• 沒有找到結果。

Chapter 5 Conclusions and Future Prospects

5.2 Future Prospects

In this work, we investigate the 10-nm La2O3 MIM capacitors with an 11.4-fF/μm2 capacitance density and an area of 2500-μm2 (50 μm × 50 μm). As stated in chapters 2 and 3, the scale factor αC and the Weibull slope βC extracted from the Weibull distribution of TDDB could be used to predict the lifetime distribution for various capacitor areas. However, the time-dependent soft breakdown process of the high-k La2O3 MIM capacitors is different from the traditional SiO2 related device. Hence, the “Weibull area scaling” principle as noted in Eq.

3-13 should be further verified by studying the 10-nm La2O3 MIM capacitors with various

areas. Moreover, the evolutions of J-V and C-V curves after SBD are essential to study, too.

On the other hand, the La2O3 MIM capacitor has been proved by low frequency measurement in this thesis that it is suitable for analog applications. Therefore, the characteristics of La2O3 MIM capacitors at radio frequency (RF) region could be further demonstrated. When circuits or devices work at high frequencies, many parasitic effects will occur, and it is hard to obtain the accurate electrical properties of a device. As a result, using the scattering (S) parameters is the most appropriate way to characterize high-frequency performance. For S parameters measurement in RF regime, La2O3 MIM capacitors with ground-signal-ground (GSG) configuration should be adopted, and the dummy device should also be fabricated at the same time for calibration.

Traps creation

Fig. 5-1. The wear out to final breakdown evolution of the La2O3 MIM capacitors under the constant voltage stress.

Table 5-1. Some recommendations for improving VCC and TCC without reducing the capacitance density. (2) Plasma treatment on electrode surface:

decreasing surface roughness and interface states

(3) Eliminating the IL

(1) Sufficient annealing for dielectrics (2) Plasma treatment on electrode surface (3) Adequate doping for dielectrics

(4) Eliminating the IL

References

[1] C. H. Ng, C.-S. Ho, S.-F. Sanford Chu, and S.-C. Sun, “MIM capacitor integration for mixed-signal/RF applications,” IEEE Trans. Electron Devices, vol. 52, no. 7, pp.

1399–1409, July 2005.

[2] J.-J. Yang, J.-D. Chen, R. Wise, P. Steinmann, M.-B. Yu, D.-L. Kwong, Ming-Fu Li, Y.-C. Yeo, and C. Zhu, “MIM capacitor integration for mixed-signal/RF applications,”

IEEE Electron Device Lett., vol. 30, no. 5, pp. 460–462, May 2009.

[3] M.-Y. Yang, D. S. Yu, and A. Chin, “High-density RF MIM capacitors using high-k La2O3 dielectrics,” J. Electrochem. Soc., vol. 151, no. 7, pp. F162–F165, May 2004.

[4] S. J. Kim, B. J. Cho, M. F. Li, C. Zhu, A. Chin, and D.-L. Kwong, “HfO2 and lanthanide-doped HfO2 MIM capacitors for RF/mixed IC applications,” in Symp. VLSI Tech. Dig., 2003, pp. 77–78.

[5] M.-Y. Yang, C.-H. Huang, A. Chin, C. Zhu, B.-J. Cho, M.-F. Li, and D.-L. Kwong,

“Very high density RF MIM capacitors (17 fF/μm2) using high-k Al2O3-doped Ta2O5

dielectrics,” IEEE Microwave Wireless Compon. Lett., vol. 13, pp. 431–433, Oct.

2003.

[6] J. Babcock, S. Balster, A. Pinto, C. Dirnecker, P. Steinmann, R. Jumpertz, and B.

El-Kareh, “Analog characteristics of metal–insulator–metal capacitors using PECVD nitride dielectrics,” IEEE Electron Device Lett., vol. 22, no. 5, pp. 230–232, May 2001.

[7] K. Stein, J. Kocis, G. Hueckel, E. Eld, T. Bartush, R. Groves, N. Greco, D. Harame, and T. Tewksbury, “High reliability metal insulator metal capacitors for silicon germanium analog applications,” in Proc. Bipolar/BiCMOS Circuits and Tech.

Meeting, 1997, pp. 191–194.

[8] T. Yoshitomi, Y. Ebuchi, H. Kimijama, T. Ohguro, E. Morifuji, H. S. Momose, K.

