• 沒有找到結果。

Full length BCL2 序列時間軌跡圖(time trace) (Figure A2) . 38

第三章 實驗結果與討論

3.3 Full length BCL2 序列時間軌跡圖(time trace) (Figure A2) . 38

同樣地也對 Full length BCL2 進行 2000 幅的錄影,經由 MatLab 程序分析,發 現此時間軌跡圖可大致分為三類:第一種如同 BCL2MidG4 所觀察到的,為 Cy3 與 Cy5 染料分子的螢光強度劇烈地交互變動,造成 EFRET也產生劇烈的變動,將此 度均有出現,一樣使用 Cross-correlation 分析後可以擬合反相指數衰減曲線,代表 構形有快速動態轉換的現象,而第二種相對慢速的時間軌跡圖,則使用 HaMMy

39

摺疊造成的結果。由此程序還可得知其之間轉換的反應速率以及事件數,如 Table 6。未變化的穩定分子的分類,與 BCL2MidG4 觀察到的現象類似,隨著鹽類濃度 增加,由於狀態趨向穩定因此維持在某狀態的時間軌跡增加,然而與縮短版序列 不同的是,Full length BCL2 所停留的狀態介於 EFRET=0.4 至 0.8 之間,因此造成所 觀察到的 EFRET直方圖分布範圍很廣。

Figure 29. Full length BCL2 相對慢速變化的時間軌跡圖

40

Figure 30. 使用 HaMMy 程式所繪製的機率密度地圖 由上至下分別為 50mM、100mM 及 150mM 鉀離子的濃度

41

[K+]/50mM

Transition (FRET value) Rate (s-1) Number of transitions:

0.4 ⇾ 0.6 11.587 324 0.6 ⇾ 0.4 1.326 324 0.6 ⇾ 0.8 1.122 346 0.8 ⇾ 0.6 0.449 351

[K+]/100mM

Transition (FRET value) Rate (s-1) Number of transitions:

0.4 ⇾ 0.6 10.0009 372 0.6 ⇾ 0.4 1.84762 349 0.6 ⇾ 0.8 1.91507 565 0.8 ⇾ 0.6 0.73936 544

[K+]/150mM

Transition (FRET value) Rate (s-1) Number of transitions:

0.6 ⇾ 0.8 2.68581 282 0.8 ⇾ 0.6 1.12626 281

Table 6. 鉀離子濃度為 50mM、100mM 及 150mM 時,慢速變化軌跡圖使用 HaMMy 軟體 所得到的動力學參數

42 length BCL2 和 BCL2MidG4),縮短版序列在鉀離子為低濃度條件下,所產生的構 形之間有快速變化的情形,隨著鉀離子濃度增加,構形趨向於停留在某一穩定的

43

致力於發展能穩定此構形的小分子藥物,然而這些小分子對於 G-四股結構構形的 穩定可能有選擇性,因此了解到 G-四股結構之間的轉換可有助於這些小分子藥物 進一步的發展。

由於此完整序列可形成的 G-四股結構構形眾多,造成所觀察到的 EFRET分布 太廣,即使使用 HaMMy 軟體仍無法明確的定義其狀態數,因此若要進一部探討 詳細的 G-四股結構構形,尚需要對此序列特定的鹼基對作變性(mutation),以鑑定 確認各種 G-四股結構的鳥嘌呤的結構。

44

參考文獻

[1] D. T. Chao and S. J. Korsmeyer, “BCL-2 FAMILY: Regulators of Cell Death,”

Annu. Rev. Immunol, 1998, 395–419.

[2] J. M. Adams and S. Cory, “The Bcl-2 Protein Family: Arbiters of Cell Survival.,”

Science (New York, N.Y.) 281, no. 5381 (1998): 1322–26.

[3] Katja C. Zimmermann, Christine Bonzon, and Douglas R. Green, “The Machinery of Programmed Cell Death,” Pharmacology & Therapeutics 92, no. 1 (2001): 57–70 [4] Alex R. D. Delbridge et al., “Thirty Years of BCL-2: Translating Cell Death Discoveries into Novel Cancer Therapies.,” Nature Reviews. Cancer 16, no. 2 (2016):

99–109

[5] J J Yunis, “The Chromosomal Basis of Human Neoplasia.,” Science (New York, N.Y.) 221 (1983): 227–36.

[6] Akagi, T. ; Kondo, E and Yoshino, T. “Expression of Bcl-2 Protein and Bcl-2 mRNA in Normal and Neoplastic Lymphoid Tissues,” Leukemia & Lymphoma 13, no.

1–2 (1994): 81–87

[7] H Joensuu, L Pylkkänen, and S Toikkanen, “Bcl-2 Protein Expression and

Long-Term Survival in Breast Cancer.,” The American Journal of Pathology 145, no. 5 (1994): 1191–98.

