• 沒有找到結果。

1. Instead of Fe, Cr is able to grow CNTs with good alignment and high density. Under H2 plasma treatment for 30min and H2/CH4=40/10 with bias of 150V for 15 min, CNTs with length of 3µm and tip-diameter of 10nm. The field emission stability for both Fe and Cr can be improved after a 30min field emission aging.

2. Binary system with gold and nickel successfully inhibits the continuous film of carbon nanotubes formation. The density of CNTs can be reduced to the value of 3.3×107cm-2 by changing the composition and the heat treatment of the catalyst film. Field emission measurement shows a value close to the reported density of 2.5×107cm-2 and is possible for optimizing field emission efficiency for practical applications.

3. SiONWs could be grown on nickel/gold-coated silicon oxide substrates by rapid furnace annealing. Octopus-like structure of SiONWs could grow to tens of micrometers with diameters of tens of nanometers depending on the catalyst composition, amount and cooling rate.

4. Under critical conditions of nickel and gold film thicknesses of 15 and 8 nm and cooling rate of about 1.8℃/s, aligned SiONWs with unattached ends could be grown.

The growth of the SiONWs was proposed to be a unique head-growth SLS process accompanied by cell growth induced by constitutional supercooling.

5. Instead of CNTs, Cr can be used as a catalyst to grow chromium carbide capped carbon nanotips. These nanotips grow with good uniformity and show good alignment.

The results show that bias larger than 150V is necessary for the growth and helps the graphitization.

6. Field emission characteristics of carbon nanotips and chromium carbide capped carbon nanotips were investigated and showed a turn-on field of the bare carbon nanotips (1.4V/µm) lower than the chromium carbide capped carbon nanotips

(3.5V/µm). The bare carbon nanotips show poor stability while chromium carbide capped carbon nanotips reveal a much stable emission.

7. Growth of chromium carbide capped carbon nanotips in the gated structure is achieved.

Turn-on field (defined as the linear fit of F-N plot intercept the 1/V axis) is approximately 2.63V. The current of 10uA is achieved at 3.3V.

References

[1] G. E. Moore, “Cramming More Components onto Integrated Circuits,” Proceedings of the IEEE, 86 (1998) 1.

[2] A. P. Alivisators, “Semiconductor Clusters, Nanocrystals, and Quantum Dots,”

Science, 271 (1996) 933.

[3] J. M. Krans, J. M. van Rutenbeek, V. V. Fisun, I. K. Yanson and L. J. de Jongh, “The signature of conductance quantization in metallic point contacts,” Nature, 375 (1995) 767.

[4] K. K. Likharev, “Correlated discrete transfer of single electrons in ultrasmall tunnel junctions,” IBM J. Res. Dev., 32 (1998) 144.

[5] G. Markovich, C. P. Collier, S. E. Henrichs, F. Remacle, R. D. Levine and J. R.

Heath, “Architectonic Quantum Dot Solids,” Acc Chem. Res., 32 (1999) 415.

[6] O. H. Elibol, D. Morisette, D. Akin, J. P. Denton, and R. Bashir, “Integrated nanoscale silicon sensors using top-down fabrication,” Appl. Phys. Lett., 83 (2003) 22.

[7] M. A. Reed, C. Zhou, C. J. Muller, T. P. Burgin and J. M. Tour, “Conductance of a Molecular Junction,” Science, 278 (1997) 252.

[8] M. Shimomura and T. Sawadaishi, “Bottom-up strategy of materials fabrication: a new trend in nanotechnology of soft materials,” Current Opinion in Colloids and Interface Science, 6 (2001) 11.

[9] A. Thess, R. Lee, P.Nikolaev, H. Dai, P. Petit, J. Robert, C. Xu, Y. J. Lee, S. G. Kim, A. G. Rinzler, D. T. Colbert, G. E. Scuseria, D. Tomanek, J. E. Fischer and R. E.

Smalley, “Crystalline Ropes of Metallic Carbon Nanotubes,” Science, 273 (1996) 483.

[10] M. A. Kastner, “Artificial atoms,” Phys. Today, 46 (1993) 24.

[11] L. N. Lewis, “Chemical catalysis by colloids and clusters,” Chem.Rev., 93 (1993) 2693.

[12] R. Freer, Nanoceramics, Woodhead, England, (1993)

[13] N. M. Rodriguez, A. Chambers and R. T. K. Baker, “Catalytic engineering of carbon nanostructures,” Langmuir, 11 (1995) 3862.

[14] K, Ziemelis, “The future of microelectronics,” Nature, 406 (2000) 1021.

[15] H. W. Kroto, J. R. Heath, S. C. Obrien, R. F. Curl, and R. E. Smalley, “C(60):

Buckminsterfullerene ((carbon molecule formation in space and stellar envelopes)),” Nature, 318 (1985) 162.