Kasai, K. Ishimaru, F. Matsuoka, Y. Katsumata, M. Kinugawa, and H. Iwai, “High performance MIM capacitor for RF BiCMOS/CMOS LSIs,” in Proc. Bipolar/BiCMOS

Circuits and Technology Meeting, 1999, pp.133–136.

[9] H. Hu, C. Zhu, Y. F. Lu, Y. H. Wu, T. Liew, M. F. Li, B. J. Cho, W. K. Choi, and N.

Yakovlev, “Physical and electrical characterization of HfO2 metal–insulator–metal capacitors for Si analog circuit applications,” J. Appl. Phys., vol. 94, no. 1, pp.

551–557, Jul. 2003.

[10] T. Remmel, R. Ramprasad, and J. Walls, “Leakage behavior and reliability assessment of tantalum oxide dielectric MIM capacitors,” in Proc. Int. Rel. Phys. Symp., 2003, pp.

277–281.

[11] Y.-L. Tu, H.-L. Lin, L.-L. Chao, D. Wu, C.-S. Tsai, C. Wang, C.-F. Huang, C.-H. Lin, and J. Sun, “Characterization and comparison of high-k metalinsulator-metal (MIM) capacitors in 0.13 μm Cu BEOL for mixed-mode and RF applications,” in Symp. VLSI Tech. Dig., 2003, pp. 79–80.

[12] S. J. Kim, B. J. Cho, M. F. Li, X. Yu, C. Zhu, A. Chin, D.-L. Kwong, “PVD HfO2 for High-Precision MIM Capacitor Applications,” IEEE Electron Device Lett., vol. 24, no.

6,pp. 387–389, June 2003.

[13] S. Becu, S. Cremer, and J. L. Autran, “Capacitance non-linearity study in Al2O3 MIM capacitors using an ionic polarization model,” Microelectronic Engineering, vol.83, pp.2422–2426, Oct. 2006.

[14] C. H. Cheng, S. H. Lin, K. Y. Jhou, W. J. Chen, C. P. Chou, F. S. Yeh, J. Hu, M.

Hwang, T. Arikado, S. P. McAlister, and A. Chin, “High density and low leakage current in TiO2 MIM capacitors processed at 300 oC,” IEEE Electron Device Lett., vol.

29, no. 8, pp. 845–847, Aug. 2008.

[15] H. Hu, C. Zhu, X. Yu, A. Chin, M. F. Li, B. J. Cho, D.-L. Kwong, P. D. Foo, M. B. Yu, X. Liu, and Jerry Winkler, “MIM capacitors using atomic-layer-deposited High-k (HfO2)1-x(Al2O3)x dielectrics,” IEEE Electron Device Lett., vol. 24, no. 2, pp. 60–62, Feb. 2003.

[16] S. B. Chen, C. H. Lai, A. Chin, J. C. Hsieh, and J. Liu, “High-density MIM capacitors using Al2O3 and AlTiOx dielectrics,” IEEE Electron Device Lett., vol. 23, no. 2, pp.

185–187, Feb. 2003.

[17] C. H. Cheng, H. C. Pan, C. C. Huang, C. P. Chou, C. N. Hsiao, J. Hu, M. Hwang, T.

Arikado, S. P. McAlister, A. Chin, “Improvement of the performance of TiHfO MIM capacitors by using a dual plasma treatment of the lower rlectrode,” IEEE Electron Device Lett., Vol. 29, no. 10, pp. 1105–1107, Oct. 2008.

[18] Y. K. Jeong, S. J. Won, D. J. Kwon, M. W. Song, W. H. Kim, O. H. Park, J. H. Jeong, H. S. Oh, H. K. Kang, and K. P. Suh, “High quality high-k MIM capacitor by Ta2O5/HfO2/Ta2O5 multilayered dielectric and NH3 plasma interface treatments for mixed-signal/RF applications,” in Symp. VLSI Tech. Dig., 2004, pp. 222–223.

[19] H. Hu, S. J. Ding, H. F. Lim, C. Zhu, M. F. Li, S. J. Kim, X. F. Yu, J. H. Chen, Y. F.

Yong, B. J. Cho, D. S. H. Chan, S. C. Rustagi, M. B. Yu, C. H. Tung, A. Du, D. My, P.

D. Foo, A. Chin, and D. L. Kwong, “High performance ALD HfO2-Al2O3 laminate MIM capacitors for RF and mixed signal IC applications,” in IEDM Tech. Dig., 2003, pp. 379–382.

