• 沒有找到結果。

Chapter 6 Conclusion

6.2 Future Work

In this dissertation, versatile neural sensors and electronics in biomedical system had been studied preliminarily. There are some prospects for the further researches including detailed neural-electrode interface studies, all-polymer based implantable sensor array for true 3D analysis, long wireless/batteryless transmission distance, system-on-chip design and reliable packaging integration with neural sensors.

Furthermore, specifically sensing electrodes for localized neuron recording require special microfabrication process with particular impedance performance. Localized neural recording can reduce the difficulty of neuron sorting or classification because of the specified signal source. Additionally, standard electrode model should be characterized by a small-signal source to compare and identify the electrode performance with prior arts. The auditory evoked potential (AEP) studied in the dissertation should also be comparing with standard samples in prior arts, as well as the neural potential recorded form different layer of the tissue by the presented neural probes. The practical survival time of the implant device is another important issue, which is considered as the next step beyond current achievements. Noise measurements and analysis is another weakness part in the work, including MDE development and the wireless neural microsystem. Comparison of the noise performance between MDE and wet electrode should be detailed investigated. The improvement of the power transmission efficiency (PTE) in photodynamic therapy by transparent MDE is clearly observed, however, current result lack of studies in the influence of the interface variance by the surface mounted MDE structure. Quantitative design procedures should be involved in the development the next generation MDE with logical and empirical verification. Finally, fully integrated system on chip design will be the ultimate goal toward neural prosthetic microsystem implementation.

Reference

[1] N. V. Thakor, ―Biopotentials and Electrophysiology Measurement‖ in The Measurement, Instrumentation, and Sensors Handbook. Webster, John G., CRC Press, 1999.

[2] R. Plonsey, ―Bioelectric Phenomena,‖ New York: McGraw-Hill, 1969.

[3] R. Plonsey and R. C. Barr, ―Bioelectricity,‖ New York: Plenum, 1988.

[4] R. C. Barr, ―Basic electrophysiology,‖ in The Biomedical Engineering Handbook, Bronzino J., Ed., Boca Raton, FL: CRC Press, 1995.

[5] N. V. Thakor, "Neuroprosthesis: An Inspiration for Brain-Machin Interface," Lecture Note Presented at the International Workshop on Bio-Inspired System and Prosthetic Devices, Hsinchu, Taiwan, 2010 [6] Legatt, J. Arezzo and H.G. Vaughan, ―Averaged multiple unit activity as an estimate of phasic changes in

local neuronal activity: effects of volume-conducted potentials,‖ Journal of Neuroscience Methods, vol.

2(2), pp.203-217, 1980.

[7] E. Niedermeyer and D. Silva F.L., ―Electroencephalography: Basic Principles, Clinical Applications, and Related Fields,‖ Lippincot Williams & Wilkins, 2004.

[8] B. Abou-Khalil and Musilus, K.E., ―Atlas of EEG & Seizure Semiology,‖ Elsevier, 2006.

[9] E.N. Brown, R.E. Kass and P.P. Mitra, ―Multiple Neural Spike Train Data Analysis: State-of-The-Art and Future Challenges,‖ Nature Neuroscience, vol.7, pp.456-461, 2004.

[10] P.K. Campbell, K.E. Jones, R.J. Huber, K.W. Horch and R.A. Normann, ―A silicon-based, 3-dimensional neural interface—manufacturing process for an intracortical electrode array,‖ IEEE Transaction on Biomedical Engineering, vol. 38, pp758-768, 1991.

[11] S. Kim, R. Bhandari, M. Klein, S. Negi, L. Rieth, P. Tathireddy, M. Toepper, H. Oppermann and F.

Solzbacher, "Integrated wireless neural interface based on the Utah electrode array," Biomedical Microdevices, vol. 11, pp. 453-466, Apr 2009.

[12] B. Rubehn, C. Bosman, R. Oostenveld, P. Fries, T. Stieglitz, ―A MEMS-based flexible multichannel ECoG-electrode array,‖ Journal of Neural Engineering, vol. 6, 2009.

[13] P. Cong, N. Chaimanonart, W. H. Ko, and D. J. Young, ―A wireless and batteryless 130mg 300µW 10b implantable blood-pressure sensing microsystem for real-time genetically engineered mice monitoring,‖

IEEE International Solid-State Circuits Conference, 2009.

