• 沒有找到結果。

According to the analysis of 32 × 32 PBG wavelength switch mentioned in this chapter, the author will make some discussions and conclusions in follow texts.

In this chapter, we focus on the new technology of router. The 32×32 PBG wavelength switch combines PBG structure and MMI structure. We dope the Boron and Phosphorous ions beside PBG structure and add voltage to change the carrier concentration distribution. By changing carrier concentration distribution, the index can be changed. We can switch the specific wavelength form the output port of waveguide as shown in Table VII, VIII, IX, X, XI and XII. The length and width relation of PBG structure is analyzed compared and designed. The number and size of the

fingered electrode pads are analyzed compared and designed. The length and width of the 32 channels single mode input and output rib waveguide are also analyzed and compared and designed. We examine their potential for applying to integrated optics. Through the analysis of 32×32 PBG wavelength switch structure with field distribution algorithm.

The author also analyzed the characteristics of guiding light in SOI waveguide device with adding various voltages on several fingered electrode pads to control 32×32 PBG wavelength switch. In this chapter, we have demonstrated that the performance of light propagating along SOI waveguide devices will have higher wavelength select and higher transmittance. That is, the guided wave propagated along SOI waveguide devices with MMI method and fingered electrode pads can be more confined with reducing the cross talk between the silicon-guiding layer and the oxide-cladding layer. Finally, we could apply such a device into optical network to save the finite channel wavelength numbers.

W W )

cathode (Al

204

Fig. 4-1 (a) The cross section of vertical SOI Schottky diode integrated in the SOI rib waveguide of a electro-optical modulator and (b) The surface biopolar of the traditional p-i-n diode (Reference [156])

(a) (b)

(a) (b)

Fig. 4-2 (a) Calculated current density versus voltage J-V of Schottky and pin diode structure and (b) absolute refractive index variation ∆n versus the applied voltage (Reference [156])

anode

anode

+ Z

P P+

P SiO2

substrate Si

cathode

+ n anode P+

Z P

SiO2

substrate Si

0

Voltage (V)

Current density (mA/cm2 ) Refraction index variation

Voltages applied (V)

0.8 0.9 1.0

20 -0.004

-0.008

10 -0.012

-0.016 Schottky λ=1.55µm

λ=1.3µm

0 -0.02 pin

1.1 1.2 1.3 1.4 0.9 1.1 1.3

µm 1928

µm 252 µm

4

type p

type n

32 1 2

µm 6040

SiO2

31

Si

Si SiO2

Fig. 4-3 The schematic diagram of our designed 32×32 photonic bandgap wavelength switch

type n anode cathode

type p

µm 1

µm 4 . 0

µm 1

µm 4

µm

1 3µm

Fig. 4-4 Top view of our designed fingered electrode pads based on MMI structure. Integrated doped regions and fingered electrical pads.

205

V1 V2

Fig. 4-5 Cut view of the section of our designed 32×32 PBG wavelength switch. Integrated doped regions and current flow are indicated.

1

output output2 output3 output30 output31 output32

M0832

input input2 input3 input30 input31 input32

Fig. 4-6 Top view of our designed 32×32 PBG wavelength switch with 256 electrical control pads

206

output 8 output 16

input8 input8

6000 1.0

5000

Z-axis (µm) 40003000

2000

Fig. 4-7 The simulation results of (a) output port 8, (b) output port 16, (c) output port 24, (d) output port 32 for the wavelength 1532.2 nm launching into input port 8 at 32×32 PBG wavelength switch with ∆n=–1.6×10-2

)

output 8 output 16

6000

)

(a (b)

input16output 24 input16 output 32

0

Z-axis (µm) 40003000

2000

Fig. 4-8 The simulation results of (a) output port 8, (b) output port 16, (c) output port 24, (d) output port 32 for the wavelength 1532.2 nm launching into input port 16 at 32×32 PBG wavelength switch with ∆n=–1.6×10-2

8

input 24 output 32

24

Fig. 4-9 The simulation results of (a) output port 8, (b) output port 16, (c) output port 24, (d) output port 32 for the wavelength 1532.2 nm launching into input port 24 at 32×32 PBG wavelength switch with ∆n=–1.6×10-2

)

output 24 input32 output 32

6000 1.0

input 32 input 32

) ( m axis

X µ X axis ( mµ )

Fig. 4-10 The simulation results of (a) output port 8, (b) output port 16, (c) output port 24, (d) output port 32 for the wavelength 1532.2 nm launching into input port 32 at 32×32 PBG wavelength switch with ∆n=–1.6×10-2