[20] C. Wenger, G. Lippert, R. Sorge, T. Schroeder, A. U. Mane, G. Lupina, J. Dabrowski, P. Zaumseil, X. Fan, L. Oberbeck, U. Schroeder, and H.-J. Müssig , “High-quality Al2O3/Pr2O3/Al2O3 MIM capacitors for RF applications,” IEEE Trans. Electron Devices, vol. 53, no.8, pp. 1937–1939, Aug. 2006.

[21] J. Robertson, “High dielectric donstant gate oxides for metal oxide Si transistors,” Rep.

Prog. Phys., vol. 69, pp. 327–396, Dec. 2005.

[22] H.-S. P. Wong, “Beyond the conventional transistor,” IBM J. Res. Develop., vol. 46, no. 2/3, pp. 133–168, 2002.

[23] S. Blonkowski, M. Regache, and A. Halimaoui, “Investigation and modeling of the electrical properties of metal–oxide–metal structures formed from chemical vapor

deposited Ta2O5 films,” J. Appl. Phys., vol. 90, no. 3, pp. 1501–1508, Aug. 2001.

[24] S. Becu, S. Cremer, and J.-L. Autran, “Microscopic model for dielectric constant in metal–insulator–metal capacitors with high-permittivity metallic oxides,” Appl. Phys.

Lett., vol. 88, no. 5, pp. 052902–052904, Jan. 2006.

[25] S. Blonkowski, “Nonlinear capacitance variations in amorphous oxide metal-insulator-metal Structures,” Appl. Phys. Lett., vol. 91, no. 5, pp.

1729031–1729033, Oct. 2007.

[26] S. Zaima, T. Furuta, and Y. Yasuda, “Preparation and properties of Ta2O5 films by LPCVD for ULSI application,” J. Electrochem. Soc., vol. 137, issue 4, pp. 1297–1300, Apr. 1990.

[27] J. McPherson, J-Y. Kim, A. Shanware, and H. Mogul, “Thermochemical description of dielectric breakdown in high dielectric constant materials,” Appl. Phys. Lett., vol. 82, no. 13, pp. 2121–2123, Mar. 2003.

[28] R. Choi, S. J. Rhee, J. C. Lee, B. H. Lee, and Gennadi Bersuker, “Charge trapping and detrapping characteristics in hafnium silicate gate stack under static and dynamic stress,” IEEE Electron Device Lett., vol. 26, no. 3, pp. 197–199, Mar. 2005.

[29] K. Takeda, R. Yamada, T. Imai, T. Fujiwara, T. Hashimoto, and T. Ando,

“Characteristic instabilities in HfAlO metal–insulator–metal capacitors under constant-voltage stress,” IEEE Trans. Electron Devices, vol. 55, no. 6, pp.1359–1365, June 2008.

[30] Y.-H. Kim, J. C. Lee, “Reliability characteristics of high-k dielectrics,” Microelectron.

Reliab., vol. 44, issue 2, pp. 183–193, Dec. 2003.

[31] G. Ribes, J. Mitard, M. Denais, S. Bruyere, F. Monsieur, C. Parthasarathy, E. Vincent, and G. Ghibaudo, “Review on high-k dielectrics reliability issues,” IEEE Trans.

Device and Mater. Reliabil., vol. 5, no. 1, pp. 5–19, Mar. 2005.

[32] International Technology Roadmap for Semiconductors, ITRS, 2008 edition.

[33] A. Prokofiev, A. Sheykh, and B. Melekh, “Periodicity in the band gap variation of Ln2X3 (X=O, S, Se) in the lanthanide series,” J. Alloys and Compounds, vol. 242, pp.41–44, 1996.

[34] H. Iwai, S. Ohmi, S. Akama, C. Ohshima, and A. Kikuchi, “Advanced gate dielectric materials for sub-100 nm CMOS,” in IEDM Tech. Dig., 2002, pp. 625–628.

[35] J. Robertson, “Band offsets of wide-band-gap oxides and implications for future electronic devices,” J. Vac. Sci. Technol. B, vol. 18, no. 3, pp. 1785–1791, May 2000.

[36] A. Chin, Y. H. Wu, S. B. Chen, C. C. Liao, and W. J. Chen, “High quality La2O3 and A12O3 gate dielectrics with equivalent oxide thickness 5-10 Å,” in Symp. VLSI Tech.