[14] A.M. Sodagar, G.E. Perlin, Y. Yao, K. Najafi and K.D. Wise, ―An Implantable 64-Channel Wireless Microsystem for Single-Unit Neural Recording,‖ IEEE Journal of Solid-State Circuits, Vol. 44, pp.2591-2604, 2009.

[15] M. Teplan, ―Fundamentals of EEG measurement,‖ Measurement Science Review, vol.2, 2002 [16] H. A. Miller, D.C. Harrison, ―Biomedical Electrode Technology,‖ Academic Press, NY, 1974.

[17] A. P. Spence, ―Basic Human Anatomy,‖ Benjamin Cummings, Redwood City, CA, 1990.

[18] S.I. Fox, ―Human Physiology,‖ 9th Ed., McGraw-Hill, 2004.

[19] P. Griss, E. Peter, T. Heli, M. Pekka, O. Stig and S. Göran, ―Micromachined Electrodes for Biopotential Measurements,‖ Journal of Microelectromechanical Systems, vol. 10, no. 1, pp. 10-16, 2001.

[20] C.W. Chang, L.W. Ko, F.C. Lin, T.P. Su, T.P. Jung, C.T. Lin and J.C. Chiou, ―Drowsiness Monitoring with EEG-Based MEMS Biosensing Technologies,‖ Journal of Gerontopsychology and Geriatric Psychiatry, Vol. 23, pp.107-113, Jun 1, 2010.

[21] P. Griss, E. Peter and S. Göran, ―Micromachined barbed spikes for mechanical chip attachment,‖

Sensors and Actuators Journal-A: Physical, vol. 95, pp.94-99, 2002.

[22] J. G. Webster, ―Medical Instrumentation Application and Design,‖ 3rd ed., New York: Wiley, 1998.

[23] R. Matthews, N.J. McDonald, H. Anumula, J. Woodward, P.J. Turner, M.A. Steindorf, K. Chang, and J.M. Pendleton, ―Novel hybrid bioelectrodes for ambulatory zero-prep EEG measurements using multi-channel wireless EEG system,‖ Lecture Notes in Artificial Intelligence, vol. 4565, pp.137–146, 2007

[24] A. Amditis, A. Polychronopoulos, ―System architecture of a driver's monitoring and hypovigilance warning system,‖ IEEE Intelligent Vehicle Symposium, vol.2, pp.527–532, 2002

[25] C. T. Lin, L.W. Ko, I.F. Chung, T.Y. Huang, Y.C. Chen, T.P. Jung and S.F. Liang ―Adaptive EEG-based Alertness Estimation System by Using ICA-based Fuzzy Neural Networks,‖ IEEE Transactions on Circuits and Systems I: Regular Papers, vol.53, pp.2469–2476, 2006

[26] W. Klimesch, ―EEG alpha and theta oscillations reflect cognitive and memory performance: a review

and analysis,‖ Brain Research Reviews, vol.29, pp.169–195, 1999

[27] M. Steriade, ―Central core modulation of spontaneous oscillations and sensory transmission in thalamocortical systems,‖ Current Opinion in Neurobiology, vol.3, pp.619–625,1993

[28] T. P. Jung, S. Makeig, M. Stensmo and T.J. Sejnowski, ―Estimating alertness from the EEG power spectrum,‖ IEEE Transactions on Biomedical Engineering, vol.44, pp.60–69, 1997

[29] R. Grace, V.E. Byrne, D.M. Bierman, J.M. Legrand, D. Gricourt, B.K. Davis, J.J Staszewski, and B.

Carnahan, ―A drowsy driver detection system for heavy vehicles,‖ Proceedings of the 1998 17th AIAA/IEEE/SAE Conference on Digital Avionics Systems, 2, I36/1–I36/8. 1998

[30] S. Chatterjee, and A.S. Hadi, ―Influential observations, high leverage points, and outliers in linear regression,‖ Statistical Science, vol.1, pp.379–416, 1986

[31] C. T. Lin,I.F. Chung, L.W. Ko, Y.C. Chen, S.F. Liang and J.R. Duann, ―EEG-based Assessment of Driver Cognitive Responses in a Dynamic Virtual-Reality Driving Environment,‖ IEEE Transactions on Biomedical Engineering, vol. 54, pp.1349–1352, 2007

[32] X. Sun and W.N. Leung, ―Photodynamic therapy with pyropheophorbide-a methyl ester in human lung carcinoma cancer cell: efficacy, localization and apoptosis,‖ Photochem Photobiol, vol. 75, no. 6, pp.

