, 2000

[19]. Yamamoto K, Nakashima A, Suzuki T, Yoshimi M, Nishio H, Izumina M.

Thin-film polycrystalline Si solar cell on glass substrate fabricated by a novel low temperature process. Japan Journal of Applied Physics; 33: L1751, 1994 [20]. Chen W, Sopori B, Jones K, Reedy R, Ravindra NM, Aparicio R, Birkmire RW,

Morrison S, Coats SK, Madan A.Optically assisted metal-induced crystallization

29

of thin Si films for low-cost solar cells. Proceedings of the MRS SpringMeeting Vol. 685E: D3.2.1–6. Pittsburgh, 2001

[21]. Basore PA. Pilot production of thin-film crystalline silicon on glass modules.

Proceedings of the 29th IEEE Photovoltaic Specialists Conference, 2002; 49–52.

[22]. Mahan AH. Hot wire chemical vapour deposition of Si containing materials for solar cells. Solar Energy Materials and Solar Cells; 78(1–4): 299–327, 2003 [23]. Wang TH, Ciszek TF, Page MR, Bauer RE, Wang Q, Landry MD.

APIVT-grown silicon thin layers and PV devices. Proceedings of the 29th IEEE Photovoltaic Specialists Conference; 94–97, 2002

[24]. Rath JK. Low temperature polycrystalline silicon: a review on deposition, physical properties and solar cell applications. Solar Energy Materials and Solar Cells; 76 (4): 431–487, 2003

[25]. Bergmann RB, Rinke TJ. Perspectives of crystalline Si thin-film solar cells: a new era of thin monocrystalline Si films.Progress in Photvoltaics Research and Applications; 8: 451–464, 2000

[26]. Powell MJ, Deane SC. Defect-pool model and the hydrogen density of states in hydrogenated amorphous silicon. Physical Review B; 53(15): 0121–10132, 1996

[27]. Carlson DE, Chen LF, Ganguly G, Lin G, Middya AR, Crandall RS, Reedy R.

MRS Proceedings; 557: 395, 1999

[28]. Dutta V, Murthy RVR. An approach to study band-gap and interface states in a Si: H p-i-n solar cells. Japan Journal of Applied Physics 1997; 36: 6687.

[29]. Jiang L, Lyou JH, Rane S, Schiff EA, Wang Q, Yuon Q. MRS Proceedings; 609:

A18.3.1–8 , 2000

[30]. Wang Q, Iwaniczko E, Xu Y, Gao W, Nelson BP, Mahan AH, Crandall RS, Branz HM. MRS Proceedings; 609:A4.3.1–6, 2000

30

[31]. Zeman M, Van Swaaij RACMM, Zuiddam M, Metselaar JW, Schropp REI.

MRS Proceedings; 557: 725, 1999

[32]. K. K. Mahavadi, K. Zellama, J. D. Cohen, and J. P. Harbison. Light-induced defect creation in hydrogenated amorphous silicon: A detailed examination using junction-capacitance methods. Physical Review B; 35: 7776-7779, 1987 [33]. T. Unold and J. D. Cohen. Enhancement of light-induced degradation in

hydrogenated amorphous silicon due to carbon impurities. Applied Physics Letters; 58: 723-725, 1991

[34]. T. Unold, J. Hautala, and J. D. Cohen.Effect of carbon impurities on the density of states and the stability of hydrogenated amorphous silicon. Physical Review B; 50 (23):16985-16994, 1994

[35].M. Fukawa, S. Suzuki, L. Guo, M. Kondo, and A. Matsuda, Sol. Energy Mater.

Sol. Cells; 66:217, 2001

[36].A. Lambertz, O. Vetterl, and F. Finger, Proc. of the 17th European Photovoltaic Solar Energy Conference, Munich, Germany, 22–26 Oct. 2001, edited by B.

McNelis,W. Palz, H. A. Ossenbrink, and P. Helm (WIPMunich &

ETA-Florence, , p. 2977, 2001

[37].T. Matsui, M. Tsukiji, H. Saika, T. Toyama, and H. Okamoto, Jpn. J. Appl. Phys.;

Part 1 41:20, 2002

[38].U. Graf, J. Meier, U. Kroll, J. Bailat, C. Droz, E. Vallat-Sauvain, and A.Shah, Thin Solid Films; 427: 37 , 2003

[39].Y. Mai, S. Klein, X. Geng, and F. Finger, Apply Physic Letter; 85, 2004

[40]. Emery K. Measurement and characterization of solar cells and modules. In Handbook of Photovoltaic Science and Engineering, Luque A, Hegedus S (eds).