Dig., 2000, pp. 16–17.

[37] S. W. Kang and S. W. Rhee, “Deposition of La2O3 films by direct liquid injection metallorganic chemical vapor deposition,” J. Electrochem. Soc., vol. 149, issue 6, pp.

C345–C348, Apr. 2002.

[38] Y. H. Wu, M. Y. Yang, A. Chin, W. J. Chen, and C. M. Kwei, “Electrical characteristics of high quality La2O3 gate dielectric with equivalent oxide thickness of 5 Å,” IEEE Electron Device Lett., vol.21, no. 7, pp. 341–343, July 2000.

[39] S. M. Sze, Physics of Semiconductor Devices, 2nd ed., Wiley, New York, 1981.

[40] N. K. Park, D. K. Kang, B.-H. Kim, S. J. Jo, and J. S. Ha, “Electrical properties of La2O3 thin films grown on TiN/Si substrates via atomic layer deposition,” Appl. Surf.

Sci., vol. 252, no. 24, pp. 8506–8509, Dec. 2005.

[41] F.-C. Chiu, H.-W. Chou, and J. Y.-.M. Lee, “Electrical conduction mechanisms of metal/La2O3/Si structure,” J. Appl. Phys., vol. 97, no. 10, pp.1035031–1035035, April 2005.

[42] Y. Kim, S.-I Ohmi, K. Tsutusi, and H. Iwai, “Space-charge-limited currents in La2O3

thin films deposited by e-beam evaporation after low temperature dry-nitrogen annealing,” Jpn. J. Appl. Phys., vol. 44, no. 6A, pp. 4032–4042, June 2005.

[43] P. Hesto, Instabilities in Silicon Devices, North-Holland, Amsterdam, 1986.

[44] M. Lampert and P. Mark, Current Injection in Solids, Academic, New York, 1970.

[45] D. Lamb, Electrical Conduction Mechanisms in Thin Insulating Films, Methuen and Co. Ltd., London, 1967.

[46] K. Kao and W. Hwang, Electrical Transport in Solids, Pergamon Press, Oxford, 1981.

[47] N. Mott and E. Davis, Electronic Processes in Non-Crystalline Materials, Clarendon Press, Oxford, 2nd ed 1979.

[48] B. Salvo, G. Ghibaudo, G. Panankakis, B. Guillaumot, and G. Reimbold, “A general bulk-limited transport analysis of a 10 nm-thick oxide stress-induced leakage current,”

Solid-State Electron., vol. 44, pp. 895–903, 2000.

[49] S. Fleischer, P. Lai, and Y. Cheng, “A new method for extracting the trap energy in insulators,” J. Appl. Phys., vol. 73, pp. 3348–3351, 1993.

[50] B. L. Yang, H. Wong, and Y. Cheng, “Modelling of trap-assisted electronic conduction in thin thermally nitrided oxide films,” Solid-State Electron., vol. 39, pp. 385–390, 1996.

[51] A. Ortiz-Conde, F. J. G. Sanchez, and J. Muci, “Exact analytical solutions of the forward non-ideal diode equation with series and shunt parasitic resistances,”

Solid-State Electron., vol. 44, pp. 1861–1864, 2000.

[52] F. Chapeau-Blondeau and A. Monir, “Numerical evaluation of the lambert w function and application to generation of generalized gaussian noise with exponent 1/2,” IEEE Trans. Signal Processing, vol. 50, no. 9, pp. 2160–2165, Sept. 2002.

[53] J.-M. Chaillol, “Some applications of the Lambert W function to classical statistical mechanics,” J. Phys. A: Math. Gen., vol. 36, pp. 10431–10442, 2003.

[54] L. Esaki, “New phenomenon in narrow germanium p-n junctions,” Phys. Rev., vol. 109, pp. 603–604, 1958.

[55] P. Price and J. Radcliffe, “Esaki tunneling,” IBM J. Res. Dev., vol. 3, pp. 364–371,

1959.

[56] L. Esaki, “Long journey into tunneling,” Rev. Mod. Phys., vol. 46, pp. 237–244, 1974.

[57] J. R. Yeargan and H. L. Taylor, “The Poole-Frenkel effect with compensation present,”

J. Appl. Phys., vol. 39, no. 12, pp. 5600–5604, 1968.

[58] B. De Salvo, G. Ghibaudo, G. Pananakakis, B. Guillaumot, and G. Reimbold, “A general bulk-limited transport analysis of a 10 nm-thick oxide stress-induced leakage current,” Solid-State Electron., vol. 44, pp. 895–903, 2000.

