• 沒有找到結果。

Chapter 5 Conclusion

The low-power UWB LNA has been demonstrated in 0.18-µm CMOS 1P6M process.

Low-power consumption is achieved by using a forward bulk-source bias (or called the forward body bias, FBB). And the forward bulk-source voltage in our design is obtained by means of the proposed ultra-low power self-bias that we don’t need an additional bias circuit to supply the bulk terminal of MOSFET. However, the self forward body bias technique will give rise to some noise figure degradation. Therefore, we proposed the second LNA (LNA 2), to improve the noise figure of the preceding LNA (LNA 1). The measurement result shows that the LNA 1 has a gain of 12.5–15.5 dB from 2.6 to 6.6 GHz with a good input/output matching S11<-10 dB and S22<-17 dB and average noise figure of 3.2 dB while consuming power of 6.3 mW from 1.06 V voltage supply. The chip area is 0.96 mm × 0.64 mm. And the proposed noise-improved LNA 2 to improve the noise figure degraded lightly by the self-bias loop. The measurement result of the LNA 2 shows that it has a gain of 13.5–16.2 dB from 2.0 to 6.6 GHz with a good input/output matching S11<-10 dB and S22<-16 dB and average noise figure of 2.6 dB while consuming power of 4.5 mW from 1.06 V voltage supply. The chip area is 0.98 mm × 0.47 mm.

Reference

References

[1] “Multi-band OFDM Physical Layer Proposal,” IEEE P802.15 Working Group for Wireless Personal Area Networks (WAPNs), http://grouper.ieee.org/groups/802/15/pub/

2003/Jul03/03267r5P802_15_TG3a-Multi-band-OFDM-CFP-Presentation.ptt.

[2] “XtremeSpecrum CFP Presentation,” IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANs), http://grouper.ieee.org/groups/802/15/pub/2003/Jul03/03153r9P 802-15_TG3a-XtremeSpectrum-CFP-Presentation.ptt.

[3] Y.-J. Lin, S.-H. Hsu, J.-D. Jin, and C.-Y. Chan, “A 3.1–10.6-GHz ultra-wideband CMOS LNA with current-reused technique,” IEEE Microw. Wireless Compon. Lett., vol. 17, no. 3, pp. 232–234, Mar. 2007.

[4] A. Bevilacqua and A. M. Niknejad, “An ultra-wideband CMOS low-noise amplifier for 3.1–10.6-GHz wireless receivers,” IEEE J. Solid-State Circuits, vol. 39, no. 12, pp.

2259–2268, Dec. 2004.

[5] C.-W. Kim, M.-S. Kang, P.-T. Anh, H.-T. Kim, and S.-G. Lee, “An ultra-wideband CMOS LNA for 3–5-GHz UWB system,” IEEE J. Solid-State Circuits, vol. 40, no. 2, pp.

544–547, Feb. 2005.

[6] T. K. K. Tsang, K.-Y. Lin, and M. N. El-Gamal, “Design techniques of CMOS UWB amplifier for multistandard communications,” IEEE Trans. Circuit Syst. II, Exp. Briefs, vol. 55, no. 3, pp. 214–218, Mar. 2008.

[7] P. Heydari, “Design and analysis of a performance-optimized CMOS UWB distributed LNA,” IEEE J. Solid-State Circuits, vol. 42, no. 9, pp. 1892–1904, Sep. 2007.

[8] Y.-J. Chen and Y.-I. Huang, “Development of integrated broad-band CMOS low-noise amplifiers,” IEEE Trans Circuits Syst. I, Reg. Paper, vol. 54, no. 10, pp. 2120-2127, Oct.

2007.

[9] K.-H. Chen, J.-H. Lu, B.-J. Chen, and S.-I. Liu “An Ultra-wideband 0.4–10-GHz LNA in 0.18-um CMOS,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 54, no. 3, pp. 217-221, March, 2007.

Reference

[10] H. Zhang, X. Fan, and E. Sanchez-Sinencio, “A low-power, linearized, ultra-wideband LNA design technique,” IEEE J. Solid-State Circuits, vol. 44, no. 2, pp. 320-330, Feb.

2009.

[11] X. Fan, E. Sanchez-Sinencio, and J. Silva-Martinez, “A 3GHz-10GHz common gate ultra-wideband low noise amplifier,” IEEE Midwest Circuit Syst. Symp., Aug. 2005, vol. 1, pp. 631-634.

[12] D.-H. Shin, J. Park, and C. Patrick Yue, “A low-power, 3–5-GHz CMOS UWB LNA using transformer matching technique,” IEEE Asian Solid-State Circuits Conf., Nov.2007, pp.