[16] S. Iijima, “Helical microtubules of graphite carbon,” Nature, 354 (1991) 56.

[17] J. W. Mintmire, B. I. Dunlap and C. T. White, “Are fullerene tubules metallic?” J.

Phys. Rev. Lett., 68 (1992) 631.

[18] N. Hamada, S. Sawada and A. Oshiyama, “New one-dimensional conductors:

Graphitic microtubules,” J. Phys. Rev. Lett., 68 (1992) 1579.

[19] J. Tersoff and R. S. Ruoff, “Structural properties of a carbon-nanotube crystal,” J.

Phys. Rev. Lett., 73 (1994) 676.

[20] P. Kim, L. Shi, A. Majumdar and P. L. McEuen, “Thermal Transport Measurements of Individual Multiwalled Nanotubes,” Phys. Rev. Lett., 87 (2001) 215502.

[21] G. Gao, T. Cagin and W. A. Goddard III, “Energetics, structure, mechanical and vibrational properties of single-walled carbon nanotubes,” Nanotechnology, 9 (1998) 184.

[22] T. W. Ebbesen, “Carbon nanotube,” Phys. Today, 49 (1996) 26.

[23] P. M. Ajayan and T. W. Ebbesen, “Nanometre-size tubes of carbon,” Rep. Prog.

Phys., 60 (1997) 1025.

[24] B. I. Yakobson and R. E. Smalley, “Fullerene nanotubes: C1,000,000 and beyond,”

Am. Sci., 85 (1997) 324.

[25] C. Dekker, “Carbon nanotubes as molecular quantum wires,” Phys. Today, 52 (1999) 22.

[26] M. S. Dresselhaus, G.. Dresselhaus and P. C. Eklund, “Science of fullerenes and carbon nanotubes,” Academic Press, Boston (1996).

[27] T. W. Ebbesen, Carbon nanotubes: preparation and properties, CRC Press, Boca Raton, FL. (1997).

[28] K. Tanaka, T. Yamabe and K. Fukui, “The science and technology of carbon nanotubes,” Amsterdam, Elsevier (1999).

[29] E. T. Thostenson, Z. Ren and T. W. Chou, “Advanced in the science and technology of carbon nanotubes and their composites: a review,” Composites Science and Technology, 61 (2001) 1899.

[30] K. Tanaka, K. Okahara, M. Okada and T. Yamabe, “Structure and electronic state of C60,” Chem. Phys. Lett., 191 (1992) 469.

[31] D. Bernaerts, M. Op De Beeck, S. Amelinckx, J. Van Landuyt and G. Van Tendeloo,

“The chiralty of carbon nanotubes determined by dark-field electron microscopy,”

Philos. Mag., A 74 (1996) 723.

[32] X. F. Zhang, X. B. Zhang, G. Van Tendeloo, S. Amelinckx, M. Op de Beeck and J.

Van Landuyt, “Carbon nano-tubes; their formation process and observation by electron microscopy,” J. Cryst. Growth, 130 (1993) 3.

[33] R. Saito, M. Fujita, G. Dresselhaus and M. S. Dresselhaus, “Electronic structure of chiral graphene tubules,” Appl. Phys. Lett., 60 (1992) 2204.

[34] N. Hamada, S. I. Sawada and A. Oshiyama, “New one-dimensional conductors:

graphite microtubules,” Phys. Rev. Lett., 68 (1992) 1579.

[35] X. Blase, L. X. Benedict, E. L. Shirley and S. G. Louie, “Hybridization effects and metallicity in small radius carbon nanotubes,” Phys. Rev. Lett., 72 (1994) 1878.

[36] J. W. Mintmire and C. T. White, “Electronic and structural properties of carbon

nanotubes,” Carbon, 33 (1995) 893.

[37] C. L. Kane and E. J. Mele, “Size, shape, and low energy electronic of carbon nanotubes,” Phys. Rev. Lett., 78 (1997) 1932.

[38] P. R. Wallace, “The band theory of graphite,” Phys. Rev., 71 (1947) 622.

[39] J. W. G.. Wildöer, L. C. Venema, A. G. Rinzler, R. E. Smalley and C. Dekker,

“Electronic structure of atomically resolved carbon nanotubes,” Nature, 391 (1998) 59.

[40] T. W. Odom, J. L. Huang, P. Kim and C. M. Lieber, “Atomic structure and electronic properties of single-walled carbon nanotubes,” Nature, 391 (1998) 62.

[41] L. C. Venema, J. W. G.. Wildöer, C. Dekker, A. G. Rinzler and R. E. Smalley, “STM atomic resolution images of single-wall carbon nanotubes,” Appl. Phys. A, 66 (1998) S153.

