• 沒有找到結果。

26. Fenton HJH. Oxidation of tartaric acid in presence of iron. J. Chem. Soc., Trans., 65: 899-910, 1894.

27. Fridovich I. Oxygen toxicity: a radical explanation. J Exp Biol 201: 1203-9, 1998.

28. Fujii T, Endo T, Fujii J, Taniguchi N. Differential expression of glutathione reductase and cytosolic glutathione peroxidase, GPX1, in developing rat lungs and kidneys. Free Radical Research 36: 1041-1049, 2002.

29. Garcia-Triana A, Zenteno-Savin T, Peregrino-Uriarte AB, Yepiz-Plascencia G.

Hypoxia, reoxygenation and cytosolic manganese superoxide dismutase (cMnSOD) silencing in Litopenaeus vannamei: effects on cMnSOD transcripts, superoxide dismutase activity and superoxide anion production capacity. Dev

Comp Immunol 34: 1230-5, 2010.

30. Gatenby RA, Gillies RJ. Why do cancers have high aerobic glycolysis? Nature

Reviews Cancer 4: 891-899, 2004.

31. Godeas C, Sandri G, Panfili E. Distribution of Phospholipid Hydroperoxide Glutathione-Peroxidase (Phgpx) in Rat Testis Mitochondria. Biochimica Et

Biophysica Acta-Biomembranes 1191: 147-150, 1994.

32. Gomez-Anduro GA, Ascencio-Valle F, Peregrino-Uriarte AB, Campa-Cordova A, Yepiz-Plascencia G. Cytosolic manganese superoxide dismutase genes from the white shrimp Litopenaeus vannamei are differentially expressed in response to lipopolysaccharides, white spot virus and during ontogeny. Comp

Biochem Physiol B Biochem Mol Biol 162: 120-5, 2012.

33. Gomez-Anduro GA, Barillas-Mury CV, Peregrino-Uriarte AB, Gupta L, Gollas-Galvan T, Hernandez-Lopez J, Yepiz-Plascencia G. The cytosolic manganese superoxide dismutase from the shrimp Litopenaeus vannamei:

molecular cloning and expression. Dev Comp Immunol 30: 893-900, 2006.

34. Goncalves-Soares D, Zanette J, Yunes JS, Yepiz-Plascencia GM, Bainy AC.

Expression and activity of glutathione S-transferases and catalase in the shrimp Litopenaeus vannamei inoculated with a toxic Microcystis aeruginosa

25

strain. Marine Environmental Research 75: 54-61, 2012.

35. Gopalakrishna R, Jaken S. Protein kinase C signaling and oxidative stress. Free

Radic Biol Med 28: 1349-61, 2000.

36. Green DE. The reduction potentials of cysteine, glutathione and glycylcysteine.

Biochem J 27: 678-89, 1933.

37. Green DR, Reed JC. Mitochondria and apoptosis. Science 281: 1309-12, 1998.

38. Greetham D, Vickerstaff J, Shenton D, Perrone GG, Dawes IW, Grant CM.

Thioredoxins function as deglutathionylase enzymes in the yeast Saccharomyces cerevisiae. Bmc Biochemistry 11, 2010.

39. Halliwell B. Free radicals, antioxidants, and human disease: curiosity, cause, or consequence? Lancet 344: 721-4, 1994.

40. Halliwell B, Gutteridge, J.M.C. . Free radicals in Biology and Medicine. New

York: Oxford Univ. Press., 1999.

41. Hill BG, Bhatnagar A. Role of glutathiolation in preservation, restoration and regulation of protein function. IUBMB Life 59: 21-6, 2007.

42. Holmgren A. Thioredoxin catalyzes the reduction of insulin disulfides by dithiothreitol and dihydrolipoamide. J Biol Chem 254: 9627-32, 1979.

43. Huang HT, Leu JH, Huang PY, Chen LL. A putative cell surface receptor for

45. Jakob U, Muse W, Eser M, Bardwell JC. Chaperone activity with a redox switch.

Cell 96: 341-52, 1999.

46. Jones DP, Eklow L, Thor H, Orrenius S. Metabolism of hydrogen peroxide in isolated hepatocytes: relative contributions of catalase and glutathione peroxidase in decomposition of endogenously generated H2O2. Arch Biochem

Biophys 210: 505-16, 1981.