[8] Timothy J. McDonnell et al., “Expression of the Protooncogene Bcl-2 in the

Prostate and Its Association with Emergence of Androgen-Independent Prostate Cancer,”

Cancer Research 52, no. 24 (1992): 6940–44

[9] F Pezzella et al., “Bcl-2 Protein in Non-Small-Cell Lung Carcinoma.,” The New England Journal of Medicine 329, no. 10 (1993): 690–94

45

[10] W. Tjalma et al., “Expression of Bcl-2 in Invasive and in Situ Carcinoma of the Uterine Cervix,” American Journal of Obstetrics and Gynecology 178, no. 1 I (1998):

113–17

[11] Gustavo Bruno Baretton et al., “Apoptosis and Lmmunohistochemical Bcl-2 Expression in Colorectal Adenomas and Carcinomas,” American Cancer Society, 1996, 255–64.

[12] T Miyashita and J C Reed, “Bcl-2 Oncoprotein Blocks Chemotherapy-Induced Apoptosis in a Human Leukemia Cell Line.,” Blood 81, no. 1 (1993): 151–57.

[13] By Rakesh K Srivastava et al., “Bcl-2 – Mediated Drug Resistance : Inhibition of Apoptosis by Blocking Nuclear Factor of Activated T Lymphocytes” 190, no. 2 (1999).

[14] B. Weyhenmeyer et al., “Targeting the Anti-Apoptotic Bcl-2 Family Members for the Treatment of Cancer,” Experimental Oncology 34, no. 3 (2012): 192–99.

[15] M A Yenari et al., “Gene Therapy and Hypothermia for Stroke Treatment,”

Neuroprotective Agents 993 (2003): 54–68

[16] G Middleton, G Nunez, and a M Davies, “Bax Promotes Neuronal Survival and Antagonises the Survival Effects of Neurotrophic Factors.,” Development (Cambridge, England) 122, no. 2 (1996): 695–701

[17] M Seto et al., “Alternative Promoters and Exons, Somatic Mutation and

Deregulation of the Bcl-2-Ig Fusion Gene in Lymphoma.,” The EMBO Journal 7, no. 1 (1988): 123–31

[18] R L Young and S J Korsmeyer, “A Negative Regulatory Element in the Bcl-2 5’-untranslated Region Inhibits Expression from an Upstream Promoter.,” Molecular and Cellular Biology 13, no. 6 (1993): 3686–97.

46

[19] Caroline Heckman et al., “The WT1 Protein Is a Negative Regulator of the Normal Bcl-2 Allele in t(14;18) Lymphomas,” Journal of Biological Chemistry 272, no. 31 (1997): 19609–14.

[20] Candelaria Gomez-manzano et al., “Transfer of E2F-1 to Human Glioma Cells Results in Transcriptional Up-Regulation of Bcl-2 Advances in Brief Transfer of E2F-1 to Human Glioma Cells Results in Transcriptional,” no. 713 (2001): 6693–97.

[21] Yu-zhen Liu, Linda M Boxer, and David S Latchman, “Activation of the Bcl-2 Promoter by Nerve Growth Factor Is Mediated by the p42 / p44 MAPK Cascade,” Cell 27, no. 10 (1999).

[22] Thomas S. Dexheimer, Daekyu Sun, and Laurence H. Hurley, “Deconvoluting the Structural and Drug-Recognition Complexity of the G-Quadruplex-Forming Region Upstream of the Bcl-2 P1 Promoter,” Journal of the American Chemical Society 128, no.

16 (2006): 5404–15

[23] Martin Gellert, Marie N. Lipsett, and David R. Davies, “Helix Formation By Guanylic Acid,” Proceedings of the National Academy of Sciences 48, no. 12 (1962):

2013–18

[24] Nancy H. Campbell and Stephen Neidle, “G-Quadruplexes and Metal Ions.,” Metal Ions in Life Sciences, 2012

[25] Jens Müller, “Functional Metal Ions in Nucleic Acids.,” Metallomics : Integrated Biometal Science 2, no. 5 (2010): 318–27

[26] Andrew N. Lane et al., “Stability and Kinetics of G-Quadruplex Structures.,”

Nucleic Acids Research 36, no. 17 (2008): 5482–5515

47

[27] Yuwei Chen and Danzhou Yang, “Sequence, Stability, and Structure of

G-Quadruplexes and Their Interactions with Drugs,” Current Protocols in Nucleic Acid Chemistry, no. SUPLL.50 (2012): 1–17

[28] Ivan Smirnov and Richard H. Shafer, “Effect of Loop Sequence and Size on DNA Aptamer Stability,” Biochemistry 39, no. 6 (2000): 1462–68

[29] Pascale Hazel et al., “Loop-Length-Dependent Folding of G-Quadruplexes,”

Journal of the American Chemical Society 126, no. 50 (2004): 16405–15

[30] Dinshaw J. Patel, Anh Tuan Phan, and Vitaly Kuryavyi, “Human Telomere, Oncogenic Promoter and 5’-UTR G-Quadruplexes: Diverse Higher Order DNA and RNA Targets for Cancer Therapeutics,” Nucleic Acids Research 35, no. 22 (2007):

7429–55.