[42] T. W. Odom, J. L. Huang, P. Kim and C. M. Lieber, “Structure and electronic properties of carbon nanotubes,” J. Phys. Chem. B, 104 (2000) 2794.

[43] L.C. Venema, J.W.G. Wildöer, J.W. Janssen, S.J. Tans, H.L.J. Temminck Tuinstra, L.P. Kouwenhoven and C. Dekker, “Imaging electron wave functions of quantized energy levels in carbon nanotubes,” Science, 283 (1999) 52.

[44] P. Kim, T.W. Odom, J.-L. Huang and C.M. Lieber, “Electronic density of states of atomically resolved single-walled carbon nanotubes: Van Hove singularities and end states,” Phys. Rev. Lett., 82 (1999) 1225.

[45] S.J. Tans, A.R.M. Verschueren and C. Dekker, “Room-temperature transistor based on a single carbon nanotube,” Nature, 393 (1998) 49.

[46] R. Martel, T. Schmidt, H.R. Shea, T. Hertel and Ph. Avouris, “Single- and multi-wall carbon nanotube field effect transistors,” Appl. Phys. Lett., 73 (1998) 2447.

[47] M. Bockrath, D.H. Cobden, P.L. McEuen, N.G. Chopra, A. Zettl, A. Thess and R.E.

Smalley, “Single-electron transport in ropes of carbon nanotubes,” Science, 275 (1997) 1922.

[48] S.J. Tans, M.H. Devoret, H. Dai, A. Thess, R.E. Smalley, L.J. Geerligs and C.

Dekker, “Individual single-wall carbon nanotubes as quantum wires,” Nature, 386 (1997) 474.

[49] S.J. Tans, M.H. Devoret, R.J.A. Groeneveld and C. Dekker, “Electron-electron correlations in carbon nanotubes,” Nature, 394 (1998) 761.

[50] M. Bockrath, D.H. Cobden, J. Lu, A.G. Rinzler, R.E. Smalley, L. Balents and P.L.

McEuen, “Luttinger-liquid behaviour in carbon nanotubes,” Nature, 397 (1999) 598.

[51] A. Bachtold, C. Strunk, J.-P. Salvetat, J.-M. Bonard, L. Forró, T. Nussbaumer and C.

Schönenberger, “Aharonov-Bohm oscillations in carbon nanotubes,” Nature, 397 (1999) 673.

[52] H.T. Soh, C.F. Quate, A.F. Morpurgo, C.M. Marcus, J. Kong and H. Dai, “Integrated nanotube circuits: Controlled growth and ohmic contacting of single-walled carbon nanotubes,” Appl. Phys. Lett., 75 (1999) 627.

[53] C. Schönenberger, A. Bachtold, C. Strunk, J.P. Salvetat and L. Forró, “Interference and interaction in multi-wall carbon nanotubes,” Appl. Phys. A, 69 (1999) 283.

[54] J. Kong, C. Zhou, A. Morpurgo, H.T. Soh, C.F. Quate, C. Marcus and H. Dai,

“Synthesis, integration, and electrical properties of individual single-walled carbon nanotubes,” Appl. Phys. A, 69 (1999) 305.

[55] K. Liu, M. Burghard, S. Roth and P. Bernier, “Conductance spikes in single-walled carbon nanotube field-effect transistor,” Appl. Phys. Lett., 75 (1999) 2494.

[56] P.L. McEuen, M. Bockrath, D.H. Cobden, Y.G. Yoon and S.G. Louie, “Disorder, pseudospins, and backscattering in carbon nanotubes,” Phys. Rev. Lett. 83 (1999) 5098.

[57] H. Dai, E.W. Wong and C.M. Lieber, “Probing electrical transport in nanomaterials:

conductivity of individual carbon nanotubes,” Science, 272 (1996) 523.

[58] L. Langer, V. Bayot, E. Grivei, J.-P. Issi, J.P. Heremans, C.H. Olk, L. Stockman, C.

Van Haesendonck and Y. Bruynseraede, “Quantum transport in a multiwalled carbon nanotubes,” Phys. Rev. Lett., 76 (1996) 479.

[59] T.W. Ebbesen, H.J. Lezec, H. Hiura, J.W. Bennett, H.F. Ghaemi and T. Thio,

“Electrical conductivity of individual carbon nanotubes,” Nature, 382 (1996) 54.

[60] J.-M. Bonard, H. Kind, T. Stöckli and L.O. Nilsson, “Field emission from carbon nanotubes: the first five years,” Solid State Electronics, 45 (2001) 893.

[61] A. V. Melechko, V. I. Merkulov, T. E. McKnight, M. A. Guillorn, K. L. Klein, D. H.

Lowndes and M. L. Simpson, “Vertically aligned carbon nanofibers and related structures:Controlled synthesis and directed assembly,” J. Appl. Phys., 97 (2005) 041301.