47. Jose S, Jayesh P, Sudheer NS, Poulose G, Mohandas A, Philip R, Singh ISB.

Lymphoid organ cell culture system from Penaeus monodon (Fabricius) as a platform for white spot syndrome virus and shrimp immune-related gene expression. Journal of Fish Diseases 35: 321-334, 2012.

48. Kang JG, Paget MS, Seok YJ, Hahn MY, Bae JB, Hahn JS, Kleanthous C, Buttner MJ, Roe JH. RsrA, an anti-sigma factor regulated by redox change. EMBO J 18:

4292-8, 1999.

49. Kang ST, Leu JH, Wang HC, Chen LL, Kou GH, Lo CF. Polycistronic mRNAs and

26

internal ribosome entry site elements (IRES) are widely used by white spot syndrome virus (WSSV) structural protein genes. Virology 387: 353-363, 2009.

50. Kanzok SM, Fechner A, Bauer H, Ulschmid JK, Muller HM, Botella-Munoz J, Schneuwly S, Schirmer R, Becker K. Substitution of the thioredoxin system for glutathione reductase in Drosophila melanogaster. Science 291: 643-6, 2001.

51. Kirkman HN, Gaetani GF. Catalase: a tetrameric enzyme with four tightly bound molecules of NADPH. Proc Natl Acad Sci U S A 81: 4343-7, 1984.

52. Kirkman HN, Rolfo M, Ferraris AM, Gaetani GF. Mechanisms of protection of catalase by NADPH. Kinetics and stoichiometry. J Biol Chem 274: 13908-14, 1999.

53. Kiruthiga C, Rajesh S, Rashika V, Priya R, Narayanan RB. Molecular cloning, expression analysis and characterization of peroxiredoxin during WSSV infection in shrimp Fenneropenaeus indicus. J Invertebr Pathol 109: 52-8, 2012.

54. Koharyova M, Kolarova M. Oxidative stress and thioredoxin system. Gen

Physiol Biophys 27: 71-84, 2008.

55. Koppenol WH. The Haber-Weiss cycle--70 years later. Redox Rep 6: 229-34, 2001.

56. Kristal BS, Chen J, Yu BP. Sensitivity of mitochondrial transcription to different free radical species. Free Radic Biol Med 16: 323-9, 1994.

57. Kroll JS, Langford PR, Wilks KE, Keil AD. Bacterial [Cu,Zn]-superoxide dismutase: phylogenetically distinct from the eukaryotic enzyme, and not so rare after all! Microbiology 141 ( Pt 9): 2271-9, 1995.

58. Kuppusamy P, Zweier JL. Characterization of free radical generation by xanthine oxidase. Evidence for hydroxyl radical generation. J Biol Chem 264:

9880-4, 1989.

59. Laurent TC, Moore EC, Reichard P. Enzymatic Synthesis of Deoxyribonucleotides. Iv. Isolation and Characterization of Thioredoxin, the Hydrogen Donor from Escherichia Coli B. J Biol Chem 239: 3436-44, 1964.

60. Le Moullac G, Soyez C, Saulnier D, Ansquer D, Avarre JC, Levy P. Effect of hypoxic stress on the immune response and the resistance to vibriosis of the shrimp Penaeus stylirostris. Fish & Shellfish Immunology 8: 621-629, 1998.

61. Leichert LI, Jakob U. Protein thiol modifications visualized in vivo. PLoS Biol 2:

e333, 2004.

62. Leslie NR, Bennett D, Lindsay YE, Stewart H, Gray A, Downes CP. Redox regulation of PI 3-kinase signalling via inactivation of PTEN. EMBO J 22:

5501-10, 2003.

63. Leu JH, Chen LL, Lin YR, Kou GH, Lo CF. Molecular mechanism of the

27

interactions between white spot syndrome virus anti-apoptosis protein AAP-1 (WSSV449) and shrimp effector caspase. Developmental and Comparative

Immunology 34: 1068-1074, 2010.

64. Leu JH, Wang HC, Kou GH, Lo CF. Penaeus monodon caspase is targeted by a white spot syndrome virus anti-apoptosis protein. Developmental and

Comparative Immunology 32: 476-486, 2008.

