• 沒有找到結果。

(a) No competition (b) Partial competition (c) Highly competion

0

78

(圖九)抗體間對表位競爭的示意圖

以 106 CFU/mL 經超音波破菌處理後的沙門氏菌進行 coating,並以我們生產的沙門氏菌 1 μg/mL 做為一級抗體進行偵測。

圖中(A)和(B)代表不同的兩種沙門氏菌單株抗體單獨偵測時所得之值,而(A+B)則為兩抗體混合進行偵測的值,(N)為以專 一性辨識大腸桿菌的單株抗體做為負對照組,(Non-competitive)表示兩抗體單獨偵測訊號的合(A)+(B)。當兩抗體並無表位 競爭性時(a), (A+B) ≒ (A) + (B);當兩抗體間有表位的競爭,或是兩者辨識的表位非常接近時(b、c),則為 (A+B) < (A) + (B)。

79

80

81

82

83

84

(圖十)沙門氏菌單株抗體間 competitive ELISA 實驗結果

依材料與方法(32 頁)中所述步驟進行 competitive EILSA。 (a)~(u)圖分別為 I-1~IV-3 七種抗體兩兩之間的 competitive ELISA 結果。圖中「MA-Eco」為以專一辨識大腸桿菌之單株抗體做為對照組;「Non-competitive」為兩抗體若無表位競 爭性的理論值。標示「**」者代表兩抗體間競爭訊號與無競爭之理論值間有顯著差異(p<0.05),且相差 5%以上;標示

「*」者代表兩抗體間競爭訊號與無競爭之理論值間雖有顯著差異,然而訊號相差在 5%以內。每個數據為三個重複樣品 的平均值為標準差。

0.0 0.4 0.8 1.2 1.6 2.0

OD

405-490

**

(u)

85

86

87

(圖十一)沙門氏菌單株抗體對其抗原的作用力分析結果

以沙門氏菌(108 CFU/mL,經超音波破菌處理)做為抗原 coating 於 ELISA plate 中,以本研究中生產之沙門氏菌單株抗體稀釋至不同濃度(0.01 μg/mL 至 10 μg/mL)做為一級抗體,10000 倍稀釋之 GAM-AP 為二級抗體進行偵測。(a)

~(d)分別為第 I 群~第 IV 群抗體的 ELISA 實驗結果。每個數據為四個重覆樣 品的平均值及標準差。

88

(圖十二)I-1 抗體對破菌抗原的 direct ELISA 分析結果

以不同濃度之沙門氏菌(103~106 CFU/mL,經超音波破菌處理)做為抗原 coating 於 ELISA plate 中,再以沙門氏菌單株抗體(1 μg/mL)做為一級抗體,

10000 倍稀釋之 GAM-AP 為二級抗體,進行 direct ELISA 偵測。每個數據為四 個重複樣品的平均值及標準差。

0.0 0.2 0.4 0.6 0.8 1.0

1.E+03 1.E+04 1.E+05 1.E+06

OD

405-490

破菌濃度 (CFU/mL)

I-1 MA-Eco

103 104 105 106

89 II-1 (boiled) MA-Eco (lived) MA-Eco (boiled)

103 104 105 106 107 108

90

(圖十三)II-1 抗體對全菌抗原的 direct ELISA 分析結果

以不同濃度之沙門氏菌(103~108 CFU/mL,未經超音波處理之全菌)做為抗 原 coating 於 ELISA plate 中,再以沙門氏菌單株抗體 II-1(1 μg/mL)做為一 級抗體,10000 倍稀釋之 GAM-AP 為二級抗體進行 direct ELISA 偵測。(a)圖 中,標示「lived」者表示 coating 之沙門氏菌未經煮沸處理,標示「boiled」者 表示 coating 之沙門氏菌經煮沸處理;(b)圖為截取(a)圖 II-1 抗體辨識煮沸處理 過之沙門氏菌全菌(103~106 CFU/mL)之 direct ELISA 訊號。每個數據為四 個重複樣品的平均值及標準差。

91

III-1 (lived) III-1 (boiled) MA-Eco (lived) MA-Eco (boiled)