8

output 24 output 32

8

Fig. 4-11 The simulation results of (a) output port 8, (b) output port 16, (c) output port 24, (d) output port 32 for the wavelength 1541.8 nm launching into input port 8 at 32×32 PBG wavelength switch with ∆n=–1.6×10-2

)

output 24 output 32

16

Fig. 4-12 The simulation results of (a) output port 8, (b) output port 16, (c) output port 24, (d) output port 32 for the wavelength 1541.8 nm launching into input port 16 at 32×32 PBG wavelength switch with ∆n=–1.6×10-2

8

input 24 output 24 input 24 output 32

6000 1.0

Fig. 4-13 The simulation results of (a) output port 8, (b) output port 16, (c) output port 24, (d) output port 32 for the wavelength 1541.8 nm launching into input port 24 at 32×32 PBG wavelength switch with ∆n=–1.6×10-2

)

output 24 input32 output 32

6000 1.0

Fig. 4-14 The simulation results of (a) output port 8, (b) output port 16, (c) output port 24, (d) output port 32 for the wavelength 1541.8 nm launching into input port 32 at 32×32 PBG wavelength switch with ∆n=–1.6×10-2

32

0 input3 output28 input4 output27

6000 1.0

Fig. 4-15(a) The simulation results of (1)-(8) for ITU wavelength launching into 32×32 PBG wavelength switch from input port 1 to input port 8

24

output input12 output14

11

Fig. 4-15(b) The simulation results of (9)-(16) for ITU wavelength launching into 32×32 PBG wavelength switch from input port 9 to input port 16

17

output input18 output20

17

0 output21 output22

19

Fig. 4-15(c) The simulation results of (17)-(24) for ITU wavelength launching into 32×32 PBG wavelength switch from input port 17 to input port 24

7

output input25 output5 input26

6000

0 output4 input27 output3 input28

6000 1.0

Fig. 4-15(d) The simulation results of (25)-(32) for ITU wavelength launching into 32×32 PBG wavelength switch from input port 25 to input port 32

8

Z-axis (µm) 40003000

2000

Fig. 4-16 The simulation results of (a) output port 8, (b) output port 16, (c) output port 24, (d) output port 32 for the wavelength 1532.2 nm launching into input port 8 at 32×32 PBG wavelength switch with ∆n=–4.0×10-3

)

Z-axis (µm) 40003000

2000

Fig. 4-17 The simulation results of (a) output port 8, (b) output port 16, (c) output port 24, (d) output port 32 for the wavelength 1532.2 nm launching into input port 16 at 32×32 PBG wavelength switch with ∆n=–4.0×10-3

8

Fig. 4-19 The simulation results of (a) output port 8, (b) output port 16, (c) output port 24, (d) output port 32 for the wavelength 1532.2 nm launching into input port 32 at 32×32 PBG wavelength switch with ∆n=–4.0×10-3 Fig. 4-18 The simulation results of (a) output port 8, (b) output port 16, (c) output port 24, (d) output port 32 for the wavelength 1532.2 nm launching into input port 24 at 32×32 PBG wavelength switch with ∆n=–4.0×10-3

Z-axis (µm)

output input32 output 32

6000 1.0

8

Fig. 4-20 The simulation results of (a) output port 8, (b) output port 16, (c) output port 24, (d) output port 32 for the wavelength 1541.8 nm launching into input port 8 at 32×32 PBG wavelength switch with ∆n=–4.0×10-3

)

Fig. 4-21 The simulation results of (a) output port 8, (b) output port 16, (c) output port 24, (d) output port 32 for the wavelength 1541.8 nm launching into input port 16 at 32×32 PBG wavelength switch with ∆n=–4.0×10-3

8

Z-axis (µm) 40003000

2000

Fig. 4-22 The simulation results of (a) output port 8, (b) output port 16, (c) output port 24, (d) output port 32 for the wavelength 1541.8 nm launching into input port 24 at 32×32 PBG wavelength switch with ∆n=–4.0×10-3

)

output input32 output 32

6000 1.0

Fig. 4-23 The simulation results of (a) output port 8, (b) output port 16, (c) output port 24, (d) output port 32 for the wavelength 1541.8 nm launching into input port 32 at 32×32 PBG wavelength switch with ∆n=–4.0×10-3

32

0 input3 output28 input4 output27

6000 1.0

Fig. 4-24(a) The simulation results of (1)-(8) for ITU wavelength launching into 32×32 PBG wavelength switch from input port 1 to input port 8

24

output input12 output19

11

Fig. 4-24(b) The simulation results of (9)-(16) for ITU wavelength launching into 32×32 PBG wavelength switch from input port 9 to input port 16

5

output input17 input18

6000

Fig. 4-24(c) The simulation results of (17)-(24) for ITU wavelength launching into 32×32 PBG wavelength switch from input port 17 to input port 24