[59] J. Maria, D. Wicaksana, A. Kingon, B Busch, H. Schulte, E. Garfunkel, and T.

Gustafsson, “High temperature stability in lanthanum and zirconia-based gate dielectrics,” J. Appl. Phys., vol. 90, no. 7, pp. 3476–3482, 2001.

[60] J. Jun, D. Choi, K. Kim, K. Oh, and C. Hwang, “Effect of structural properties on electrical properties of lanthanum oxide thin film as a gate dielectric,” Jpn. J. Appl.

Phys. Part. 1, vol. 42, no. 6A, pp. 3519–3522, 2003.

[61] Y. Kim, K. Miyauchi, S. Ohmi, K. Tsutsui, and H. Iwai, “Electrical properties of vacuum annealed La2O3 thin films grown by e-beam evaporation,” Microelectronics Journal, vol. 36, no. 1, pp. 41–49, 2005.

[62] T. Ohmi, M. Morita, A. Teramoto, K. Makihara, and K. Tseng, “Very thin oxide film on a silicon surface by ultraclean oxidation,” Appl. Phys. Lett., vol. 60, no. 17, pp.

2126–2128, 1992.

[63] S. Tang, R. Wallace, A. Seabaugh, and D. King-Smith, “Evaluating the minimum thickness of gate oxide on silicon using first-principles method,” Appl. Surf. Sci., vol.

135, pp. 137–142, 1998.

[64] W. Chim, T. Ng, B. Koh, W. Choi, J. Zheng, C. Tung, and A. Du, “Interfacial and bulk properties of zirconium dioxide as a gate dielectric in metal-insulator-semiconductor structures and current transport mechanisms,” J. Appl. Phys., vol. 93, no. 8, pp.

4788–4793, 2003.

[65] Y. Kim, S.-I. Ohmi, K. Tsutsui, and H. Iwai, “Analysis of variation in leakage currents of lanthana thin films,” Solid-State Electron., vol. 49, pp. 825–833, 2005.

[66] R. Degraeve, B. Kaczer, M. Houssa, G. Groeseneken, M. Heyns, J. Jeon, and A.

Halliyal, “Analysis of high voltage TDDB measurements on Ta2O5/SiO2 stack,” in IEDM Tech. Dig., pp. 327–330, 1999.

[67] P. Jakob, P. Dumas, and Y. Chabal, “Influence of silicon oxide on the morphology of HF-etched Si(111) surfaces: Thermal versus chemical oxide,” Appl. Phys. Lett., vol. 59, no. 23, pp. 2968–2970, 1991.

[68] K. Saito, M. Matsuda, M. Yasutake, and T. Hattori, “Electron tunneling through chemical oxide of silicon,” Jpn. J. Appl. Phys. Part.2, vol. 34, no. 5B, pp. L609–L611, 1995.

[69] U. Neuwald, A. Feltz, U. Memmert, and R. Behm, “Chemical oxidation of hydrogen passivated Si (111) surfaces in H2O2,” J. Appl. Phys., vol. 78, no. 6, pp. 4131–4136, 1995.

[70] K. Tsunoda, E. Ohashi, and S. Adachi, “Spectroscopic characterization of naturally and chemically oxidized silicon surfaces,” J. Appl. Phys., vol. 94, no. 9, pp. 5613–5616, 2003.

[71] C. Ohshima, J. Taguchi, I. Kashiwagi, H. Yamamoto, S. Ohmi, and H. Iwai, “Effect of surface treatment of Si substrates and annealing condition on high-k rare earth oxide gate dielectrics,” Appl. Surf. Sci., vol. 216, 302–306, 2003.

[72] Q. Li, S. Wang, P. Lim, J. Chai, A. Huan, and C. Ong, “The decomposition mechanism of SiO2 with the deposition of oxygen-deficient M(Hf or Zr)Ox films,” Thin Solid Films, vol. 462-463, pp. 106–109, 2004.

[73] J. Maria, D. Wickaksana, J. Parrette, and A. Kingon, “Crystallization in SiO2-metal oxide alloys,” J. Mater. Res., vol. 17, no. 7, pp. 1571–1579, 2002.