103 104 105 106 107 108

92

(圖十四)III-1 抗體對全菌抗原的 direct ELISA 分析結果

以不同濃度之沙門氏菌(103~108 CFU/mL,未經超音波處理之全菌)做為抗 原 coating 於 ELISA plate 中,再以沙門氏菌單株抗體 III-1(1 μg/mL)做為一 級抗體,10000 倍稀釋之 GAM-AP 為二級抗體進行 direct ELISA 偵測。(a)圖 中,標示「lived」者表示 coating 之沙門氏菌未經煮沸處理,標示「boiled」者 表示 coating 之沙門氏菌經煮沸處理;(b)圖為截取(a)圖 III-1 抗體辨識煮沸處理 過之沙門氏菌全菌(103~106 CFU/mL)之 direct ELISA 訊號。每個數據為四 個重複樣品的平均值及標準差。

93

III-2 (lived) III-2 (boiled) MA-Eco (lived) MA-Eco (boiled)

103 104 105 106 107 108

94

(圖十五)III-2 抗體對全菌抗原的 direct ELISA 分析結果

以不同濃度之沙門氏菌(103~108 CFU/mL,未經超音波處理之全菌)做為抗 原 coating 於 ELISA plate 中,再以沙門氏菌單株抗體 III-2(1 μg/mL)做為一 級抗體,10000 倍稀釋之 GAM-AP 為二級抗體進行 direct ELISA 偵測。(a)圖 中,標示「lived」者表示 coating 之沙門氏菌未經煮沸處理,標示「boiled」者 表示 coating 之沙門氏菌經煮沸處理;(b)圖為截取(a)圖 III-2 抗體辨識煮沸處理 過之沙門氏菌全菌(103~106 CFU/mL)之 direct ELISA 訊號。每個數據為四 個重複樣品的平均值及標準差。

95 MA-Eco (live) MA-Eco (boil)

103 104 105 106 107 108

96

(圖十六)IV-1 抗體對全菌抗原的 direct ELISA 分析結果

以不同濃度之沙門氏菌(103~108 CFU/mL,未經超音波處理之全菌)做為抗 原 coating 於 ELISA plate 中,再以沙門氏菌單株抗體 IV-1(1 μg/mL)做為一 級抗體,10000 倍稀釋之 GAM-AP 為二級抗體進行 direct ELISA 偵測。(a)圖 中,標示「lived」者表示 coating 之沙門氏菌未經煮沸處理,標示「boiled」者 表示 coating 之沙門氏菌經煮沸處理;(b)圖為截取(a)圖 IV-1 抗體辨識煮沸處理 過之沙門氏菌全菌(103~106 CFU/mL)之 direct ELISA 訊號。每個數據為四 個重複樣品的平均值及標準差。

97 MA-Eco (live) MA-Eco (boil)

103 104 105 106 107 108

98

(圖十七)IV-2 抗體對全菌抗原的 direct ELISA 分析結果

以不同濃度之沙門氏菌(103~108 CFU/mL,未經超音波處理之全菌)做為抗 原 coating 於 ELISA plate 中,再以沙門氏菌單株抗體 IV-2(1 μg/mL)做為一 級抗體,10000 倍稀釋之 GAM-AP 為二級抗體進行 direct ELISA 偵測。(a)圖 中,標示「lived」者表示 coating 之沙門氏菌未經煮沸處理,標示「boiled」者 表示 coating 之沙門氏菌經煮沸處理;(b)圖為截取(a)圖 IV-2 抗體辨識煮沸處理 過之沙門氏菌全菌(103~106 CFU/mL)之 direct ELISA 訊號。每個數據為四 個重複樣品的平均值及標準差。

99 IV-3 (boiled) MA-Eco (lived) MA-Eco (boiled)

103 104 105 106 107 108

100

(圖十八)IV-3 抗體對全菌抗原的 direct ELISA 分析結果

以不同濃度之沙門氏菌(103~108 CFU/mL,未經超音波處理之全菌)做為抗 原 coating 於 ELISA plate 中,再以沙門氏菌單株抗體 IV-3(1 μg/mL)做為一 級抗體,10000 倍稀釋之 GAM-AP 為二級抗體進行 direct ELISA 偵測。(a)圖 中,標示「lived」者表示 coating 之沙門氏菌未經煮沸處理,標示「boiled」者 表示 coating 之沙門氏菌經煮沸處理;(b)圖為截取(a)圖 IV-3 抗體辨識煮沸處理 過之沙門氏菌全菌(103~106 CFU/mL)之 direct ELISA 訊號。每個數據為四 個重複樣品的平均值及標準差。