95-98.

[13] F. Bruccoleri, E. Klumperink, and B. Nauta, “Wide-band CMOS low-noise amplifier exploiting thermal noise canceling,” IEEE J. Solid-State Circuits, vol. 39, no. 2, pp.

275-282, Feb. 2004.

[14] C.F. Liao and S.I. Liu, “A broadband noise-canceling CMOS LNA for 3.1–10.6-GHz UWB receivers,” IEEE J. Solid-State Circuits, vol. 42, no. 2, pp. 329-339, Feb. 2007.

[15] T. Kihara, T. Matsuoka, and, K. Taniguchi, “A 1.0 V, 2.5 mW, transformer noise-canceling UWB CMOS LNA,” in IEEE Radio Freq. Integr. Circuits Symp., Jun. 2008, pp. 493-496.

[16] M.-I. Jeong, J.-N. Lee, and C.-S. Lee, “Design of UWB switched gain controlled LNA using 0.18-μm CMOS,” Eletron. Lett., vol. 44, no. 7, pp. 477-478, Mar. 2008.

[17] Z.-Y. Huang and C.-C. Huang, “A CMOS LNA with RLC-impedance feedback for 3–5-GHz UWB wireless system,” IEEE Int. Integrated Circuits Symp., pp. 600–603, Sep.

2007.

[18] A. Bevilacqua, C. Sandner, A. Gerosa, and A. Neviani, “A fully integrated differential CMOS LNA for 3–5-GHz ultra-wideband wireless receivers,” IEEE Microw. Wireless Compon. Lett., vol. 16, no. 3, pp. 134–136, Mar. 2006.

[19] T. Chang, J. Chen, L. Rigge, and J. Lin, “A packaged and ESD-protected inductorless 0.1–8 GHz wideband CMOS LNA,” IEEE Microw. Wireless Compon. Lett., vol. 18, no. 6, pp. 416-418, Jun. 2008.

Reference

[20] A. Shameli and P. Heydari, “A novel ultra-low power (ULP) low noise amplifier using differential inductor feedback,” in IEEE European Solid-State Circuits Conf., Sep. 2006, pp. 352-355.

[21] J. Liu, H. Liao, and R. Huang, “0.5 V ultra-low power wideband LNA with forward body bias technique,” Electron. Lett., vol. 45, no. 6, pp. 289-290, Mar. 2009.

[22] M. El Kaamouchi, M. Si Moussa, J.-P. Raskin, and D. Vanhoenacker-Janvier, “DTMOS low noise amplifier design in partially depleted SOI CMOS technology,” in IEEE Int. SOI conf., Oct. 2006, pp. 127-128.

[23] H. Su, H. Wang, T. Xu, and R. Zeng, “Effects of forward body bias on high-frequency noise in 0.18-µm COMS transistors,” IEEE Trans. Microw. Theory Tech., vol. 57, no. 4, pp. 972-979, Apr. 2009.

[24] Y. Lu, K. S. Yeo, A. Cabuk, J. Ma, M. A. Do, and Z. Lu, “A novel CMOS low-noise amplifier design for 3.1 to 10.6-GHz ultra-wide-band wireless receivers,” IEEE Trans.

Circuits Syst. I, Reg. Papers, vol. 53, NO. 8, pp. 1683-1691, Aug, 2006.

[25] H. Zheng, S. Lou, D. Lu, C. Shen, T. Chan, and H. C. Luong, “A 3.1 GHz–8.0 GHz single-chip transceiver for MB-OFDM UWB in 0.18-µm CMOS process,” IEEE J.

Solid-State Circuits, vol. 44, no. 2, pp. 414-426, Feb. 2009.

[26] C. W. Kim, M. S. Jung, and S. G. Lee, “Ultra-wideband CMOS low noise amplifier,”

Electron. Lett., vol. 41, no. 7, Mar. 2005.

[27] Y.-H. Yu, Y.-J. Chen, and Deukhyoun Heo, “A 0.6-V low power UWB CMOS LNA,”

IEEE Microw. Wireless Compon. Lett., vol. 17, no. 3, pp. 229-231, Mar. 2007.

[28] T. H. Lee, The Dsign of CMOS Radio-Frequency Integrated Circuits, New York:

Cambridge Univ. Press, 2004.

[29] David M. Pozar, Microwave Engineering, Third Edition, New York: WILEY, 2005.

[30] B. Razavi, RF Microelectronics, New York: Prentice Hall PTR, 1998.

[31] B. Razavi, Design of Analog CMOS Integrated Circuit, New York: McGraw Hill, 1996.

相關文件