644-651, 2002.

[33] Goldberg DJ, ―Photodynamic therapy in skin rejuvenation,‖ Clinics in Dermatology, vol. 26, pp.608-613, November, 2008.

[34] M. R. Hamblin, D.A. O'Donnell, N. Murthy, C.H. Contagand and T. Hasan, ―Rapid Control of wound infections by targeted photodynamic therapy monitored by in vivo bioluminescence imaging,‖

Photochem Photobiol, vol. 75, no. 1, pp. 51-57, February, 2002.

[35] J.P. Tardivo, A.D. Giglio, C.S. Oliveira, D.S. Gabrielli, H.C. Junqueira, D.B. Tada, D.Severino, R.F.

Turchiello, and M.S. Baptista, ―Methylene blue in photodynamic therapy: From basic mechanisms to clinical applications,‖ Photodiagnosis and Photodynamic Therapy, vol. 2, pp. 175-191, 2002.

[36] D.J. Granville and D.W. Hunt, ―Porphyrin-mediated photosensitization0-taking the apoptosis fast lane,‖

Current Opinion in Drug Discovery and Development, vol. 3, pp. 232-243, 2000.

[37] B.Y. Kogan, , ―Nonlinear photodynamic therapy. Photochemical dose levelling within a tumor by saturating a photosensitizer's triplet states,‖ Photochemical and Photobiological Sciences, vol. 3, pp.

360-365, February, 2004.

[38] H. Gardeniers, R. Lüttge, E. Berenschot, M.J. Boer, S.Y. Yeshurun, M. Hefetz, R. Oever van 't and A.

Bergden, ―Silicon micromachined hollow microneedles for transdermal liquid transport,‖ Journal of Microelectromechanical System, vol. 12, pp. 855-862, 2003.

[39] C.L. Chang, C.W. Chang, C.M. Hsu, C.H. Luo and J.C. Chiou, ―Power-efficient wireless sensor for physiological signal acquisition,‖ Journal of Micro/Nanolithography, MEMS and MOEMS, vol. 8, 02110, 2009.

[40] M. Shimada,Y. Yamada, M. Itoh and T. Yatagai, ―Melanin and blood concentration in a human skin model studied by multiple regression analysis: assessment by Monte Carlo simulation,‖ Physics in Medicine and Biology, vol. 46, pp. 2397-2406, 2001.

[41] J.B. Dawson, D.J. Barker, D.J. Ellis, J.A. Cotterill, E. Grassam, G.W. Fisher and J.W. Feather, ―A theoretical and experimental study of light absorption and scattering by in vivo skin,‖ Physics in Medicine and Biology, vol. 25, pp. 695-709, 1980

[42] J. Kitzmiller, D. Beversdorf and D. Hansford,‖ Fabrication and testing of microelectrodes for small-field cortical surface recordings,‖ Biomedical Microdevices, vol.8, pp.81–85, 2006

[43] K. Hashiguchi, T. Morioka, F. Yoshida, Y. Miyagi, S. Nagata, A. Sakata and T. Sasaki, ―Correlation between scalp-recorded electroencephalographic and electrocorticographic activities during ictal period,‖ Seizure, vol. 16, pp.238–247, 2007

[44] E. Asano, C. Juhász, A. Shah A, O. Muzik, D.C. Chugani, J. Shah, S. Sood and H.T. Chugani, ―Origin and Propagation of Epileptic Spasms Delineated on Electrocorticography,‖ Epilepsia, vol. 46, pp.1086-1097, 2005

[45] B. A. Hollenberg, C.D. Richardsa, R. Richardsa, D.F. Bahra and D.M. Rectorb, ―A MEMS fabricated flexible electrode array for recording surface field potentials,‖ Journal of Neuroscience Methods, vol.

153, pp. 147-153, 2006.

[46] M.L. Katiuska, M.M. Buitrago, B. Hertler, M. Schubring, F. Haiss, W. Nisch, J.B. Schulz and A.R. Luft,

―Cortical stimulation mapping using epidurally implanted thin-film microelectrode arrays,‖ Journal of Neuroscience Methods, vol. 161, pp. 118-125, 2007.