65. Leu JH, Yang F, Zhang X, Xu X, Kou GH, Lo CF. Whispovirus. Curr Top Microbiol

Immunol 328: 197-227, 2009.

66. Levine RL. Carbonyl modified proteins in cellular regulation, aging, and disease. Free Radic Biol Med 32: 790-6, 2002.

67. Lin YC, Lee FF, Wu CL, Chen JC. Molecular cloning and characterization of a cytosolic manganese superoxide dismutase (cytMnSOD) and mitochondrial manganese superoxide dismutase (mtMnSOD) from the kuruma shrimp Marsupenaeus japonicus. Fish Shellfish Immunol 28: 143-50, 2010.

68. Linke K, Jakob U. Not every disulfide lasts forever: disulfide bond formation as a redox switch. Antioxid Redox Signal 5: 425-34, 2003.

69. Liu CH, Tseng MC, Cheng W. Identification and cloning of the antioxidant enzyme, glutathione peroxidase, of white shrimp, Litopenaeus vannamei, and its expression following Vibrio alginolyticus infection. Fish Shellfish Immunol 23: 34-45, 2007.

70. Liu KF, Yeh MS, Kou GH, Cheng W, Lo CF. Identification and cloning of a selenium-dependent glutathione peroxidase from tiger shrimp, Penaeus monodon, and its transcription following pathogen infection and related to the molt stages. Dev Comp Immunol 34: 935-44, 2010.

71. Liu Y, Wang WN, Wang AL, Wang JM, Sun RY. Effects of dietary vitamin E supplementation on antioxidant enzyme activities in Litopenaeus vannamei (Boone, 1931) exposed to acute salinity changes. Aquaculture 265: 351-358, 2007.

72. Lo CF, Ho CH, Peng SE, Chen CH, Hsu HC, Chiu YL, Chang CF, Liu KF, Su MS, Wang CH, Kou GH. White spot syndrome baculovirus (WSBV) detected in cultured and captured shrimp, crabs and other arthropods. Diseases of

Aquatic Organisms 27: 215-225, 1996.

73. Lo CF, Kou GH. Virus-associated white spot syndrome of shrimp in Taiwan: A review. Fish Pathology 33: 365-371, 1998.

74. Malek RL, Sajadi H, Abraham J, Grundy MA, Gerhard GS. The effects of temperature reduction on gene expression and oxidative stress in skeletal muscle from adult zebrafish. Comparative Biochemistry and Physiology

C-Toxicology & Pharmacology 138: 363-373, 2004.

28

75. Margolis SA, Coxon B, Gajewski E, Dizdaroglu M. Structure of a Hydroxyl Radical Induced Cross-Link of Thymine and Tyrosine. Biochemistry 27:

6353-6359, 1988.

76. Martinez-Alvarez RM, Morales AE, Sanz A. Antioxidant defenses in fish: Biotic and abiotic factors. Reviews in Fish Biology and Fisheries 15: 75-88, 2005.

77. Mccord JM, Fridovic.I. Superoxide Dismutase an Enzymic Function for Erythrocuprein (Hemocuprein). Journal of Biological Chemistry 244: 6049-&, 1969.

78. Meyer Y, Buchanan BB, Vignols F, Reichheld JP. Thioredoxins and glutaredoxins:

unifying elements in redox biology. Annu Rev Genet 43: 335-67, 2009.

79. Mikulski CM, Burnett LE, Burnett KG. The effects of hypercapnic hypoxia on the survival of shrimp challenged with Vibrio parahaemolyticus. Journal of

Shellfish Research 19: 301-311, 2000.

80. Moresino RDH, Helbling EW. Combined Effects of UVR and Temperature on the Survival of Crab Larvae (Zoea I) from Patagonia: The Role of UV-Absorbing Compounds. Marine Drugs 8: 1681-1698, 2010.

81. Munday R. Toxicity of thiols and disulphides: involvement of free-radical species. Free Radic Biol Med 7: 659-73, 1989.

82. Neale TJ, Kerjaschki D, Witztum J, Davis P, Ruger B. Reactive Oxygen Species (Ros) and Lipid-Peroxidation (Lpo) in Proteinuric Experimental Renal-Disease.