[74] M. Copel, E. Cartier, and F. Ross, “Formation of a stratified lanthanum silicate

dielectric by reaction with Si (001),” Appl. Phys. Lett., vol. 78, no. 11, pp. 1607–1609, 2001.

[75] T. Gougousi, M. Kelly, D. Terry, and G. Parsons, “Properties of La-silicate high-K dielectric films formed by oxidation of La on silicon,” J. Appl. Phys., vol. 93, no. 3, pp.

1691–1696, 2003.

[76] T. Yoshida, T. Shiraishi, H. Nohira, S. Ohmi, Y. Kobayashi, N. Aun, H. Iwai, W.

Sakai, K. Nakajima, M. Suzuki, K. Kimura, and T. Hattori, “Effect of post-deposition annealing of composition and chemical structures of La2O3 film/Si(100) interfacial transition layers,” International Workshop on Dielectric Thin Films for Future ULSI Devices 2004.

[77] B. Busch, J. Kwo, M. Hong, J. Mannaerts, B. Sapjeta, W. Schulte, E. Garfunkel, and T.

Gustafsson, “Interface reactions of high-k Y2O3 gate oxides with Si,” Appl. Phys. Lett., vol. 79, no. 15, pp. 2447–2449, 2001.

[78] M. Copel, E. Cartier, V. Narayanan, M. Reuter, S. Guha, and N. Bojarczuk,

“Characterization of silicate/Si(001) interfaces,” Appl. Phys. Lett., vol. 81, no. 22, pp.

4227–4229, 2002.

[79] C. Chaneliere, J. Autran, and R. Devine, “Conduction mechanisms in Ta2O5/SiO2 and Ta2O5/Si3N4 stacked structures on Si,” J. Appl. Phys., vol. 86, no. 1, pp. 480–486 1999.

[80] M. Houssa, R. Degraeve, P. Mertens, M. Heyns, J. Jeon, A. Halliyal, and B. Ogle,

“Electrical properties of thin SiON/Ta2O5 gate dielectric stacks,” J. Appl. Phys., vol. 86, no. 11, pp. 6462–6467, 1999.

[81] C. Chaneliere, J. Autran, R. Devine, and B. Balland, “Tantalum pentoxide (Ta2O5) thin films for advanced dielectric applications,” Mat. Sci. Eng., R22, pp. 269–322, 1998.

[82] A. Hippel, Dielectrics and Waves, John Wiley & Sons, 1954.

[83] M. Lampert and P. Mark, Current Injeciton in Solids, Academic, New York, 1970.

[84] M. Lovell, A. Avery, and M. Vernon, Physical Properties of Materials, ELBS, London,

1979, p.149.

[85] A. Jonscher and A. Ansari, “Photo-currents in silicon monooxide films,” Philosophical Magazine, vol. 8, no. 23, pp. 205–223, 1971.

[86] N. Mott, “Conduction in non-crystalline materials III. Localized states in a pseudogap and near extremities of conduction and valence bands,” Philosophical Magazine, vol.

19, pp. 835–852, 1969.

[87] L. Maissel and R. Glang, Handbook of Thin Film Technology, McGraw-Hill, 1970, Chapter 14.

[88] R. Blum, M. Sparve, J. Sablotny, and M. Eich, “High-electric-field of nonlinear optical polymers,” J. Opt. Soc. Am., vol. 15, no. 1, pp.318–328, 1998.

[89] J. Sworakowski, “Space-charge-limited currents in solids with nonuniform spatial trap distribution,” J. Appl. Phys., vol. 41, no. 1, pp. 292–295, 1970.

[90] Z. Kalenik and E. Wolf, “Transient isotopic studies of the role of lattice oxygen during oxidative coupling of methane on Sr promoted lanthanum oxide,” Catalysis Today, vol.

13, pp.255–264, 1992.

[91] A. Anshits and E. Voskresenskaya, and L. Kurteeva, “Role of defect structure of active oxides in oxidative coupling of methane,” Catalysis Letters, vol. 6, pp.67–75, 1990.

[92] S. Stemmer, J. Maria, and A. Kingon, “Structure and stability of La2O3/SiO2 layers on S i(001),” Appl. Phys. Lett., vol. 79, no. 1, pp. 102–104, 2001.

[93] T. Mahalingam and M. Radhakrishnan, “Electrical conduction in amorphous La2O3

thin films,” J. Mat. Sci. Lett., vol .5, pp.641–642, 1986.

