• 沒有找到結果。

Chapter 4 Conclusions and future works

III. Simulation results and conclusion

In this design we use the ADS to simulate circuit and ADS momentum to simulate the wire connected each device. The simulation result shows that the input and output return loss S11 is 18.75dB and S22 is 26dB at 5.8Ghz.The noise figure is 2.0dB. The power gain S21 is 15dB, as shown in Fig.Ⅲ.1,2. P1dB of this design is -13.5dBm, as shown in Fig.Ⅲ.3. IIP3 is , as shown in Fig.Ⅲ.4. Total consumed power is 8.24mA* 1.5V=12.36mW. The chip area is 0.684x0.614mm2 and the layout is shown in Fig.Ⅲ.5. In this design we use the transistor’s intrinsic capacitor to achieve input match and do not need the gate inductor to improve the noise figure. The TableⅢ-1 shows performance summary and comparison. This design has been submit to APMC 2007.

0 1 2 3 4 5 6 7 8 9 10 11 12 frequency(GHz)

-35 -30 -25 -20 -15 -10 -5 0 5 10 15 20

dB

S11 S22 S21 S12

Fig.Ⅲ.1 Simulation result of S-parameter

1 2 3 4 5 6 7 8 9 10 11 12

frequency(GHz) 2

4 6 8 10 12 14 16

NF

Fig.Ⅲ.2 Simulation result of NF

-40 -35 -30 -25 -20 -15 -10 input power(dBm)

12 12.5 13 13.5 14 14.5 15 15.5 16

power gain

P1dB=-13.5dBm

Fig.Ⅲ.3. simulation result of P1dB

-30 -25 -20 -15 -10 -5

dBm -70

-60 -50 -40 -30 -20 -10 0

IIP3_sim.

IIP3=-7.8dBm Fig.Ⅲ.4 simulation result of IIP3.

Fig.Ⅲ.5 layout of LNA.

Table Ⅲ-1 performance summary and comparison.

comparison

This work [26] [24]

Technology 0.18umCMOS 0.18umCMOS 0.18umCMOS

Frequency

(GHZ) 5.8 5.25 5.7

S11(dB) -18.76 -14.7 -15

S22(dB) -26.167 - -9

Powe

gain(dB) 15.136 16 12.5

NF 2.00 1.8 3.7

P1dB(dBm) -13.5 - -13.5

Vdd(V) 1.5 1.8 1.8

Power

consumption 12.36mW 7.8mW 14.6mW

Reference

[1] Tajinder Manku, Galen Beck, and Etty J. Shin, “A Low-Voltage Design Technique for RF Integrated Circuits.” IEEE Transactions on Circuits and Systems-Ⅱ: Analog and digital Signal Processing, Vol.45, NO. 10, October 1998

[2] T. H. Lee, The Design of CMOS Radio-Frequency Integrated Circuits. Cambrige, U.K.:Cambrige Univ. Press, 1998.

[3] David J. Cassan, and John R. Long, “A 1-V Transformer-Feedback Low-Noise Amplifier for 5-GHz Wireless LAN in 0.18um CMOS,” IEEE Journal of Solid-State Circuits, VOL. 38, No. 3, March 2003.

[4] John R. Long, “Monolithic Transformers for Silicon RF IC Design,” IEEE Journal of Solid-State Circuits, Vol. 35, No. 9, September 2000.

[5] A. Rofougaran, J. Y.-C. Chang,M. Rofougaran, and A .A. Abidi, ”A 1GHz CMOS RF front-end IC for a direct-conversion wireless receiver.” IEEE J. Solid-State Circuits, vol.

31, no.7, pp.800-889, Jul. 1996.

[6] D. K. Shaeffer and T. H. Lee, “A 1.5-V,1.5-GHz CMOS low noise amplifier,” IEEE J.

Solid-State Circuits, vol. 32, no.5, pp. 745-759, May 1997.

[7] S. Andersson, C. Svensson, and O. Drugge, “Wide-band LNA for a multistandard wireless Receiver in 0.18um CMOS,” in Proc. EDDCIRC, Sep. 2003, pp. 655-658.

[8] R. S. Lee, D. D. Wentaloff, and A. P. Chandarakasan, “An ultra-wide-band baseband front-end,” in Proc. IEEE RFIC Symp. Jun. 2004, pp.493-496.