[47] S. Myllymaa, K. Myllymaa, H. Korhonen, J. Töyräs, J.E. Jääskeläinen, K. Djupsund, H. Tanila and R.

Lappalainen, ―Fabrication and testing of polyimide-based microelectrode arrays for cortical mapping of evoked potentials,‖ Biosensors and Bioelectronics, vol. 24, pp. 3067-3072, 2009.

[48] B. Rubehn,C. Bosman, R. Oostenveld, P. Fries and T. Stieglitz, ―A MEMS-based flexible multichannel ECoG-electrode array,‖ Journal of Neural Engineering, vol. 6, no. 3, 2009.

[49] Y. Y. Chen, H.Y. Lai, S.H. Lin, C.W. Cho, W.H. Chao, C.H. Liao, S. Tsang, Y.F. Cheng and S.Y. Ling,

―Design and fabrication of a polyimide-based microelectrode array: application in neural recording and repeatable electrolytic lesion in rat brain,‖ Journal of Neuroscience Methods, vol. 182, pp. 6-16, 2009 [50] L. Grand, L. Wittner, S. Herwik, E. Göthelid, P. Ruther, S. Oscarsson, H. Neves, B. Dombovári, R.

Csercsa, G. Karmos and I. Ulbert, ―Short and long term biocompatibility of neural silicon probes,‖

Journal of Neuroscience Methods, vol. 189, pp. 216-229, 2010

[51] T. Stieglitz, W. Haberer, C. Lau and M. Goertz, ―Development of an inductively coupled epiretinal vision prosthesis,‖ in Proceedings of EMBS 2004, pp. 4178-4181.

[52] A. Hoogerwerf and K. Wise, ―A three-dimensional microelectrode array for chronic neural recording,‖

IEEE Transaction on Biomedical Engineering, vol. 41, pp. 1136–1146, 1994.

[53] J.J. Licari and L.A. Hughes, ―Handbook of polymer coatings for electronics: chemistry, technology, and applications‖, 2nd ed. Park Ridge, N.J., U.S.A.: Noyes Publications, 1990.

[54] D. C. Rodger, J.D. Weiland, M.S. Humayun and Y.C. Tai, ―Scalable flexible chip-level parylene package for high lead count retinal prostheses,‖ in Proceedings of Transducers, pp. 1973-1976, 2005

[55] D.C. Rodger, L. Wen, H. Ameri, A. Ray, J.D. Weiland, M.S. Humayun and Y.C. Tai, ―Flexible

Parylene-based Microelectrode Technology for Intraocular Retinal Prostheses,‖ In Proceedings of IEEE NEMS Conference, pp.743-746, 2006

[56] K. D. Wise, A.M. Sodagar, Y. Yao, M.N. Gulari, G.E. Perlin and K. Najafi, ―Microelectrodes,

Microelectronics, and Implantable Neural Microsystems,‖ Proceedings of IEEE, vol. 96, pp.1184-1202, 2008

[57] G. Paxinos and C. Watson, The Rat Brain in Stereotaxic Coordinates: ACADEMIC PRESS, 2008 [58] M. Chcurel, ―Windows on the brain,‖ Nature, vol. 412, pp.266-268, 2001

[59] Y. Yao, M. N. Gulari, J. A. Wiler, and K. D. Wise, ―A microassembled low-profile three-dimensional microelectrode array for neural prosthesis applications,‖ Journal of Microelectromechanical Systems, vol.16, pp. 977-988, 2007

[60] J.D. Green, , ―A simple microelectrode for recording from the central nervous system‖ Nature, 182, pp.

962, 1958

[61] K.D. Wise, J.B. Angell and A. Starr, ―An integrated-circuit approach to extracellular microelectrodes‖.