[94] S. Guha, E. Cartier, M. Gribelyuk, N. Bojarczuk, and M. Copel, “Atomic beam deposition of lanthanum- and yttrium-based oxide thin films for gate dielectrics,” Appl.

Phys. Lett., vol. 77, no. 17, pp. 2710–2712, 2000.

[95] M. Copel, E. Cartier, F. Ross, “Formation of a stratified lanthanum silicate dielectric by reaction with Si (001),” Appl. Phys. Lett., vol. 78, no. 11, pp. 1607–1609, 2001.

[96] W. D. Kingery, H. K. Bowen, and D. R. Uhlmann, Introduction to Ceramics, 2nd Ed., Wiley, New York, 1976.

[97] Charles Kittel, Introduction to Solid State Physics, John Wiley & Sons, 8th Ed., 2004.

[98] J. R. Macdonald, “Theory of ac space-charge polarization effects in photoconductors, semiconductors, and electrolytes,” Phy. Rev., vol. 92, no. 1, pp. 4–17, Oct. 1953.

[99] R. Coelho, “On the relaxation of a space charge,” Rev. Phys. Appl., vol. 18, no. 3, pp.

137–146, Mar. 1983.

[100] S.-J. Lee, K.-Y. Kang, and S.-K. Han, “Low-frequency dielectric relaxation of BaTiO3

thin-film capacitors,” Appl. Phys. Lett., vol. 75, no. 12, pp. 1784–1786, Sept. 1999.

[101] C. Besset , S. Bruyere, S. Blonkowski, S. Cremer, and E. Vincent , “MIM capacitance variation under electrical stress,” Microelectron. Reliab., vol. 43, no. 8, pp. 1237–1240, Aug. 2003.

[102] C.-C. Hung, A. S. Oates, H.-C. Lin, Y.-E. P. Chang, J.-L. Wang, C.-C. Huang, and Y.-W. Yau, “An innovative understanding of metal–insulator–metal (MIM)-capacitor degradation under constant-current stress,” IEEE Trans. Device and Reliab., vol. 7, no.

3, pp. 462–467, Sept. 2007.

[103] C. Zhu, H. Hu, X. Yu, S. J. Kim, A. Chin, M.-F. Li, B. J. Cho, and D.-L. Kwong,

“Voltage and temperature dependence of capacitance of high-κ HfO2MIM capacitors:

a unified understanding and prediction,” in IEDM Tech. Dig., 2003, pp. 879–882.

[104] H. Hu, C. Zhu, S. J. Kim, X. Yu, M.-F. Li, B. J. Cho, S. H. D. Chan, M. B. Yu, S. C.

Rustagi, A. Chin, and D.-L. Kwong, “RF, DC, and reliability characteristics of ALD HfO2-Al2O3 laminate MIM capacitors for Si RF IC applications,” IEEE Trans.

Electron Devices, vol. 51, no. 6, pp. 886–894, Jun. 2004.

[105] C.-H. Cheng, K.-C. Chiang, H.-C. Pan, C.-N. Hsiao, C.-P. Chou, S. P. Mcalister, and A. Chin, “Improved stress reliability of analog TiHfO metal–insulator–metal capacitors using high-work-function electrode,” Jpn. J. Appl. Phys., vol. 46, no. 11, pp.

7300–7302, Nov., 2007

[106] H. Stork, “Reliability challenges for sub-100 nm system on chip technologies, Keynote address,” in Proc. IRPS 2004.

[107] A. Martin, “Reliability of gate dielectrics and metal–insulator–metal capacitors,”

Microelectron. Reliab., vol. 45, no. 5, pp. 834–840, May 2005.

[108] W. R. Hunter, “The analysis of oxide reliability data,” in IEEE IRW, 1998, pp.

114–134.

[109] K.-H. Allers, “Prediction of dielectric reliability from I–V characteristics:

Poole–Frenkel conduction mechanism leading to √E model for silicon nitride MIM capacitor,” Microelectron. Reliab., vol. 44, no. 3, pp. 411–423, Mar. 2004.

[110] B. O'Connell, T. Thibeault, and P. Chaparala, “Plasma damage considerations involving metal-insulator-metal (MIM) capacitors,” in IEEE ICICDT, 2004, pp.

123–126.

[111] T. Kagiyama, Y. Tosaka, R. Yamabi, and H. Yano, “Study on effect of fabrication process on TDDB lifetime of MIM capacitors,” in CS Mantech Conference, 2007, pp.