[62] T. V. Hughes and C. R. Chambers, Manufacture of Carbon Filaments, US Patent No.

405, 480, (1889).

[63] R. T. K. Baker and P. S. Harris, “Chemistry and Physics of Carbon,” Marcel Dekker, New York, (1978).

[64] H. W. Kroto, J. R. Heath, S. C. Obrien, R. F. Curl, and R. E. Smalley, “C(60):

Buckminsterfullerene ((carbon molecule formation in space and stellar envelopes)),”

Nature, 318 (1985) 162.

[65] Y. Chen, Z. L. Wang, J. S. Yin, D. J. Johnson, and R. H. Prince, “Well-aligned graphitic nanofibers synthesized by plasma-assisted chemical vapor deposition,”

Chem. Phys. Lett., 272 (1997) 178.

[66] Z. F. Ren, Z. P. Huang, J. W. Xu, J. H. Wang, P. Bush, M. P. Siegal, and P. N.

Provencio, “Synthesis of Large Arrays of Well-Aligned Carbon Nanotubes on Glass,” Science, 282 (1998) 1105.

[67] A. Krishnan, E. Dujardin, M. M. J. Treacy, J. Hugdahl, S. Lynum, and T. W. Ebbesen,

“Graphitic cones and the nucleation of curved carbon surfaces,” Nature, 388 (1997) 451.

[68] M. Endo, Y. A. Kim, T. Hayashi, Y. Fukai, K. Oshida, M. Terrones, T. Yanagisawa, S.

Higaki and M. S. Dresselhaus, “Structural characterization of cup-stacked-type nanofibers with an entirely hollow core,” Appl. Phys. Lett., 80 (2002) 1267.

[69] C. F. Chen, C. L. Lin and C. M. Wang, “Field emission from aligned carbon nanofibers grown in situ by hot filament chemical vapor deposition,” Appl. Phys.

Lett., 82 (2003) 2515.

[70] V. I. Merkulov, A. V. Melechko, M. A. Guillorn, D. H. Lowndes, and M. L. Simpson,

“Effects of spatial separation on the growth of vertically aligned carbon nanofibers produced by plasma-enhanced chemical vapor deposition,” Appl. Phys. Lett., 80 (2002) 476.

[71] M. A. Guillorn, A. V. Melechko, V. I. Merkulov, D. K. Hensley, M. L. Simpson and D. H. Lowndes, “Self-aligned gated field emission devices using single carbon nanofiber cathodes,” Appl. Phys. Lett., 81 (2002) 3660.

[72] S. Bhattacharyya and S. V. Subramanyam, “Metallic conductivity of amorphous carbon films under high pressure,” Appl. Phys. Lett., 632 (1997) 71.

[73] C. J. Huang,Y. K. Chih, J. Hwang, A. P. Lee and C. S. Kou, “Field emission from amorphous-carbon nanotips on copper,” J. Appl. Phys., 94 (2003) 6796.

[74] K. S. Yeong, C. B. Boothroyd and J. T. L. Thong, “The growth mechanism and field-emission properties of single carbon nanotips,” Nanotechnology, 17 (2006) 3655.

[75] H. Adachi, H. Nakane and M. Katamoto, “Field emission characteristics of a carbon needle made by use of electron-beam-assisted decomposition of methane,” Appl.

Surf. Sci., 76/77 (1994) 11.

[76] S. D. Johnson, D. G. Hasko, K. B. K. Teo, W. I. Milne and H. Ahmed, “Fabrication of carbon nanotips in a scanning electron microscope for use as electron field emission sources,” Microelectron. Eng., 61/62 (2002) 665.

[77] Y. Akama, E. Nishimura, A. Sakai and H. Murakami, “New scanning tunneling microscopy tip for measuring surface topography,” J. Vac. Sci. Technol. A, 8 (1990) 429.

[78] G. Y. Zhang, X. Jiang and E. G. Wang, “Tubular Graphite Cones,” Science, 300 (2003) 472.

[79] R. C. Mani, X. Li, M. K. Sunkara and K. Rajan,” Carbon nanopipettes,” Nano Lett., 3 (2003) 671.

[80] J. J. Li, C. Z. Gu, Q. Wang, P. Xu, Z. L. Wang, Z. Xu and X. D. Bai, “Field emission from high aspect ratio tubular carbon cones grown on gold wire,” Appl. Phys. Lett., 87 (2005) 143107.

[81] L. R. Baylor, V. I. Merkulov, E. D. Ellis, M. A. Guillorn, D. H. Lowndes, A. V.

Melechko, M. L. Simpson and J. H. Whealton, “Field emission from isolated individual vertically aligned carbon nanocones,” J. Appl. Phys., 91 (2002) 4602.