IEEE Transaction on Biomedical Engineering, BME-17, 238-247, 1970

[62] K. Najafi, K.D. Wise and T. Mochizuki, ―A high-yield IC-compatible multichannel recording array.‖

IEEE Transactions on Electron Devices, 32, 1206-1211. 1985

[63] K.E. Jones, P.K. Campbell and R.A. Normann, ―A glass silicon composite intracortical electrode array.‖

Annals of Biomedical Engineering, 20, 423-437. 1992

[64] A. Mercanzini, K. Cheung, D.L. Buhl, M. Boers, A. Maillard, P. Colin, J.C. Bensadoun, A. Bertsch, and P. Renaud, ―Demonstration of cortical recording using novel flexible polymer neural probes.‖ Sensors and Actuators A: Physical, 143, 90-96. 2008

[65] G.A. May, S.A. Shamma,; R.L. White, ―Tantalum on sapphire micro-electrode array‖. IEEE Transactions on Electron Devices, 26, pp.1932-1939. 1979

[66] K.D. Wise,‖ Silicon microsystems for neuroscience and neural prostheses.‖ IEEE Engineering in Medicine and Biology Magazine, 24, 22-29. 2005

[67] K.L. Drake, K.D. Wise, J. Farraye, D.J. Anderson and S.L. Bement, ―Performance of planar multisite microprobes in recording extracellular single-unit intracortical activity‖. IEEE Transaction on Biomedical Engineering, 35, 719-732, 1988

[68] K. Najafi and J.F. Hetke, ―Strength characterization of silicon microprobes in neurophysiological tissues‖. IEEE Transaction on Biomedical Engineering, 37, 474-481. 1990

[69] K. Najafi, Ji, J. and K.D. Wise, ―Scaling limitations of silicon multichannel recording probes.‖ IEEE Transaction on Biomedical Engineering, 37, 1-11. 1990

[70] K.J. Paralikar and R.S. Clement, ―Collagenase-aided intracortical microelectrode array insertion: Effects on insertion force and recording performance‖. IEEE Transaction on Biomedical Engineering, 55, 2258-2267. 2008

[71] C.S. Bjornsson, S.J. Oh, Y.A. Al-Kofahi, Y.J. Lim, K.L. Smith, J.N. Turner, S.De, B. Roysam, W. Shain and S.J. Kim, ―Effects of insertion conditions on tissue strain and vascular damage during

neuroprosthetic device insertion‖ Journal of Neural Engineering, 3, 196-207. 2006

[72] V.S. Polikov, P.A. Tresco and W.M. Reichert, ―Response of brain tissue to chronically implanted neural electrodes‖. Journal of Neuroscience Methods, 148, 1-18. 2005

[73] A.C. Hoogerwerf and K.D. Wise,‖ A 3-dimensional microelectrode array for chronic neural recording‖.

IEEE Transaction on Biomedical Engineering, 41, 1136-1146. 1994

[74] Q. Bai, K.D. Wise and D.J. Anderson, ―A high-yield microassembly structure for three-dimensional microelectrode arrays‖. IEEE Transaction on Biomedical Engineering, 47, 281-289. 2000

[75] Q. Bai and K.D. Wise, ―Single-unit neural recording with active microelectrode arrays‖. IEEE Transaction on Biomedical Engineering, 48, 911-920. 2001

[76] S. Herwik, S. Kisban, A. Aarts, K. Seidl, G. Girardeau, K. Benchenane, M.B. Zugaro, S.I. Wiener, O.

Paul, H.P. Neves and P. Ruther, ―Fabrication technology for silicon-based microprobe arrays used in acute and sub-chronic neural recording‖. Journal of Micromechanics and Microengineering, 19, No.

074008. 2009

[77] J.G. Du, M.L. Roukes and S.C. Masmanidis, ―Dual-side and three-dimensional microelectrode arrays fabricated from ultra-thin silicon substrates‖. Journal of Micromechanics and Microengineering, vol.19, No. 075008, 2009,

[78] J. C. Williams, R. L. Rennaker and D. R. Kipke, ―Long-term neural recording characteristics of wire microelectrode arrays implanted in cerebral cortex,‖ Brain Research Protocols, vol. 4, pp.303–313, 1999.

[79] P.J. Rousche, D.S. Pellinen, D.P. Pivin, J.C. Williams, R.J. Vetter and D.R. Kipke, ―Flexible polyimide-based intracortical electrode arrays with bioactive capability‖. IEEE Transaction on Biomedical Engineering, 48, 361-371. 2001

[80] H. Takahashi, J. Suzurikawa, M. Nakao, F. Mase and K. Kaga, ―Easy-to-prepare assembly array of tungsten microelectrodes‖. IEEE Transaction on Biomedical Engineering, 52, 952-956. 2005 [81] S. Takeuchi, T. Suzuki, K. Mabuchi and H. Fujita, ―3D flexible multichannel neural probe

array.‖Journal of Micromechanics and Microengineering, 14, 104-107. 2004

[82] C. W. Chang and J. C. Chiou, "Development of a Three Dimensional Neural Sensing Device by a Stacking Method," Sensors, vol. 10, pp. 4238-4252, May 2010.