51–54.

[112] K.-I Takeda, K. Hinode, I. Oodake, N. Oohashi, and H. Yamaguchi, “Enhanced dielectric breakdown lifetime of the copper/siliconnitride/silicon dioxide structure,” in Proc. RPSP 1998, pp. 36–41.

[113] D. Roberts, W. Johnstone, H. Sanchez, O. Mandhana, D. Spilo, J. Hayden, E. Travis, B.

Melnick, M. Celik, Byoung Woon Min, J. Edgerton, M. Raymond, E. Luckowski, C.

Happ, A. Martinez, B. Wilson, P. Leung, T. Garnett, D. Goedeke, T. Remmel, K.

Ramakrishna, and B. E. J. White, “Application of on-chip MIM decoupling capacitor for 90 nm SOI microprocessor,” in IEDM Tech. Dig., 2005, pp. 72–75.

[114] S.-J. Kim, B. J. Cho, M. B. Yu, M.-F. Li, Y.-Z. Xiong, C. Zhu, A. Chin, and D.-L.

Kwong, “High capacitance density (> 17 fF/μm2) Nb2O5-based MIM capacitors for

future RF IC applications.” in Symp. VLSI Tech. Dig., 2005, pp. 56–57.

[115] A. Berthelot, C. Caillat, V. Huard, S. Barnola, B. Boeck, H. Del-Puppo, N. Emonet, and F. Lalanne, “Highly reliable TiN/ZrO2/TiN 3D stacked capacitors for 45 nm embedded DRAM technologies,” in Proc. ESSDERC, 2006, pp. 343–346.

[116] S. Wolf and R. N. Tauber, Silicon Processing for the VLSI Era, Vol. 1: Process Technology, Lattice Press, 2nd Ed., 1999.

[117] K. C. Chiang, C. H. Cheng, H. C. Pan, C. N. Hsiao, C. P. Chou, A. Chin, and H. L.

Hwang, “High temperature leakage improvement in metal–insulator–metal capacitors by work-function tuning,” IEEE Electron Device Lett., vol. 28, no. 3, pp. 235–237, Mar. 2007.

[118] K. C. Chiang, C. C. Huang, A. Chin, W. J. Chen, H. L. Kao, M. Hong, and J. Kwo,

“High performance micro-crystallized TaN/SrTiO3/TaN capacitors for analog and RF applications,” in Symp. VLSI Tech. Dig., 2006, pp. 126–127.

[119] K. C. Chiang, C. H. Cheng, K. Y. Jhou, H. C. Pan, C. N. Hsiao, C. P. Chou, S. P.

McAlister, A. Chin, and H. L. Hwang, ‘Use of a high-work-function Ni electrode to improve the stress reliability of analog SrTiO3 metal–insulator–metal capacitors,”

IEEE Electron Device Lett., vol. 28, no. 8, pp. 694–696, Aug. 2007.

[120] K. C. Chiang, C.-C. Huang, G. L. Chen, W. J. Chen, H. L. Kao, Y.-H. Wu, and A.

Chin, “High-performance SrTiO3 MIM capacitors for analog applications,” IEEE Trans. Electron Devices, vol. 53, no. 9, pp. 2312–2319, Sep. 2006.

[121] International Technology Roadmap for Semiconductors, 2007 Edition, Process Integration, Devices, & Structure.

[122] B. V. Crist, Handbook of Monochromatic XPS Spectra, The Elements of Native Oxides, Wiley, 2000.

[123] K. Kakushima, K. Tsutsui, T. Hattori and H. Iwai, “Lanthanum Oxide for Gate Dielectric Insulator,” in Conf. on Electron Devices and Solid-State Circuits, 2005, pp.

161–166.

[124] F. E. Kamel, P. Gonon, and C. Vallee, “Experimental evidence for the role of electrodes and oxygen vacancies in voltage nonlinearities observed in high-k metal-insulator-metal capacitors,” Appl. Phys. Lett., vol. 91, pp. 1729091–1729093, 2007.

[125] K. Takeda, T. Ishikawa, T. Mine, T. Imai, and T. Fujiwara, “Characterization and modeling of voltage and temperature dependence of capacitance in Al2O3-laminated

[125] K. Takeda, T. Ishikawa, T. Mine, T. Imai, and T. Fujiwara, “Characterization and modeling of voltage and temperature dependence of capacitance in Al2O3-laminated

相關文件