[82] C. L. Tsai, C. F. Chen, and C. L. Lin, “Field emission from well-aligned carbon nanotips grown in a gated device structure ,” Appl. Phys. Lett., 80 (2002) 1821.

[83] C. L. Tsai, C. F. Chen, and L. K. Wu, “Bias effect on the growth of carbon nanotips using microwave plasma chemical vapor deposition,” Appl. Phys. Lett., 81 (2002) 721.

[84] S. Iijima and T. Ichihashi, “Single-shell carbon nanotubes of 1-nm diameter,”

Nature, 363 (1993) 603.

[85] P. M. Ajayan, J. M. Lambert, P. Bernier, C. Colliex and J. M. Planeix, “Growth morphologies during cobalt-catalyzed single-shell carbon nanotube synthesis,”

Chem, Phys, Lett., 215 (1993) 509.

[86] S. Seraphin and D. Zhou, “Single-walled carbon nanotubes produced at high yield by mixed catalysts,” Appl. Phys. Lett., 64, 2087 (1994)

[87] T. W. Ebbesen, Carbon Nanotubes –Preparation and properties, CRC Press, New York (1997)

[88] T. Guo, P. Nikolaev, A. Thess, D. T. Colbert and R. E. Smalley, “Catalytic growth of single-walled nanotubes by laser vaporization,” Chem. Phys. Lett., 243 (1995) 49.

[89] T. Guo, P. Nikolaev, A. G. Rinzler, D. Tomanek, D. T. Colbert and R. E. Smalley,

“Self-Assembly of Tubular Fullerenes,” J. Phys, Chem., 99 (1995) 10694.

[90] B. I. Yakobson and R. E. Smalley, “"Fullerene nanotubes: C1000,000 and beyond,”

American Scientist 85 (1997) 324.

[91] D. Robertson, “Carbon formation from methane pyrolysis over some transition metal surfaces,” Carbon, 8 (1970) 365.

[92] T. Baird, J. R. Frayer and B. Grant, “Structure of Fibrous Carbon,” Nature, 233 (1971) 329.

[93] M. J. Yacaman, M. M. Yoshida, L. Rendon and J. G. Santiesteben, “Catalytic growth of carbon microtubules with fullerene structure,” Appl. Phys. Lett., 62 (1993) 202.

[94] Y. Chen, Z. L. Wang, J. S. Yin, D. J. Johnson and R. H. Prince, “Well-aligned graphitic nanofibers synthesized by plasma-assisted chemical vapor deposition,”

Chem. Phys. Lett., 272 (1997) 178.

[95] L. C. Qin, D. Zhou, A. R. Krauss and D. M. Gruen, “Growing carbon nanotubes by microwave plasma-enhanced chemical vapor deposition,” Appl. Phys. Lett., 72 (1998) 3437.

[96] C. Laurent, E. Flahaut, A Peigney and A. Rousset, “Metal nanoparticles for the catalytic synthesis of carbon nanotubes,” New J. Chem., 1229 (1998).

[97] C. F. Chen, C. L. Tsai and C. L. Lin, “Characterization of phosphorus-doped and boron-doped diamond-like carbon emitter arrays,” J. Appl. Phys., 90 (2001) 4847.

[98] A. Grill, Cold Plasma in Materials Fabrication. IEEE Press, New York (1993).

[99] D. A. Carl, D. W. Hess, M. A. Lieberman, T. D. Nguyen and R. Gronsky, “Effects of dc bias on the kinetics and electrical properties of silicon dioxide grown in an electron cyclotron resonance plasma,” J. Appl. Phys., 70 (1991) 3301.

[100] A. Gorbunov, O. Jost, W. Pompe and A. Graff, “Solid–liquid–solid growth mechanism of single-wall carbon nanotubes,” Carbon, 40 (2002) 113.

[101] R. S. Wagner and W. C. Ellis, “Vapor-liquid-solid mechanism of single crystal growth,” Appl. Phys. Lett., 4 (1964) 89.

[102] G. G. Tibbetts, “Why are carbon filaments tubular?” J. Cryst. Growth, 66 (1984) 632.

[103] Y. Saito, T. Yoshikawa, M. Inagaki, M. Tomita and T. Hayashi, “Growth and structure of graphitic tubules and polyhedral particles in arc-discharge,” Chem.

Phys. Lett., 204 (1993) 277.

[104] Y. Saito, “Nanoparticles and filled nanocapsules,” Carbon, 33 (1995) 979.

[105] T. J. Trentler, K. M. Hickman, S. C. Goel, A. M. Viano, P. C.Gibbons and W. E.

Buhro, “Solution-liquid-solid growth of crystalline III-V semiconductors: An analogy to vapor-liquid-solid growth,” Science, 270 (1995) 1791.