101

(圖十九)Microfuge tube immunoassay 操作過程示意圖

102

(圖二十)IV-2 單株抗體對全菌抗原的 Microfuge tube immunoassay 結果 取經煮沸處理的沙門氏菌全菌樣品(103~106 CFU/mL)1.5 mL 於微量離心管 中,離心後去除上清液,加入10 μg/mL 沙門氏菌單株抗體 IV-2 昨為一級抗體、

5000 倍稀釋的 GAM-AP 做為二級抗體及 5000 倍稀釋的 RAG-AP 做為三級抗 體反應 2 小時,離心並去除上清液後加入受質呈色,最後取 50 μL 至 96 孔盤 於 ELISA reader 下讀取吸光值。圖中「MA-Eco」為加入專一辨識大腸桿菌之 單株抗體做為對照組。「*」標示指兩數據間有顯著差異(p<0.05)每個數據為

103

(圖二十一)本研究所使用的菌種分類表

104

(圖二十二)腸菌科中四種細菌(Klebsiella pneumoniae、Shigella sonnei、Escherichia coli 及 Salmonella enterica)之親 源性關係比較資料。本圖修繪自(Paradis et al., 2005)

105

(圖二十三)三種沙門氏菌菌株的 O 抗原種類及單體結構

本研究中進行菌株專一性分析時所選用的兩株 Typhimurium 血清型(a、b)及一株 Enteritidis 血清型(c) 的 O 抗原種類及單 體結構圖。「Abe」為 3, 6-dideoxy-D-galactose;「Tyv」3, 6-dideoxy-D-mannose。本圖修繪自(Wang et al., 2002)

106

參考文獻

Amaro M, Oaew S, Surareungchai W. 2012. Scano-magneto

immunoassay based on carbon nanotubes/gold nanoparticles nanocomposite for Salmonella enterica serovar Typhimurium detection. Biosensors & bioelectronics

Anzai Y, Kim H, Park JY, Wakabayashi H, Oyaizu H. 2000. Phylogenetic affiliation of the pseudomonads based on 16S rRNA sequence.

International journal of systematic and evolutionary microbiology 50 Pt 4: 1563-89

Blais BW, Martinez-Perez A. 2008. Detection of group D salmonellae including Salmonella Enteritidis in eggs by polymyxin-based

enzyme-linked immunosorbent assay. Journal of food protection 71:

392-6

Bravo D, Hoare A, Silipo A, Valenzuela C, Salinas C, et al. 2011.

Different sugar residues of the lipopolysaccharide outer core are required for early interactions of Salmonella enterica serovars Typhi and Typhimurium with epithelial cells. Microbial

pathogenesis 50: 70-80

Brenner FW, Villar RG, Angulo FJ, Tauxe R, Swaminathan B. 2000.

Salmonella nomenclature. Journal of clinical microbiology 38:

2465-7

Busse M. 1995. Media for Salmonella. International journal of food microbiology 26: 117-31

Buzby JC, Roberts T. 1997. Economic costs and trade impacts of microbial foodborne illness. World health statistics quarterly.

Rapport trimestriel de statistiques sanitaires mondiales 50: 57-66 Chaubal LH, Holt PS. 1999. Characterization of swimming motility and identification of flagellar proteins in Salmonella pullorum isolates.

American journal of veterinary research 60: 1322-7

Chen HY, Weng SF, Lin JW. 2000. Identification and analysis of the sap genes from Vibrio fischeri belonging to the ATP-binding cassette gene family required for peptide transport and resistance to antimicrobial peptides. Biochemical and biophysical research communications 269: 743-8

107

Chiu TH, Pang JC, Hwang WZ, Tsen HY. 2005. Development of PCR primers for the detection of Salmonella enterica serovar

Choleraesuis based on the fliC gene. Journal of food protection 68:

1575-80

Chunglok W, Wuragil DK, Oaew S, Somasundrum M, Surareungchai W.

