• 沒有找到結果。

Chapter 4 Conclusion and Future Work

A.4 Discussion and Conclusions

0 1 2 3 4 5 6 7 8 9 10 11

Fig. A-19 (a)The modified S21 simulation

- 77 -

3 4 5 6 7 8 9 10 11

Frequency (GHz) 1

2 3 4 5 6 7

Measurement Simulation Modify

Fig. A-19 (b) The modified NF simulation

Fig. A-19 shows the modified of larger block post-simulation,which could approach the measurement a little. Besides, the S21 measurement result shows the first peak that occur at resonance shunt-peaking lower than expected, that might be due to transformer mutual coupling inductance. According to table 4-3, the phenomenon is like the condition of maximum bandwidth.

Table 4-3 Shunt-peaking summary [12].

Condition m=R2C/L Normalized Bandwidth

Normalized peak frequency response

Maximum bandwidth ~1.41 ~1.85 1.19

Max. flat frequency response ~2.41 ~1.72 1

No shunt peaking ∞ 1 1

- 78 -

Reference

[1] IEEE 802.15 WPAN High Rate Alternative PHY Task Group 3a (TG3a).

http//www.ieee802.org/15/pub/TG3a.html.

[2] DS-UWB Physical Layer Submission to 802.15 Task Group 3a,[Online]. Available:

ftp://ftp.802wirelessworld.com/15/04/15-04-0137-03-003a-merger2-proposal-ds-uwb-update.doc, available at

[3] Multi-Band OFDM Physical Layer Proposal for IEEE 802.15 Task Group 3a, [Online].Available:ftp://ftp.802wirelessworld.com/15/Archive/2003/Jul03/03268r3P8 02-15 TG3a-Multi-Band-CFP-Document. doc, available at

[4] Nam-Jin Oh and Sang-Gug Lee, “11-GHz CMOS differential VCO with back-gate transformer feedback,” IEEE Microw. Wireless Compon. Lett., vol. 15, no. 11, pp.

733–735, Nov. 2005.

[5] K. Kwok and H. C. Luong, “Ultra-low-voltage high-performance CMOS VCOs using transformer feedback,” IEEE J. Solid-State Circuits, vol. 40, no. 3, pp. 652–660, Mar.

2005.

[6] Le Wang, Parag Upadhyaya, Pingping Sun, Yang Zhang Deukhyoun Heo, Yi-Jan Emery Chen DongHo Jeong, “A 5.3GHz low-phase-noise LC VCO with harmonic filtering resistor,” in Proc. ISCAS, vol. , pp. 3237-3240, 2006.

[7] A. Rofougaran et al., “A 900 MHz CMOS LC-oscillator with quadrature outputs,”

IEEE Int. Solid-State Circuits Conf., pp. 392-393, Feb. 1996

[8] S. D’Souza, L.-M, Hwang, M. Matloubian, S. Martin, P. Sherman, A. Joshi, W. Hong, S. Bhattaharya and P. Kempf, “1/f noise characterization of deep sub-micron dual thickness nitride gate oxide n- and p-MOSFETs,” Tech. Dig. of Int. Electron Device Meeting, pp. 839-842, Dec. 1999.

- 79 -

[9] John R .Long, “Monolithic transformers for silicon RFIC design”, IEEE J. Solid-State Circuits, vol. 35, no. 9, pp. 1368-1382, Sept. 2000.

[10] Yo-Sheng Ling, “Implementation of Perfect-Magnetic-Coupling ultra low-loss transformer in RFCMOS technology”, IEEE Electron Device Lett., vol. 26, no.11, pp.

832-835, Nov.2005.

[11] J. J. Rael and A. A. Abidi, “Physical processes of phase noise in differential LC oscillators,” IEEE Custom Integrated Circuits Conf., pp. 569-572, May 2000.

[12] T. H. Lee, The Design of CMOS Radio-Frequency Integrated Circuits. New York:

Cambridge Univ. Press, 1998

[13] F. Gatta et al., “A 2-dB noise figure 900-MHz differential CMOS LNA, ” IEEE J.

Solid-State Circuits, vol. 36, no. 10, pp 1444-1452, Oct. 2001.

[14] Hsieh-Hung Hsieh, Liang-Hung Lu, “A high performance CMOS Voltage-Controlled Oscillator for Ultra-low-Voltage Operations,” IEEE Trans. Microw. Theory Tech., vol.

55, no. 3, pp. 467-473, Mar. 2007.

[15] D. Ham and A. Hajimiri, “Concepts and methods in optimization of integrated LC VCOs,” IEEE J. Solid-State Circuits, vol. 36, no. 10, pp 896-909, June. 2001.

[16] D. Baek, T. Song, E. Yoon, and S. Hong, “8-GHz CMOS quadrature VCO using transformer-based tank,” IEEE Microw. Wireless Compon. Lett., vol. 13, no.10, pp.

446–448, Oct. 2003.

[17] J. B. Kuo and J.-H. Lou, Low-Volatge CMOS VLSI circuits. New York: Wiley,1999.

[18] “International Technology Roadmap for Semiconductors,” Semiconduct. Ind. Assoc., (2004ed.). [Online]. Available: http://www.public.itrs.net/

[19] Ali Hajimiri, and Thomas H. Lee,“The design of low noise oscillators,” Kluwer Academic Publishers,1999.

[20] H. Sjoland, “Improved switched tuning of differential CMOS VCOs,” Circuits and Systems II: Analog and Digital Signal Processing, IEEE Transactions on, Volume 49,

- 80 -

Issue 5, May 2002.