[83] A.W. Adamson, ―Physical Chemistry of Surfaces,‖5th ed.; John Wiley: New York, USA, 1990.

[84] C.H. Cheng and H.H. Lin, ―Measurement of surface tension of epoxy resins used in dispensing process for manufacturing thin film transistor-liquid crystal displays‖. IEEE Transactions on Advanced Packaging, 31, 100-106. 2008

[85] W. Huang, Y. Yao, Y. Huang and Y.Z. Yu, ―Surface modification of epoxy resin by

polyether-polydimethylsiloxanes-polyether triblock copolymers‖. Polymer 2001, 42, 1763-1766.

[86] W. Franks, I. Schenker, P. Schmutz and A. Hierlemann, "Impedance characterization and modeling of electrodes for biomedical applications," IEEE Transactions on Biomedical Engineering, vol. 52, pp.

1295-1302, 2005.

[87] K. D. Wise, A. M. Sodagar, Y. Yao, M. N. Gulari, G. E. Perlin, and K. Najafi, ―Microelectrodes, microelectronics, and implantable microsystems,‖ Proceedings of IEEE, vol. 96, pp.1184–1202, 2008.

[88] F.G. Zeng, S. Rebscher,W. Harrison, X. Sun, and H. Feng, ―Cochlear implants: System design, integration, and evaluation,‖ IEEE Reviews in Biomedical Engineering, vol. 1, pp. 115–142, 2008.

[89] J. D. Weiland and M. S. Humayun, ―Visual prosthesis,‖ Proceedings of IEEE, vol. 96, no. 7, pp.

1076–1084, Jul. 2008.

[90] A. B. Schwartz, ―Cortical neural prostheses,‖Annual Review of Neuroscience, vol. 27, pp. 487–507, 2004.

[91] D. M. Taylor, I. H. Tillery, and A. B. Schwartz, ―Information conveyed through brain-control: Cursor versus robot,‖ IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 11, no. 2, pp.

195–199, Jun. 2003.

[92] A.M. Sodagar, K.D. Wise and K. Najafi, ―A Wireless Implantable Microsystem for Multichannel Neural Recording,‖ IEEE Transaction on Microwave Theory and Techniques, VOL. 57, NO. 10, 2009

[93] P. Vaillancourt, A. Djemouai, J. F. Harvey and M. Sawan, "EM radiation behavior upon biological tissues in a radio-frequency power transfer link for a cortical visual implant," International Conference of the IEEE Engineering in Medicine and Biology Society, vol. 19, pp. 2499-2502, 1997.

[94] Uei-Ming Jow and Ghovanloo, M., ―Modeling and Optimization of Printed Spiral Coils in Air, Saline, and Muscle Tissue Environments,‖ IEEE Transactions on Biomedical Engineering, vol.3, no.5, pp.339–347, 2009

[95] N. O. Sokal and A. D. Sokal, ―Class-E-A new class of high-efficiency tuned single-ended switching power amplifiers,‖ IEEE Journal of Solid-State Circuits, vol. SSC–10, no. 3, pp. 168–176, Jun. 1975 [96] Klaus Finkenzeller ―RFID handbook: Fundamentals and application in contactless smart cards and

identification‖ Ed. 2, Wiley, John & Sons, 2003

[97] R.R. Harrison, "Designing Efficient Inductive Power Links for Implantable Devices," IEEE Circuits and Systems Conference, 2007.

[98] A. Kurs, A. Karalis, R. Moffatt, J.D. Joannopoulos, P. Fisher and M. Soljačić, "Wireless power transfer via strongly coupled magnetic resonances," Science, vol. 317, pp. 83-86, Jul 2007.

[99] W.H. Ko, S.P. Liang, and C.D.F. Fung, "Design of radio-frequency powered coils for implant instruments", Medical & Biological Engineering & Computing, vol. 15, pp. 634-640, 1977.

[100] N. Mohan, T.M. Undeland and W.P. Robbins, ―Power Electronics: Converters, Applications, and Design,‖ 3rd edition, John Wiley and Sons, New York, 2003.