Wiley: Chichester; Chap. 16, 2003

[41]. Takuya Matsui, Akihisa Matsuda, Michio Kondo, High-rate microcrystalline

31

silicon deposition for p-i-n junction solar cells, Solar energy materials & solar cells; 90:3199-3204, 2006

[42].Y.Mai, S.Klein, R. Carius, J. Wolff, A. Lambertz, and F. Finger, X.Geng, microcrystalline silicon solar cells deposited at high rates. Journal of applied physics; 97:114913, 2005

32

Figure

Figure 2.1(a) The type of superstrate solar cells structure

Figure 2.1(b) The type of substrate solar cells structure

33

Figure 2.2 The current-voltage (I-V) characteristics of thin film solar cells under illumination

Figure 2.3-1 Band diagram of p-i-n junction

34

Figure 2.3-2 Variation of junction capacitance with alternation voltage drive level

Figure 2.3-3 Drive level charge density versus depletion width in the solar cell

35

Figure 3.1 shows current-voltage characteristics of amorphous silicon thin film solar cells under standard illumination conditions

-0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0

-15 -10 -5 0 5 10 15

Current density (mA/cm2 )

Voltage (V) P_uc-Si

P_SiC P_SiO

36

Figure 3.2(a) Capacitance vs. dc bias for μc-Si window layer of solar cell. The measuring frequency is 100Hz and the temperature is 300K.The amplitude of the alternating voltage is 25mV、50 mV、75 mV、100 mV, respectively

Depletion width (um)

Figure 3.2(b) Drive level charge density versus depletion width in the solar cell depicted in Figure 3.2(a)

37

Figure 3.3(a) Capacitance vs. dc bias for a-SiC window layer of solar cell. The measuring frequency is 100Hz and the temperature is 300K.The amplitude of the alternating voltage is 25mV、50 mV、75 mV、100 mV, respectively

Depletion width (um)

Figure 3.3(b) Drive level charge density versus depletion width in the solar cell depicted in Figure 3.3(a)

38

Figure 3.4(a) Capacitance vs. dc bias for a-SiO window layer of solar cell. The measuring frequency is 100Hz and the temperature is 300K.The amplitude of the alternating voltage is 25mV、50 mV、75 mV、100 mV, respectively

Depletion width (um)

Figure 3.4(b) Drive level charge density versus depletion width in the solar cell depicted in Figure 3.4(a)

39

Depletion width (um)

0.0 0.1 0.2 0.3 0.4 0.5 0.6

NDL (cm-3 )

0 2e+20 4e+20 6e+20 8e+20 1e+21

uc-Si a-SiC

Figure 3.5 Drive level charge density as a function of depletion width of two different types of a-Si solar cells (see text)

Depletion width (um)

0.0 0.1 0.2 0.3 0.4 0.5 0.6

NDL (cm-3 )

0 2e+20 4e+20 6e+20 8e+20 1e+21

a-SiC a-SiO

Figure 3.6 Drive level charge density as a function of depletion width of two different types of a-Si solar cells (see text)

40

Figure 3.7 Illuminated J-V parameters of a-Si p-i-n solar cells by temperature measurement a-Si p-i-n solar cells for deposited p layers (a)μc-Si, (b) a-SiC, (c)a-SiO

41

Figure 3.8 The normalized initial open circuit voltage as a function of temperature of three different types of a-Si solar cells (see text)

Figure 3.9 The normalized initial short circuit current as a function of temperature of three different types of a-Si solar cells (see text)

Temperature (oC)

42

Figure 3.10 The normalized initial conversion efficiency as a function of temperature of three different types of a-Si solar cells (see text)

Figure 3.11 Forward bias J-V characteristics for a-Si solar cells with different temperature

43

Figure 4.1 Current-voltage (J-V) characteristics of μc-Si solar cells under standard illumination conditions

Figure 4.2 Quantum efficiency spectra for μc-Si solar cells prepared at different i-layer deposition pressures

44

Figure 4.3 Band diagram of p-i-n junction by oxygen diffuse grain boundary process

45

Figure 4.4 Dark and photo conductivity at room temperature for μc-Si solar cells prepared at different i-layer deposition pressures

Figure 4.5 Dark conductivity at room temperature and activation energy measured at 300K-370K for μc-Si solar cells prepared at different i-layer deposition pressures

3 4 5 6 7 8 9

46

Figure 4.6(a) Capacitance versus dc bias for μc-Si solar cells at i-layer deposition pressure: 4Torr. The measuring frequency is 100Hz and the temperature is 300K.The amplitude of the alternating voltage is 25mV、50 mV、75 mV、100 mV, respectively

Figure 4.6(b) Drive level charge density versus depletion width in the solar cell depicted in Figure 4.6(a)

Voltage (V)

47

Figure 4.7(a) Capacitance versus dc bias for μc-Si solar cells at i-layer deposition pressure : 6Torr. The measuring frequency is 100Hz and the temperature is 300K. The amplitude of the alternating voltage is 25mV、50 mV、75 mV、100 mV, respectively

Figure 4.7(b) Drive level charge density versus depletion width in the solar cell depicted in Figure 4.7(a)

Voltage (V)

48

Figure 4.8(a) Capacitance versus dc bias for μc-Si solar cells at i-layer deposition pressures : 8Torr. The measuring frequency is 100Hz and the temperature is 300K.