7

output input25 output5 input26

6000 1.0

0 output4 input27 output3 input28

6000 1.0

Fig. 4-24(d) The simulation results of (25)-(32) for ITU wavelength launching into 32×32 PBG wavelength switch from input port 25 to input port 32

4 8 12 16 20 24 28 32

0 Input port Output port

4

Output power (dBm)

Output port channel

∆n=–1.6×10-2 at 1532.2nm

∆n=–4.0×10-3 at 1541.8nm

∆n=–1.6×10-2 at 1541.8nm

∆n=–4.0×10-3 at 1532.2nm

Fig. 4-25 The output power at individual output channel with different refractive index change for the wavelength launching into input port 8

4 8 12 16 20 24 28 32

0 Input port Output port

4

Output power (dBm)

Output port channel

Fig. 4-26 The output power at individual output channel with different refractive index change for the wavelength launching into input port 16

223

4 8 12 16 20 24 28 32

Input port Output port 4

Output power (dBm)

Output port channel

Fig. 4-27 The output power at individual output channel with different refractive index change for the wavelength launching into input port 24

4 8 12 16 20 24 28 32

0 Input port Output port

4

Output power (dBm)

Output port channel

Fig. 4-28 The output power at individual output channel with different refractive index change for the wavelength launching into input port 32

224

5 10 15 20 25 30 -30

-25 -20 -15 -10 -5

0 ∆n=–1.6×10-2

∆n=–4.0×10-3

Output power (dBm)

Output port channel

Fig. 4-29 The output power at individual 32 output ports with different refractive index change for ITU wavelength launching into switch device

SiO2

Si Si

1 2

31 32

L

Wi

µm 128 µm

4 . 4210 1-D resonant PBG filter

µm 6040

2-D PBG sharp bend waveguide 32×32 PBG wavelength switch

µm 4 . 74

Fig. 4-30 The whole integrated 32×32 PBG wavelength switch combine with 1-D resonant PBG filter and 2-D PBG sharp bend waveguide

225

5 10 15 20 25 30 -80

-70 -60 -50 -40 -30 -20 -10 0

∆n=–1.6×10-2

∆n=–4.0×10-3

Output power (dBm)

Output port channel

Fig. 4-31 The output power at individual 32 output ports with different refractive index change for 32 ITU wavelengths launching into the whole integrated 32×32 PBG wavelength switch with circular holes

5 10 15 20 25 30

-90 -80 -70 -60 -50 -40 -30 -20 -10

0 ∆n=–1.6×10-2

∆n=–4.0×10-3

Output power (dBm)

Output port channel

Fig. 4-32 The output power at individual 32 output ports with different refractive index change for 32 ITU wavelengths launching into the whole integrated 32×32 PBG wavelength switch with hexagonal holes

226

1532.2 nm with the refractive index change –1.6×10-2

Input port Output port Power (dBm) Position of controlled electrode pads Output 8 –9.51 M0108, , , , , ,

Table VII. Summary of the wavelength 1532.2nm launch into 32×32 PBG wavelength switch with the change of refractive index is –1.6×10-2

1541.8 nm with refractive index change –1.6×10-2

Input port Output port Power (dBm) Position of controlled electrode pads Output 8 –7.81 M0108, , , , , ,

Table VIII. Summary of the wavelength 1541.8nm launch into 32×32 PBG wavelength switch with the change of refractive index is –1.6×10-2

32 ITU wavelength with the refractive index change –1.60×10-2 Wavelength

(nm) Input port Output port Power (dBm) Position of electrode pads

1532.2 1 32 –23.57

Table IX. Summary of 32 ITU wavelength launch into 32×32 PBG wavelength switch with the change of refractive index is –1.6×10-2

1532.2 nm with the refractive index change –4.0×10-3

Input port Output port Power (dBm) Position of controlled electrode pads Output 8 –13.12 M0108, , , , , ,

Table X. Summary of the wavelength 1532.2nm launch into 32×32 PBG wavelength switch with the change of refractive index is –4.0×10-3

1541.8 nm with the refractive index change –4.0×10-3

Input port Output port Power (dBm) Position of controlled electrode pads Output 8 –19.99 M0108, , , , , ,

Table XI. Summary of the wavelength 1541.8nm launch into 32×32 PBG wavelength switch with the change of refractive index is –4.0×10-3

32 ITU wavelength with the refractive index change –4.0×10-3 Wavelength

(nm) Input port Output port Power (dB) Position of controlled electrode pads is positive integral number

(i =01, 02, …, 08)

16

Mi Mi17 i

Table XII. Summary of 32 ITU wavelength launch into 32×32 PBG wavelength switch with the change of refractive index is –4.0×10-3