[101] Rincon-Mora, G.A.; Allen, P.E., ―A Low-Voltage, Low Quiescent Current, Low Drop-Out Regulator,‖

IEEE Transactions on Solid-State Circuits,, vol.33, pp. 36-44, 1998

[102] B. Razavi, ―Design of Analog CMOS Integrated Circuit,‖ McGraw-Hill, 2001

[103] K. Wong and D. Evans, "A 150mA low noise, high PSRR low-dropout linear regulator in 0.13 mu m technology for RF SoC applications," Proceedings of the IEEE European Solid-State Circuits Conference, pp. 532-535, 2006.

[104] L. G. Shen, Z. S. Yan, X. Zhang et al., "A Fast-Response Low-Dropout Regulator Based on

Power-Efficient Low-Voltage Buffer," 2008 51st IEEE Midwest Symposium on Circuits and Systems Conference Proceedings, pp. 546-549, 2008.

[105] C. Y. Hsieh, C. Y. Yang, and K. H. Chen, ―A Low-Dropout Regulator With Smooth Peak Current Control Topology for Overcurrent Protection,‖ IEEE Transactions on Power Electronics, vol. 25, no. 6, pp.

1386-1394, Jun, 2010.

[106] T.M. Seese, H. Harasaki, G.M. Saidel, and C.R. Davies, ―Characterization of tissue morphology, angiogenesis, and temperature in the adaptive response of muscle tissue to chronic heating,‖ Laboratory Investigation, vol. 78, no. 12, pp. 1553-1562, 1998.

[107] R.R. Harrison, ―A Versatile Integrated Circuit for the Acquisition of Biopotentials,‖ IEEE Custom Integrated Circuits Conference, pp115-122, 2007.

[108] S. Franco, ―Design With Operational Amplifiers and Analog Integrated Circuits,‖2nd edition, New York:

MacGraw-Hill, 1997

[109] C.W. Mundt, K. N.Montgomery, U. E. Udoh, V. N. Barker,G. C. Thonier, A. M. Tellier, R. D. Ricks, R.

B. Darling, Y. D. Cagle, N. A. Cabrol, S. J. Ruoss, J. L. Swain, J.W. Hines, and G. T. A. Kovacs, "A multiparameter wearable physiological monitoring system for space and terrestrial applications," IEEE Transactions on Information Technology in Biomedicine, vol. 9, no. 3, pp. 382- 391, Sep. 2005.

[110] E. Waterhouse, ―New horizons in ambulatory EEG monitoring,‖ IEEE Engineering in Medicine and Biology Magazine, vol. 22, no. 3, pp. 74–80, May/Jun. 2003.

[111] R. Martins and F.A. Vaz, ―A CMOS IC for portable EEG acquisition systems,‖ IEEE Transactions on Instrumentation and Measurement, vol. 47, no. 5, pp. 1191–1196, Oct. 1998.

[112] K. A. Ng and P. K. Chan, ―A CMOS analog front-end IC for portable EEG/ECG monitoring

applications,‖ IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 52, no. 11, Nov. 2005.

[113] R. F. Yazicioglu, P. Merken, and R. Puers, ―A 60uW 60 nV/√Hz readout front-end for portable

biopotential acquisition systems,‖ IEEE Journal of Solid-State Circuits, vol. 42, 5: 1100-1110, May 2007 [114] R. R. Harrison and C. Charles, "A low-power low-noise CMOS amplifier for neural recording

applications," IEEE Journal of Solid-State Circuits, vol. 38, pp. 958-965, Jun 2003.

[115] R.R. Harrison , P.T. Watkins , R.J. Kier , R.O. Lovejoy , D.J. Black , B. Greger and F. Solzbacher, "A low-power integrated circuit for a wireless 100-electrode neural recording system," IEEE Journal of Solid-State Circuits, vol. 42, pp. 123-133, Jan 2007.

[116] Aziz, J.N.Y. Abdelhalim, K. Shulyzki, R. Genov, R. Bardakjian, B.L. Derchansky, M. Serletis and D.

Carlen, ―256-Channel Neural Recording and Delta Compression Microsystem With 3D Electrodes‖, IEEE Journal of Solid-State Circuits, Vol. 44, No. 3, pp. 995-1005. 2009.