[106] T. J. Trentler, K. M. Hickman, S. C. Goel, A. M. Viano, P. C.Gibbons, W. E. Buhro, M. Y. Chiang and A. M. Beatty, “Solution-Liquid-Solid Growth of Indium Phosphide Fibers from Organometallic Precursors: Elucidation of Molecular and Nonmolecular Components of the Pathway,” J. Am. Chem. Soc. 119 (1997) 2172.

[107] R. Gomer, Field Emission and Field Ionization, Harvard University Press, Cambridge, MA (1961)

[108] D. Temple, “Recent progress in field emitter array development fpr high performance applications,” Mat. Sci. Eng., R24 (1999) 185.

[109] R.H. Fowler and L. Nordheim, “Electron Emission in Intense Electric Fields,” Roy.

Soc. Proc. A, (1928) 173 .

[110] R. Gomer, Field Emission and Field Ionization, Harvard University Press, Cambridge, MA, 1961.

[111] R. Stratton, “Field Emission from Semiconductors,” Proc. Phys. Soc. London B, 68 (1955) 746.

[112] N.A. Cade, R. Johnston, A. J. Miller, and C. Patel, “Studies into the emission uniformity of large silicon field emitter arrays,” J. Vac. Sci. Technol. B, 13 (1995) 549.

[113] R. Greene and H.F. Gray, “A simple theory of semiconductor field emission saturation,” Proc. 1st Int. Vacuum Microelectronics Conf., Williamsburg, VA (1988).

[114] L.M. Baskin, O.I. Lvov and G.N. Fursey, “Theory of Field Emission From p-Type Semiconductors,” Phys. Stat. Sol., 47 (1971) 49.

[115] H.F. Gray, G.J. Campisi and R.F. Greene, “A vacuum field effect transistor using silicon field emitter arrays,” Technical Digest of the IEDM, 86 (1986) 776.

[116] S. Kanemaru, T. Hirano, H. Tanoue, J. Itoh, “Control of emission characteristics of silicon field emitter arrays by an ion implantation technique,” J. Vac. Sci. Technol., B 14 (1996) 1885.

[117] K.L. Jensen and A.K. Ganguly, “Numerical simulation of field emission from silicon,” J. Vac. Sci. Technol. B 11 (1993) 371.

[118] K.L. Jensen and A.K. Ganguly, “Time dependent, self-consistent simulations of field emission from silicon using the Wigner distribution function,” J. Vac. Sci.

Technol. B 12 (1994) 770.

[119] K.L. Jensen, “Improved Fowler–Nordheim equation for field emission from semiconductors,” J. Vac. Sci. Technol. B 13 (1995) 516.

[120] L. Nilsson, O. Groening, C. Emmenegger, O. Kuettel, E. Schaller, L. Schlapbach, H.

Kind, J. M. Bonard and K. Kern, “Scanning field emission from structured carbon nanotube films,” Appl. Phys. Lett., 76 (2000) 2071.

[121] Y. Tu, Z. P. Huang, D. Z. Wang, J. G. Wen and Z. F. Ren, “Growth of aligned carbon nanotubes with controlled site density,” Appl. Phys. Lett., 80 (2002) 4018.

[122] F. Tuinstra and J. L. Koenig, “Raman Spectrum of Graphite,” J. Chem. Phys., 53 (1970) 1126

[123] A. C. Ferrari and J. Robertson, “Interpretation of Raman spectra of disordered and amorphous carbon,” Phys. Rev. B., 61 (2000) 14095

[124] J. Kastner, T. Pichlert, H. Kuzmany, S. Curran, W. Blau, N. Weldon, M.

Delamesiere, S. Draper and H. Zandbergen “Resonance Raman and infrared spectroscopy of carbon nanotubes,“ Chem. Phys. Lett., 221 (1994) 53

[125] A. Thess, R. Lee, P.Nikolaev, H. Dai, P. Petit, J. Robert, C. Xu, Y. J. Lee, S. G. Kim, A. G. Rinzler, D. T. Colbert, G. E. Scuseria, D. Tomanek, J. E. Fischer and R. E.

Smalley, Science, 273, 483 (1996)

[126] E. Flahaut, A. Govindaraj, A. Peigney, Ch. Laurent, A. Rousset and C. N. R. Rao,

“Synthesis of single-walled carbon nanotubes using binary (Fe, Co, Ni) alloy nanoparticles prepared in situ by the reduction of oxide solid solutions” Chem. Phys.

Lett., 300 (1999) 236.

[127] C. J. Lee, J. Park and J. A. Yu, “Catalyst effect on carbon nanotubes synthesized by thermal chemical vapor deposition,” Chem. Phys. Lett., 360 (2002) 250.

[128] S. H. Tsai, C. W. Chao, C. L. Lee, and H. C. Shih, “Bias-enhanced nucleation and growth of the aligned carbon nanotubes with open ends under microwave plasma synthesis,” Appl. Phys. Lett. 74 (1999) 3462.