[21] H. R. Rategh, H. Samavati, and T. H. Lee, “A CMOS Frequency Synthesizer with a Injection-Locked Frequency Divider for a 5GHz Wireless LAN Receiver,” IEEE J. Solid-State Circuits, vol. 35, no. 9, pp. 780-787, May 2000.

[22] B. De Muer and M. Steyaert, “A 12GHz/128 frequency divider in 0.25 μm CMOS,” European Solid-State Circuits Conference, pp. 248-251, Sept. 2000.

[23] Jri Lee, Jian-Yu Ding, and Tuan-Yi Cheng, “A 20-Gb/s 2-to-1 MUX and a 40-GHz VCO in 0.18-μm CMOS technology,” VLSI Circuits Digest of Technical Papers, pp. 140-143, June 2005

[24] J. H. Chang and C.K. Kim, “A symmetrical 6-GHz fully integrated cascade coupling CMOS LC quadrature VCO,” IEEE Microw. Wireless Compon. Lett., vol.

15, no. 11, pp. 670–672, Oct. 2005.

[25] Ali Fard, “Phase noise and amplitude issues of a wide-band VCO utilizing a switched tuning resonator,” IEEE International Symposium on Circuits and Systems, pp. 2691-2694, May 2005.

[26] A. Rofougaran, J. Y.-C. Chang,M. Rofougaran, and A .A. Abidi, ”A 1GHz CMOS RF front-end IC for a direct-conversion wireless receiver.” IEEE J. Solid-State Circuits, vol. 31, no. 7, pp. 800-889, Jul. 1996.

[27] D. K. Shaeffer and T. H. Lee, “A 1.5-V,1.5-GHz CMOS low noise amplifier,”

IEEE J. Solid-State Circuits, vol. 32, no. 5, pp. 745-759, May. 1997.

[28] S. Andersson, C. Svensson, and O. Drugge, “Wide-band LNA for a multistandard wireless Receiver in 0.18um CMOS,” in Proc. EDDCIRC, pp. 655-658. Sep.

2003.

[29] R. S. Lee, D. D. Wentaloff, and A. P. Chandarakasan, “An ultra-wide-band baseband front-end,” in Proc. IEEE RFIC Symp. pp.493-496. Jun. 2004.

[30] C-W. Kim, M.-S. Kang, P. T. Anh, H.-T. Kim, and S.-G. Lee, “An ultra-wide-band

- 81 -

CMOS low noise amplifier for 3-5 GHz UWB system,” IEEE J. Solid-State Circuits, vol. 40, no. 2, pp. 544-547, Feb. 2005.

[31] Brian M. Ballweber, Ravi Gupta, and David J. Allstot, ”A fully integrated 05-5.5-GHz CMOS Distributed Amplifier ,” IEEE Transactions on Solid-State Circuits, vol. 35, no.2, Feb. 2000.

[32] Andrea Bevilacqua, and Ali M. Niknejad, ”An Ultrawideband CMOS low-noise amplifier for 3.1-10.6GHz Wireless Receivers,” IEEE J. Solid-State Circuits, vol.

39, no. 12, pp. 544-547, Dec. 2004.

[33] Aly Ismail and Ascad A. Aibdi, “A 3-10-GHz low noise amplifier with wideband LC-ladder matching network,” IEEE J. Solid-State Circuits, vol. 39, no. 12, pp.

2269-2277, Dec. 2004.

[34] Yang Lu, Kiat Seng Yeo, Alper Cabuk, Jianguo Ma, Manh Anh Do, and Zhenghao Lu, “A Novel CMOS low-noise amplifier design for 3.1 to 10.6-GHz Ultra-wide-band Wireless Receivers,” IEEE Transactions on Circuits and Systems-Ι: Regular papers, vol. 53, no.8, Aug. 2006.

[35] Robert Hu, “Wide-Band Matched LNA Design using transistor’s intrinsic Gate-Drain Capacitor,” IEEE Trans. Microw. Theory Tech., vol. 54, no. 3, pp. , Mar. 2006.

[36] Sudip Shekhar, Jeffrey S. Walling, and David J. Allstot, “Bandwidth Extension Techniques for CMOS Amplifiers,” IEEE J. Solid-State Circuits, vol. 41, no. 11, pp. , Nov. 2006.

- 82 -

Vita and Publication

姓 名: 廖昱舜 學 歷:

國立板橋高級中學 ( 88 年 9 月 ~ 91 年 6 月)

國立中正大學電機工程學系 ( 91 年 9 月 ~ 95 年 6 月) 國立交通大學電信工程所碩士班 ( 95 年 9 月 ~ 97 年 6 月)

Publication Remarks:

1. Yu-Shun Liao, Christina.F. Jou,“X-band low phase noise Quadrature CMOS VCO with transformer feedback”, PIERS 26-30, March, 2008 in Hangzhou.

Submitting Papers:

1. Yu-Shun Liao, Yi-Shing Shen, and Christina F. Jou,“A 5.25-GHz Ultra Low Power Voltage-Controlled Oscillator Using Transformer Feedback”, APMC, Dec, 2008 in Hong Kong.

2. Yu-Shun Liao, Yi-Shing Shen, and Christina F. Jou,“Low Voltage Multi-Band

Voltage-Controlled Oscillator for MB-OFDM UWB system”, APMC, Dec, 2008 in Hong Kong.

相關文件