[117] M. Mollazadeh, K. Murari, G. Cauwenberghs, and N. Thakor, ―Micropower CMOS Integrated Low-Noise Amplification, Filtering, and Digitization of Multimodal Neuropotentials,‖ IEEE Transactions on Biomedical Circuits and Systems, Vol. 3, Issue 1, pp. 1-10, 2009.

[118] B. Gosselin, et al., "A Mixed-Signal Multichip Neural Recording Interface With Bandwidth Reduction,"

IEEE Transactions on Biomedical Circuits and Systems, vol. 3, pp. 129-141, Jun 2009.

[119] F. Shahrokhi, K. Abdelhalim and R. Genov, "The 128-Channel Fully Differential Digital Integrated Neural Recording and Stimulation Interface," IEEE Transactions on Biomedical Circuits and Systems, vol. 4, pp. 149-161, 2010.

Curriculum Vitae/個人簡歷

[1] Chih-Wei Chang and Jin-Chern Chiou, ―Development of a Three Dimensional Neural Sensing Device by a Stacking Method,‖ Sensors, Vol.10, no.5, pp.4238-4252, 2010.

[2] Chih-Wei Chang, Li-Wei Ko, Fu-Chang Lin, Tung-Ping Su, Tzyy-Ping Jung, Chin-Teng Lin, and Jin-Chern Chiou, ―Drowsiness Monitoring with EEG-Based MEMS Biosensing Technologies, ‖ Journal of Gerontopsychology and Geriatric Psychiatry, Volume 23 (2), pp.107-113, Jun 1, 2010.

[3] Chia-Lin Chang, Chih-Wei Chang, Hong-Yi Huang, Chen-Ming Hsu, Chia-Hsuan Huang, Jin-Chern Chiou and Ching-Hsing Luo, ―Power-Efficient Bio-potential Acquisition Device with DS-MDE Sensors for Long-Term Healthcare Monitoring Application,‖ Sensors, Vol.10, no.5, pp.4777-4793 , 2010.

[4] Chen-Chun Hung, Chih-Wei Chang and Jin-Chern Chiou, ―Transparent Microprobe Array Fabricated by MEMS Hot Embossing Technology for Photodynamic Therapy Application,‖ IEICE Electronic Express, Vol.7, no. 9, pp569-576, 2010.

[5] Chia-Lin Chang, Chih-Wei Chang, Chen-Ming Hsu, Ching-Hsing Luo, Jin-Chern Chiou,

―Power-efficient wireless sensor for physiologicalsignal acquisition,‖ Journal of Micro/Nanolithography, MEMS, and MOEMS, Vol.8, no.2 , pp. 021120, 2009.

Conference paper/研討會論文

[1] Chih-Wei Chang, Kuan-Chou Hou, Li-Jung Shieh, Sheng-Hsin Hung and Jin-Chern Chiou, ―Wireless Powering Electronics and Spiral Coils for Implant Microsystem toward Nanomedicine Diagnosis and Therapy in Free-Behavior Animal,‖ IEEE International Nano-Electronics Conference, Taoyuan, Taiwan, June 21-24, 2011.

[2] C.W. Chang, Y.J. Chen, S.H. Hung and J.C. Chiou, ―A Wireless and Batteryless Microsystem with Implantable Grid Electrode/3-Dimenesional Probe Array for ECoG and Extracellular Neural Recording on Rat,‖ The 16th International Conference on Solid-State Sensors, Actuators and Microsystems (Transducers 2011), June 5-9, 2011, Beijing, China.

[3] J.-R. DUANN, C.-W. CHANG, C.-L. CHANG, Y.-J. LIN, S.-C. LIANG, H.-Y. HUANG, C.-H. LUO, J.-C. CHIOU, ―Animal EEG/ECoG acquisition system without wire bound,‖ Neuroscience 2010 Conference, San Diego, USA, Sessions 818.5, Nov. 13-17, 2010

[4] Jin-Chern Chiou and Chih-Wei Chang, ―Development of Three Dimensional Neural Sensing Device by Stacking Method,‖ IEEE Sensors 2010 Conference, Waikoloa, Big Island, Hawaii, Nov. 1-4, 2010.

[5] Chih-Wei Chang and Jin-Chern Chiou, ―Stacked Multichip Three-Dimensional Probe array toward

[5] Chih-Wei Chang and Jin-Chern Chiou, ―Stacked Multichip Three-Dimensional Probe array toward