[129] H. Machida, S. Honda, S. Fujii, K. Himuro, H. Kawai, K. Ishida, K. Oura and M.

Katayama, “Effect of Electrical Aging on Field Electron Emission from Screen-Printed Carbon Nanotube Film,” Jap. J. Appl. Phys., 46 (2007) 867.

[130] J. M. Kim, W. B. Choi, N. S. Lee and J. E Jung, ” Field emission from carbon nanotubes for displays” Diamond Relat. Mater., 9 (2000) 1184.

[131] J. Wong-Leung, D. J. Eaglesham, J. Sapjeta, D. C. Jacobson, J. M. Poate and J. S.

Williams, “The precipitation of Fe at the Si–SiO2 interface,” J. Appl. Phys. 83 (1998) 580.

[132] W. B. Henley, L. Jastrzebski and N. F. Haddad, “Effects of iron contamination in silicon on thin oxide breakdown and reliability characteristics,” J. non-cryst. Solids, 187 (1995) 134.

[133] A. A. Istratov, H. Hieslmair and E.R. Weber, “Iron contamination in silicon technology,” Appl. Phys. A: Mater. Sci. Proc. 70 (2000) 489.

[136] J. C. She, N. S. Xu, S. Z. Deng, Jun Chen, H. Bisjop, S. E. Huq, L. Wang, D. Y.

Zhong and E. G. Wang, “Vacuum breakdown of carbon-nanotube field emitters on a silicon tip,” Appl. Phys. Lett., 83 (2003) 2671.

[137] H. Dai, E. W. Wong, and C. M. Lieber, “Probing electrical transport in nanomaterials: Conductivity of individual carbon nanotubes,” Science, 272 (1996) 523.

[138] S. Frank, P. Poncharal, Z. L. Wang, and W. A. De Heer, “Carbon nanotube quantum resistors,” Science, 280 (1998) 744.

[139] M. Kasu and N. Kobayashi, “Large and stable field-emission current from heavily Si-doped AlN grown by metalorganic vapor phase epitaxy,” Appl. Phys. Lett., 76 (2000) 2910.

[140] C. M. Chen , M. Chen , F. C. Leu , S. Y. Hsu , S. C. Wang , S. C. Shi and C. F. Chen,

“Purification of multi-walled carbon nanotubes by microwave digestion method,”

Diamond Relat. Mater., 13 (2004) 1182.

[141] C.F. Chen, C. L. Tsai and C. L. Lin, “Field emission from well-aligned carbon nanotips grown in a gated device structure,” Diamond Relat. Mater., 12 (2003) 1500.

[142] L. Nilsson, O. Groening, C. Emmenegger, O. Kuettel, E. Schaller, L. Schlapbach, H.

Kind, J. M. Bonard and K. Kern, “Scanning field emission from structured carbon nanotube films,” Appl. Phys. Lett., 76 (2000) 2071.

[143] Y. Tu, Z. P. Huang, D. Z. Wang, J. G. Wen and Z. F. Ren, “Growth of aligned carbon nanotubes with controlled site density,” Appl. Phys. Lett., 80 (2002) 4018.

[144] J. S. Suh, K. S. Jeong and J. S. Lee, “Study of the field-screening effect of highly ordered carbon nanotube arrays,” Appl. Phys. Lett., 80 (2002) 2392.

[145] C. Y. Zhi, X. D. Bai and E. G. Wang, “Enhanced field emission from carbon nanotubes by hydrogen plasma treatment,” Appl. Phys. Lett., 81 (2002) 1690.

[146] J. H. Choi, S. H. Choi, J. H. Han, J. B. Yoo, C. Y. Park, T. Jung, S.Yu, I. T. Han and J. N. Kim, “Enhanced electron emission from carbon nanotubes through density control using in situ plasma treatment of catalyst metal,” J. Appl. Phys., 94 (2003) 487.

[147] Y. B. Zhu, W. L. Wang, K. J. Liao and Y. Ma, “Theoretical analysis of external diameter distributions of carbon nanotubes by CVD,” Diamond Relat. Mater. 12 (2003) 1862.

[148] C. H. Hsu, S. C. Shi and C. F. Chen, “Growth of chromium carbide capped–carbon nanotip using bias-assisted microwave plasma chemical vapor deposition,” Thin Solid Film, 469/470 (2004) 131.

[149] Y. Saito, T. Yoshikawa, M. Inagaki, M. Tomita and T. Hayashi, “Growth and structure of graphitic tubules and polyhedral particles in arc-discharge,” Chem.

Phys. Lett., 204 (1993) 277.

[150] P. Lambin, J. P Vigneron, A. Fonseca, J. B. Nagy and A. A. Lucas, “Atomic structure and electronic properties of a bent carbon nanotube,” Synthetic Metals 77 (1996) 249.