2011. Immunoassay based on carbon nanotubes-enhanced ELISA for Salmonella enterica serovar Typhimurium. Biosensors &

bioelectronics 26: 3584-9

Coburn B, Grassl GA, Finlay BB. 2007. Salmonella, the host and disease:

a brief review. Immunology and cell biology 85: 112-8

Cummings PL, Sorvillo F, Kuo T. 2010. Salmonellosis-related mortality in the United States, 1990-2006. Foodborne pathogens and disease 7: 1393-9

Eriksson E, Aspan A. 2007. Comparison of culture, ELISA and PCR techniques for salmonella detection in faecal samples for cattle, pig and poultry. BMC veterinary research 3: 21

Farzan A, Friendship RM, Dewey CE. 2007. Evaluation of

enzyme-linked immunosorbent assay (ELISA) tests and culture for determining Salmonella status of a pig herd. Epidemiology and infection 135: 238-44

Fehr T, Bachmann MF, Bucher E, Kalinke U, Di Padova FE, et al. 1997.

Role of repetitive antigen patterns for induction of antibodies against antibodies. The Journal of experimental medicine 185:

1785-92

Forbes SJ, Eschmann M, Mantis NJ. 2008. Inhibition of Salmonella enterica serovar typhimurium motility and entry into epithelial cells by a protective antilipopolysaccharide monoclonal

immunoglobulin A antibody. Infection and immunity 76: 4137-44 Fu J, Park B, Siragusa G, Jones L, Tripp R, et al. 2008. An Au/Si

hetero-nanorod-based biosensor for Salmonella detection.

Nanotechnology 19: 155502

Germanier R, Furer E. 1971. Immunity in experimental salmonellosis. II.

Basis for the avirulence and protective capacity of gal E mutants of Salmonella typhimurium. Infection and immunity 4: 663-73

Ghosh AS, Melquist AL, Young KD. 2006. Loss of O-antigen increases

108

cell shape abnormalities in penicillin-binding protein mutants of Escherichia coli. FEMS microbiology letters 263: 252-7

Gracias KS, McKillip JL. 2004. A review of conventional detection and enumeration methods for pathogenic bacteria in food. Canadian journal of microbiology 50: 883-90

Harvey RW, Price TH. 1980. Salmonella isolation with Rappaport's medium after pre-enrichment in buffered peptone water using a series of inoculum ratios. The Journal of hygiene 85: 125-8

Hauser E, Junker E, Helmuth R, Malorny B. 2011. Different mutations in the oafA gene lead to loss of O5-antigen expression in Salmonella enterica serovar Typhimurium. Journal of applied microbiology 110: 248-53

Holt PS, Chaubal LH. 1997. Detection of motility and putative synthesis of flagellar proteins in Salmonella pullorum cultures. Journal of clinical microbiology 35: 1016-20

Hsueh PR, Teng LJ, Tseng SP, Chang CF, Wan JH, et al. 2004.

Ciprofloxacin-resistant Salmonella enterica Typhimurium and Choleraesuis from pigs to humans, Taiwan. Emerging infectious diseases 10: 60-8

Iino T. 1969. Genetics and chemistry of bacterial flagella. Bacteriological reviews 33: 454-75

Johanns TM, Law CY, Kalekar LA, O'Donnell H, Ertelt JM, et al. 2011.

Early eradication of persistent Salmonella infection primes antibody-mediated protective immunity to recurrent infection.

Microbes and infection / Institut Pasteur 13: 322-30

Koyuncu S, Haggblom P. 2009. A comparative study of cultural methods for the detection of Salmonella in feed and feed ingredients. BMC veterinary research 5: 6

Krascsenicsova K, Piknova L, Kaclikova E, Kuchta T. 2008. Detection of Salmonella enterica in food using two-step enrichment and

real-time polymerase chain reaction. Letters in applied microbiology 46: 483-7

Kumar R, Surendran PK, Thampuran N. 2010. Evaluation of culture media for selective enrichment and isolation of Salmonella in seafood. Journal of AOAC International 93: 1468-71

109

Kumar S, Balakrishna K, Batra HV. 2008. Enrichment-ELISA for detection of Salmonella typhi from food and water samples.