[31] Attila Ambrus et al., “Human Telomeric Sequence Forms a Hybrid-Type Intramolecular G-Quadruplex Structure with Mixed Parallel/antiparallel Strands in Potassium Solution,” Nucleic Acids Research 34, no. 9 (2006): 2723–35

[32] Eric Henderson et al., “Telomeric DNA Oligonucleotides Form Novel

Intramolecular Structures Containing Guanine-Guanine Base Pairs,” Cell 51, no. 6 (1987): 899–908.

[33] D. Sun et al., “Inhibition of Human Telomerase by a G-Quadruplex-Interactive Compound,” Journal of Medicinal Chemistry, 1997

[34] Tomas Simonsson, Petr Pecinka, and Mikael Kubista, “DNA Tetraplex Formation in the Control Region of c-Myc,” Nucleic Acids Research 26, no. 5 (1998): 1167–72 [35] Daekyu Sun et al., “Facilitation of a Structural Transition in the

Polypurine/polypyrimidine Tract within the Proximal Promoter Region of the Human

48

VEGF Gene by the Presence of Potassium and G-Quadruplex-Interactive Agents,”

Nucleic Acids Research 33, no. 18 (2005): 6070–80

[36] Richard De Armond et al., “Evidence for the Presence of a Guanine Quadruplex Forming Region within a Polypurine Tract of the Hypoxia Inducible Factor 1 Alpha Promoter,” Biochemistry 44, no. 49 (2005): 16341–50

[37] Kexiao Guo et al., “Formation of Pseudosymmetrical G-Quadruplex and I-Motif Structures in the Proximal Promoter Region of the RET Oncogene,” Journal of the American Chemical Society 129, no. 33 (2007): 10220–28

[38] Sarah Rankin et al., “Putative DNA Quadruplex Formation within the Human c-Kit Oncogene,” Journal of the American Chemical Society 127, no. 30 (2005): 10584–89 [39] Dik-Lung Ma, Victor Pui-Yan Ma, Ka-Ho Leung, Hai-Jing Zhong, Hong-Zhang He, Daniel Shiu-Hin Chan and Chung-Hang Leung (2013). Structure-Based Approaches Targeting Oncogene Promoter G-Quadruplexes, Oncogene and Cancer - From Bench to Clinic, Dr. Yahwardiah Siregar (Ed.), InTech

[40] Dipankar Sen and Walter Gilbert, “Formation of Parallel Four-Stranded Complexes by Guanine-Rich Motifs in DNA and Its Implications for Meiosis.,” Nature 334, no.

6180 (1988): 364–66

[41] Denis Drygin et al., “Anticancer Activity of CX-3543: A Direct Inhibitor of rRNA Biogenesis,” Cancer Research 69, no. 19 (2009): 7653–61

[42] Rumen Kostadinov et al., “GRSDB: A Database of Quadruplex Forming G-Rich Sequences in Alternatively Processed Mammalian Pre-mRNA Sequences.,” Nucleic Acids Research 34, no. Database issue (2006): D119–124

[43] Laurence H Hurley et al., “G-Quadruplexes as Targets for Drug Design,”

Pharmacology & Therapeutics 85, no. June 2016 (2000): 141–58

49

[44] Guangtao Song and Jinsong Ren, “Recognition and Regulation of Unique Nucleic Acid Structures by Small Molecules.,” Chemical Communications (Cambridge,

England) 46, no. 39 (2010): 7283–94

[45] Anh Tuân Phan, Yasha S. Modi, and Dinshaw J. Patel, “Propeller-Type Parallel-Stranded G-Quadruplexes in the Human c-Myc Promoter,” Journal of the American Chemical Society 126, no. 28 (2004): 8710–16

[46] Jixun Dai et al., “An Intramolecular G-Quadruplex Structure with Mixed Parallel/antiparallel G-Strands Formed in the Human BCL-2 Promoter Region in Solution,” Journal of the American Chemical Society 128, no. 4 (2006): 1096–98 [47] Jixun Dai et al., “NMR Solution Structure of the Major G-Quadruplex Structure Formed in the Human BCL2 Promoter Region,” Nucleic Acids Research 34, no. 18 (2006): 5133–44

[48] Prashansa Agrawal et al., “The Major G-Quadruplex Formed in the Human BCL-2 Proximal Promoter Adopts a Parallel Structure with a 13-Nt Loop in K+ Solution,”