[151] C.L. Tsai and C.F. Chen, “Characterization of bias-controlled carbon nanotubes,”

Diamond Relat. Mater., 12 (2003) 1615.

[152] D. P. Yu, Q. L. Hang, Y. Ding, H. Z. Zhang, Z. G. Bai, J. J. Wang, Y. H. Zou, W.

Qian, G. C. Xiong, and S. Q. Feng, “Amorphous silica nanowires: Intensive blue light emitters,” Appl. Phys. Lett., 73 (1998) 3076.

[153] M. Paulose, O. K. Varghese, and C. A. Grimes, “Synthesis of gold-silica composite nanowires through solid-liquid-solid phase growth,” J. Nanosci. Nanotechnology, 3 (2003) 341.

[154] Z. W. Pan, S. Dai, D. B. Beach, and D. H. Lowndes, “Temperature Dependence of Morphologies of Aligned Silicon Oxide Nanowire Assemblies Catalyzed by Molten Gallium,” Nano Lett., 3 (2003) 1279.

[155] Z. W. Pan, S. Dai, D. B. Beach, and D. H. Lowndes, “Liquid gallium ball/crystalline silicon polyhedrons/aligned silicon oxide nanowires sandwich structure: An interesting nanowire growth route,” Appl. Phys. Lett., 84 (2003) 3159.

[156] T. J. Trentler, K. M. Hickman, S. C. Goel, A. M. Viano, P. C.Gibbons, and W. E.

Buhro, “Solution-liquid-lolid growth of crystalline III-V semiconductors: An analogy to vapor-liquid-solid growth,” Science, 270 (1995) 1791.

[157] S. H. Christiansen, M. Becker, S. Fahlbusch, J. Michler, V. Sivakov, G. Andra, and R. Geiger, Signal enhancement in nano-Raman spectroscopy by gold caps on silicon nanowires obtained by vapour–liquid–solid growth,” Nanotechnology, 18 (2007) 035503.

[158] E. J. Bjerneld, F. Svedberg, and M. Kall, “Laser-induced growth and deposition of noble-metal nanoparticles for surface-enhanced Raman scattering,” Nano Lett., 3 (2003) 593.

[159] A. Tao, F. Kim, C. Hess, J. Goldberger, R. He, Y. Sun, Y. Xia, and P. Yang,

“Langmuir-Blodgett silver nanowire monolayers for molecular sensing using surface-enhanced raman spectroscopy,” Nano Lett., 3 (2003) 1229.

[160] Duwez, R. H. Willens, and W. Klement Jr., “Continuous series of metastable solid solutions in silver-copper alloys,” J. Appl.. Phys., 31 (1960) 1136.

[161] Z. F. Ren, Z. P. Huang, J. W. Xu, J. H. Wang, P. Bush, M. P. Siegal and P. N.

Provencio, “Synthesis of large arrays of well-aligned carbon nanotubes on glass,”

Science, 282 (1998) 1105.

[162] W. Z. Li, S. S. Xie, L. X. Qian, B. H. Chang, B. S. Zou, W.Y . Zhou, R. A. Zhao and G. Wang, “Large-scale synthesis of aligned carbon nanotubes,” Science, 274 (1996) 1701.

[163] S. Fan, M.G. Chapline, N.R. Franklin, T.W. Tombler, A.M. Casell and H. Dai,

“Self-oriented regular arrays of carbon nanotubes and their field emission properties,” Science, 283 (1999) 512.

[164] C. L. Tsai, J. H. Hsu, and C. F. Chen, “Self-embedded nanocrystalline chromium carbides on well-aligned carbon nanotips,” Appl. Phys. Lett., 82 (2003) 4337.

[165] L. C. Chen, C. Y. Wen, C. H. Lian, W. K. Hong, K. J. Chen, H. C. Chen, C. S. Shen, C. T. Wu and K. H. Chen, “Controlling steps during early stages of the aligned growth of carbon nanotubes uing microwave plasma enhanced chemical vapor Deposition,” Adv. Func. Mat., 12 (2002) 687.

[166] P.K. Rajagopalan , T.S. Krishnan and D.K. Bose, “Development of carbothermy for the preparation of hepta chromium carbide,” J. Alloy Compd, 297 (2002) L1.

[167] R. G. Coltters and G. R. Belton, “High temperature thermodynamic properties of the chromium carbides Cr7C3 and Cr3C2 determined using a Galvanic cell tehcniqe,”

Metall. Trans. B, 15 (1983) 517.

[168] C. F. Chen, C. L. Lin, and C. M. Wang, “Field emission from aligned carbon

[168] C. F. Chen, C. L. Lin, and C. M. Wang, “Field emission from aligned carbon