• 沒有找到結果。

1-1 Quantum wires 四角狀1.13(tetrapods),本部份主要討論的是掺鈷氧化鋅奈米線結構。

1-3 載子動力學量測技術

從一開始的Q-switch 技術 1.14,再來鎖模(Mode-locking)技術1.15~16 ,到現在 雷射實驗室最廣泛使用的固態掺態藍寶石技術1.17(Ti:Sapphire Laser),可將 雷射脈衝寬度從奈秒等級縮短到飛秒等級。

量測載子動態情形,除了使用脈衝寬度越短的雷射之外,還需依靠如 時 間 相 關 的 單 光 子 計 數 系 統(TCSPC) , Steak Camera 、 激 發 探 測 技 術 (Pump-Probe Spectroscopy) 、 螢 光 轉 移 技 術 (Fluorescence Up-conversion Spectroscopy)等光學技術來配合,才能徹底了解動力學機制。

1-4 氧化鋅之回顧

2002 年 S. W. Jung1.18等人利用Time Correlated Single Photon Counting (TCSPC) 量測成長在 Al2O3 的氧化鋅薄膜 (film) ,主要是量測在室溫下 ZnO 自由激子 (free exciton) 的衰減情形,圖 1.7。實驗結果得知,激子為 雙指數衰減(double-exponential)行為,分別為 1ns 和 180ps。短的時間可和 氧化鋅塊材的自由激子做比對,大約240-320 ps1.19而長的時間並還沒被報 mutiexponential 的行為,分別為 1、12 與 400ps。其中 12ps 為 ZnO band gap 的lifetime;400ps 與 TCSPC 量測到結果類似,而 1ps,作者歸咎於載子被 抓取至defect 所需要的時間。作者利用一個模型代表上述結果,圖 1.9。

圖 1.1 利用 TCSPC 量測 ZnO film TRPL 圖

圖 1.2 利用 Streak-Camera 量測 ZnO single crystal TRPL 圖

圖1.3 載子在氧化鋅內部鬆弛情形

1-5 研究動機

掺鈷氧化鋅奈米線因其放射光譜有可見光的分佈, 所以可應用在一些 特別的性質,如作為稀磁半導體(DMS)。而氧化鋅時間解析研究,大部分 的文獻都針對 near-band-edge emission 來量測,顯少對於氧化鋅的 defect 與掺雜鈷後所產生的 d-d transitions 進行研究。所以我利用 ns 等級的時間 解析系統TCSPC,量測掺鈷氧化鋅奈米線的氧化鋅 defect 和可見光部分,

並改變溫度條件,來作一系列比較。

1-5 Reference

1.1 R. Tena-Zaera, J. Elias, and C. Lévy-Clément,“ZnO nanowire arrays:

Optical scattering and sensitization to solar light" ,Appl. Phys. Lett.

93, 233119 (2008)

1.2 Y. R. Ryu, J. A. Lubguban, and T. S. Lee, “Excitonic ultraviolet lasing in ZnO-based light emitting devices",Appl. Phys. Lett. 90, 131115 (2007)

1.3 J X Wang, X W Sun, Y Yang , H Huang, Y C Lee, O K Tan ,and L Vayssieres“ Hydrothermally grown oriented ZnO nanorod arrays for gas sensing applications",Nanotechnology 17 4995 (2006)

1.4 M.-W. Ahn, K.-S. Park, J.-H. Heo, J.-G. Park, D.-W. Kim, K. J. Choi, J.-H.Lee, and S.-H. Hong,“Gas sensing properties of

defect-controlled ZnO-nanowire gas sensor",Appl. Phys. Lett. 93, 263103 (2008)

1.5 D. M. Bagnall, Y. F. Chen, Z. Zhu, T. Yao ,S. Koyama, M. Y. Shen, and T. Goto,“Optically pumped lasing of ZnO at room temperature", Appl. Phys. Lett. 70 2230 (1997)