Biomedical and environmental sciences : BES 21: 137-43 Langone JJ. 1980. 125I-labeled protein A as a general tracer in

immunoassay: suitability of goat and sheep antibodies. Journal of immunological methods 34: 93-106

Leon-Velarde CG, Zosherafatein L, Odumeru JA. 2009. Application of an automated immunomagnetic separation-enzyme immunoassay for the detection of Salmonella enterica subspecies enterica from poultry environmental swabs. Journal of microbiological methods 79: 13-7

Liebana S, Lermo A, Campoy S, Cortes MP, Alegret S, Pividori MI. 2009.

Rapid detection of Salmonella in milk by electrochemical

magneto-immunosensing. Biosensors & bioelectronics 25: 510-3 Lu GZ, Tsang RS, Chau PY, Choi D, Law D, Ng MH. 1991.

Characterization and application of a murine monoclonal antibody that reacts specifically with the serogroup D1 Salmonella. FEMS microbiology letters 64: 135-40

Lu PL, Hwang IJ, Tung YL, Hwang SJ, Lin CL, Siu LK. 2004. Molecular and epidemiologic analysis of a county-wide outbreak caused by Salmonella enterica subsp. enterica serovar Enteritidis traced to a bakery. BMC infectious diseases 4: 48

Luk JM, Tsang RS. 1997. Epitope specificity and application of

Salmonella typhimurium O-antigen-specific monoclonal antibodies.

Applied and environmental microbiology 63: 1192-4

MacLennan CA, Gondwe EN, Msefula CL, Kingsley RA, Thomson NR, et al. 2008. The neglected role of antibody in protection against bacteremia caused by nontyphoidal strains of Salmonella in African children. The Journal of clinical investigation 118:

1553-62

Magliulo M, Simoni P, Guardigli M, Michelini E, Luciani M, et al. 2007.

A rapid multiplexed chemiluminescent immunoassay for the detection of Escherichia coli O157:H7, Yersinia enterocolitica, Salmonella typhimurium, and Listeria monocytogenes pathogen bacteria. Journal of agricultural and food chemistry 55: 4933-9 Malorny B, Hoorfar J. 2005. Toward standardization of diagnostic PCR

110

testing of fecal samples: lessons from the detection of salmonellae in pigs. Journal of clinical microbiology 43: 3033-7

Marshall DG, Sheehan BJ, Dorman CJ. 1999. A role for the

leucine-responsive regulatory protein and integration host factor in the regulation of the Salmonella plasmid virulence (spv ) locus in Salmonella typhimurium. Molecular microbiology 34: 134-45 Mazumdar SD, Hartmann M, Kampfer P, Keusgen M. 2007. Rapid

method for detection of Salmonella in milk by surface plasmon resonance (SPR). Biosensors & bioelectronics 22: 2040-6

Murphy NM, McLauchlin J, Ohai C, Grant KA. 2007. Construction and evaluation of a microbiological positive process internal control for PCR-based examination of food samples for Listeria

monocytogenes and Salmonella enterica. International journal of food microbiology 120: 110-9

Nalbantsoy A, Karaboz I, Gurhan ID. 2010. Production of monoclonal antibody against Salmonella H: g,m flagellar antigen and potential diagnostic application. Hybridoma (Larchmt) 29: 419-23

Nielsen B, Alban L, Stege H, Sorensen LL, Mogelmose V, et al. 2001. A new Salmonella surveillance and control programme in Danish pig herds and slaughterhouses. Berliner und Munchener tierarztliche Wochenschrift 114: 323-6

Nnalue NA. 1999. All accessible epitopes in the Salmonella

lipopolysaccharide core are associated with branch residues.

Infection and immunity 67: 998-1003

Nye KJ, Fallon D, Frodsham D, Gee B, Graham C, et al. 2002. An evaluation of the performance of XLD, DCA, MLCB, and ABC agars as direct plating media for the isolation of Salmonella enterica from faeces. Journal of clinical pathology 55: 286-8 Pal A, Marshall DL. 2009. Comparison of culture media for enrichment

and isolation of Salmonella spp. from frozen Channel catfish and Vietnamese basa fillets. Food microbiology 26: 317-9

Paradis S, Boissinot M, Paquette N, Belanger SD, Martel EA, et al. 2005.

Phylogeny of the Enterobacteriaceae based on genes encoding elongation factor Tu and F-ATPase beta-subunit. International

Phylogeny of the Enterobacteriaceae based on genes encoding elongation factor Tu and F-ATPase beta-subunit. International

相關文件