The amplitude of the alternating voltage is 25mV、50 mV、75 mV、100 mV, respectively

Figure 4.8(b) Drive level charge density versus depletion width in the solar cell depicted in Figure 4.8(a)

Voltage (V)

49

Figure 4.9 Drive level charge density as a function of depletion width of for μc-Si solar cells prepared at different i-layer deposition pressures (see text)

Volatage (V)

Figure 4.10(a) Forward bias J-V characteristics for μc-Si solar cells prepare at i layer deposition pressure (4Torr) with different temperature

Depletion width (um)

50

Figure 4.10(b) Forward bias J-V characteristics for μc-Si solar cells prepare at i layer deposition pressure (6Torr) with different temperature

Figure 4.10(c) Forward bias J-V characteristics for μc-Si solar cells prepare at i layer deposition pressure (8Torr) with different temperature

Volatage (V)

51

Figure 4.11 Illuminated J-V parameters of μc-Si p-i-n solar cells by temperature measurement for i layers deposited at deposition pressure (a) 4Torr, (b) 6Torr, (c) 8Torr

52

Figure 4.12 The normalized initial open circuit voltage as a function of temperature of μc-Si solar cells prepared at different i-layer deposition pressures(see text)

Figure 4.13 The normalized initial short circuit current as a function of temperature of μc-Si solar cells prepared at different i-layer deposition pressures (see text)

Temperature (oC)

53

Figure 4.14 The normalized initial conversion efficiency as a function of temperature of μc-Si solar cells prepared at different i-layer deposition pressures (see text)

Temperature (oC)

20 30 40 50 60 70 80 90

Normalized Efficiency (%)

0.86 0.88 0.90 0.92 0.94 0.96 0.98 1.00 1.02

4Torr 6Torr 8Torr

54

Table

Table 3.1 Illuminated J-V parameters of a-Si p-i-n solar cells for deposited different p layers

Table 3.2 Parameters of change of a-Si p-i-n solar cells for deposited different p layers by temperature effect

P-layer

∆Voc ∆Jsc ∆Efficiency

μc-Si

-4.63% 2.94% 1.13%

a-SiC

-3.55% 1.17% 3.41%

a-SiO

-1.96% 0.7% 14.8%

Sample P-layer Voc (V)

Jsc (mA/cm2)

FF Efficiency (%)

A μc-Si 0.71 12.0 0.57 4.79

B a-SiC 0.78 11.3 0.63 5.43

C a-SiO 0.81 11.5 0.65 5.75

55

Table 3.3 Temperatures correspond to the value of n and J0 of a-Si p-i-n solar cells for deposited μc-Si p layers at V=0.1V~0.5V, V=0.7V~0.8V, V=1.2~1.3V, respectively

P layer : μc-Si P layer : μc-Si P layer : μc-Si

n J0 n J0 n J0

25℃ 8.1 2.1E-04 3.5 7.4E-06 18.2 2.1E-02

65℃ 8.4 6.2E-04 3.5 1.9E-05 1612 2.4E-02

85℃ 7.7 1.6E-03 3.6 1.2E-04 15.4 3.0E-02

Table 4-1 Illuminated J-V parameters of μc-Si p-i-n solar cells for i layers deposited at different deposition pressure

Sample Pressure (Torr)

Voc (V)

Jsc (mA/cm2)

FF Efficiency (%)

Rs (Ω)

Rsh (Ω)

A 4.0 0.48 9.71 0.51 2.34 7.45 223.78

B 6.0 0.42 14.6 0.61 3.73 3.88 549.04

C 8.0 0.45 17.9 0.62 5.05 3.46 1447.97

56

Table4-2 The parameters of μc-Si p-i-n solar cells for i layers deposited at different deposition pressure

Table4-3 Temperatures correspond to the value of n and J0 of μc-Si p-i-n solar cells for i layers deposited at different deposition pressure and (a) at V=0.2V~0.4V (b)at V=0.6V~1V

57

(b)

4Torr 6Torr 8Torr

n J0 n J0 n J0

25℃ 6.7 2.8E-04 7.4 5.7E-04 7.7 3.4E-04

45℃ 7.7 1.8E-04 7.1 6.2E-04 7.1 4.1E-04

65℃ 8.1 2.2E-04 7.1 6.4E-04 7.0 3.7E-04

85℃ 8.3 2.1E-04 6.8 8.5E-04 6.9 6.3E-04

Table4-4: Parameters of change of μc-Si p-i-n solar cells for i layers deposited at different deposition pressure by temperature effect

Pressure

∆Voc ∆Jsc ∆Efficiency

4Torr -11.5% 0.36% -12.5%

6 Torr -8.38% 0.84% -10.6%

8 Torr -6.44% 0.9% -7.56%

相關文件