1.6 Ü. Özgür, Ya. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Do an, V. Avrutin, S.-J. Cho, and H. Morkoç ,“A comprehensive review of ZnO materials and devices",J. Appl. Phys. 98, 041301 (2005)

1.7 S. W. Kim, M. Ueda, T. Kotani, S. Fujita and S. Fujita,“Self-Tailored

One-Dimensional ZnO Nanodot Arrays Formed by Metalorganic Chemical Vapor Deposition", Jpn. J. Appl. Phys. 42, L568 (2003)

1.8 J. M. Baik ,and J.-L. Lee,“ Fabrication of Vertically Well-Aligned (Zn,Mn)O Nanorods with Room Temperature Ferromagnetism", Adv.

Mater. 17, 2745(2005)

1.9 Jr H. He, Chang S. Lao, Lih J. Chen, Dragomir Davidovic, and Zhong L. Wang,“Large-Scale Ni-Doped ZnO Nanowire Arrays and

Electrical and Optical Properties“ , J. Am. Chem. Soc. 127, 16376(2005)

1.10 C. Y. Lin, W. H. Wang, C.-S. Lee, K. W. Sun, and Y. W. Suen,

“ Magnetophotoluminescence properties of Co-doped ZnO nanorods",Appl. Phys. Lett. 94, 151909 (2009)

1.11 S. Yi L. ,P. Lin, C. Y. Lee ,and T. Y. Tseng ,“Field emission and photofluorescent characteristics of zinc oxide nanowires synthesized by a metal catalyzed vapor-liquid-solid process", J. Appl. Phys. 95, (2004)

1.12 B. Liu ,and H. C. Zeng,“Hydrothermal Synthesis of ZnO Nanorods in the Diameter Regime of 50 nm", J. Am. Chem. Soc. 125, 4430 (2003) 1.13 Y Dai, Y Zhang ,and Z L Wang,“The octa-twin tetraleg ZnO

nanostructures",Solid State Commun. 126,629(2003) 1.14 R.W. Hellwarth et al., J. Appl. Phys. 33,828 (1962)

1.15 De Maria,“Ultrasonic-Diffraction Shutters for Optical Maser Oscillators",J. Appl. Phys. 34,2984 (1963)

1.16 A. J. DeMaria, R. Gagosz, and G. Barnard, “Ultrasonic-Refraction Shutter for Optical Maser Oscillators,"J. Appl. Phys. 34

453-456(1963)

1.17 Y. B.-Aderet, E. Granot, S. Sternklar, and N. S. Kopeika ,“Spectral analysis of a one-dimensional scattering medium with the differential multiply subtractive Kramers–Kronig method",J. Opt. Soc. B, 3 125 (1986)

1.18 S. W. Jung, W. I. Park, H. D. Cheong, G.-C. Yi, and H. M. Jang,

“Time-resolved and time-integrated photoluminescence in ZnO

epilayers grown on Al2O3(0001) by metalorganic vapor phase epitaxy

",Appl. Phys. Lett. 80, 1924 (2002)

1.19 D. C. Reynolds, D. C. Look, B. Jogai, J. E. Hoelscher, R. E. Sherriff, M. T. Harris ,and M. J. Callahan,“ Time-resolved photoluminescence lifetime measurements of the 5 and 6 free excitons in ZnO

“J. Appl. Phys. 88, 2152 (2000)

1.20 W. M. Kwok, A. B. Djuri i and Y. H. Leung, W. K. Chan and D. L.

Phillips,“Time-resolved photoluminescence from ZnO nanostructures

",Appl. Phys. Lett. 87, 223111 (2005)

1.21 C. Bauer, G. Boschloo, E. Mukhtar, and A. Hagfeldt,“Ultrafast

relaxation dynamics of charge carriers relaxation in ZnO nanocrystalline thin films",Chem. Phys. Lett. 387,176(2004)

1.22 S Lettieri, L Santamaria Amato, P Maddalena, E Comini, C Baratto and S Todros,“Recombination dynamics of deep defect states in zinc oxide nanowires ", Nanotechnology 20 175706 (2009)

相關文件