Journal of the American Chemical Society 136, no. 5 (2014): 1750–53

[49] T Ha et al., “Probing the Interaction between Two Single Molecules: Fluorescence Resonance Energy Transfer between a Single Donor and a Single Acceptor.,”

Proceedings of the National Academy of Sciences 93, no. 13 (1996): 6264–68 [50] T Ha, “Single-Molecule Fluorescence Resonance Energy Transfer,” Methods (Duluth) 25, no. 1 (2001): 78–86

[51] 李以仁、許顥頤、秦志皞、吳佳諭,「單分子螢光共振能量轉移光譜簡介」。 化學,73 卷 4 期,303-312

[52] Paul R. Selvin and Taekjip Ha, Single-Molecule Techniques: A Laboratory Manual, CSHL Press, 2008

50

[53] Daniel Axelrod, “Total Internal Reflection Fluorescence Microscopy in Cell Biology,” Traffic 2, no. 11 (2001): 764–74

[54] Colin Echeverría Aitken, R Andrew Marshall, and Joseph D Puglisi, “An Oxygen Scavenging System for Improvement of Dye Stability in Single-Molecule Fluorescence Experiments.,” Biophysical Journal 94, no. 5 (2008): 1826–35

[55] Sean A McKinney, Chirlmin Joo, and Taekjip Ha, “Analysis of Single-Molecule FRET Trajectories Using Hidden Markov Modeling.,” Biophysical Journal 91, no. 5 (2006): 1941–51, doi:10.1529/biophysj.106.082487.

51

附錄

Figure A1-1. 鉀離子濃度為 10mM, BCL2 MidG4 EFRET快速變動的時間軌跡圖

52

Figure A1-2. 鉀離子濃度為 50mM, BCL2MidG4 EFRET快速變動的時間軌跡圖

53

Figure A1-3. 鉀離子濃度為 50mM, BCL2MidG4 EFRET快速變動的時間軌跡圖

54

Figure A1-4. 鉀離子濃度為 100mM, BCL2 MidG4 EFRET快速變動的時間軌跡圖

55

Figure A1-5. 鉀離子濃度為 150mM, BCL2MidG4 EFRET穩定狀態的時間軌跡圖

56

Figure A1-6. 鉀離子濃度為 200mM, BCL2MidG4 EFRET穩定狀態的時間軌跡圖

57

Figure A2-1. 鉀離子濃度為 10mM,Full length BCL2 EFRET相對慢速變動狀態的時間軌跡

58

Figure A2-2. 鉀離子濃度為 50mM,Full length BCL2 EFRET相對慢速變動狀態的時間軌跡

59

Figure A2-3. 鉀離子濃度為 100mM,Full length BCL2 EFRET相對慢速變動狀態的時間軌跡

60

Figure A2-4. 鉀離子濃度為 100mM,Full length BCL2 EFRET相對慢速變動狀態的時間軌跡

61

Figure A2-5. 鉀離子濃度為 100mM,Full length BCL2 EFRET 穩定狀態的時間軌跡圖

62

Figure A2-6. 鉀離子濃度為 150mM,Full length BCL2 EFRET相對慢速變動狀態的時間軌跡

63

Figure A2-7. 鉀離子濃度為 150mM,Full length BCL2 EFRET穩定狀態的時間軌跡圖

64

Figure A2-8. 鉀離子濃度為 200mM,Full length BCL2 EFRET相對慢速變動狀態的時間軌跡

65

Figure A2-9. 鉀離子濃度為 200mM,Full length BCL2 EFRET穩定狀態的時間軌跡圖

66

品名 廠牌 CAS.NO

Acetic acid KANTO 64-19-7

BSA New England BioLabs

Biotin-PEG Laysan Bio,Inc

mPEG-SVA Laysan Bio,Inc

Catalase Sigma-Aldrich 9001-05-2

D(+)-Glucose KANTO 50-99-7

Glucose Oxidase Sigma-Aldrich 9001-37-0

Hydrochloric acid KANTO 7647-01-0

Hydrogen Peroxide 島久藥品 7722-84-1

Neutravidin Thermo

Potassium chloride KANTO 7447-40-7 Potassium hydroxide KANTO 1310-58-3 Potassium persulfate Acros 7727-21-1 Sodium tetraborate decahydrate Sigma-Aldrich 1303-96-4

Sodium chloride KANTO 7647-14-5

Sodium hydrogen carbonate KANTO 144-55-8

Sulfuric acid KANTO 7664-93-9

N-[3-(trimethoxysilyl)propyl]ethylenediamine acros 1760-24-3 Tris(hydroxymethyl)aminomethane acros 77-86-1

Trolox® , 97% acros 53188-07-1

Trimethylamine Sigma-Aldrich 75-50-3 Table A 1. 藥品清單

相關文件