[9] C-W. Kim, M.-S. Kang, P. T. Anh, H.-T. Kim, and S.-G. Lee, “An ultra-wide-band CMOS low noise amplifier for 3-5 GHz UWB system,” IEEE J. Solid-State Circuits, vol.

40, no. 2, pp. 544-547, Feb. 2005.

[10] Brian M. Ballweber, Ravi Gupta, and David J. Allstot, ”A fully integrated 05-5.5-GHz

CMOS Distributed Amplifier ,” IEEE Transactions on Solid-State Circuits, Vol. 35, No.2, February 2000.

[11] Andrea Bevilacqua, and Ali M. Niknejad, ”An Ultrawideband CMOS low-noise amplifier for 3.1-10.6GHz Wireless Receivers,” IEEE Journal of Solid-State Circuits, Vol. 39, No. 12, December 2004.

[12] Chang-Wan Kim, Min-Suk Kang, Phan Tuan Anh, Hoon-Tae Kim, and Sang-Gug Lee,”An Ultra-wideband CMOS low noise amplifier for 3-5-GHz UWB System,” IEEE Journal of Solid-State Circuit, vol.40, No.2, February 2005.

[13] Aly Ismail and Ascad A. Aibdi, “A 3-10-GHz low noise amplifier with wideband LC-ladder matching network,” Solid-State Circuits, IEEE Journal, Vol. 39, Issue 12, Dec.2004,pp2269-2277.

[14] Trung-Kien Nguyen, Chung-Hwan Kim, Gook-Ju Ihm, Moon-Su Yang, and Sang-Gug Lee, “CMOS Low-Noise Amplifier Design Optimization Techniques,” IEEE Transactions on Microwave Theory and Techniques, Vol. 52, No. 5, MAY 2004.

[15] Yang Lu, Kiat Seng Yeo, Alper Cabuk, Jianguo Ma, Manh Anh Do, and Zhenghao Lu,

“A Novel CMOS low-noise amplifier design for 3.1 to 10.6-GHz Ultra-wide-band Wireless Receivers,” IEEE Transactions on Circuits and Systems-Ι: Regular papers, Vol.53, No.8 August 2006.

[16] Michael T. Reiha, and John R. Long, “A 1.2V reactive-feedback 3.1-10.6GHz Low-noise amplifier in 0.13um CMOS,” IEEE Journal of Solid-State Circuits, Vol. 42, No. 5, MAY 2007.

[17] C.-T. Fu and C.-N. Kuo, “3-11-GHz CMOS UWB LNA using dual feedback for broadband matching,” in Proc. IEEE RFIC Symp.,San Francisco, CA, Jun. 2007,pp.

67-70.

[18] Robert Hu, ”Wide-Band Matched LNA Design using transistor’s intrinsic Gate-Drain Capacitor,” IEEE Transactions On Microwave Theory and Techniques, Vol. 54, No. 3.

MARCH 2006.

[19] Sudip Shekhar, Jeffrey S. Walling, and David J. Allstot,”Bandwidth Extension Techniques for CMOS Amplifiers,” IEEE Journal of Solid-State Circuits, Vol. 41, No.

11, November 2006.

[20] H. Fouad, K. Sharaf, E. El-Diwany, and H. El-Hennawy,“An RF CMOS cascode LNA with current reuse and inductance source degeneration,” in Radio Science Nineteenth National Conference of the Proceedings NRSC 2002, 2002, pp.450-457.

[21] F. Gatta, E. Sacchi, F. Svelto, P. Vilmercati, and R. Castello, “A 2-dB noise figure 900-MHz differential CMOS LNA,” Solid-State Circuits, IEEE Journal, vol. 36, no. 10, Oct. 2001.

[22] C.-Y. Cha and S.-G. Lee, “A low power, high gain LNA topology,” in Int. Microwave and Millimeter Wave Technology Conf., 2000, pp.420-423.

[23] K. Yamamoto, T. Heima, A. Furukawa, M. Ono, Y. Hashizume, H. Komurasaki, H. Sato, and N. Kato, “CMOS low-noise/driver MMIC amplifier for 2.4-GHz and 5.2-GHz wireless application,” Silicon Monolithic Integrated Circuits in RF Systems, pp. 18-22, 2001.

[24] Che-Hong Liao, and Huey-Ru Chuang, “A 5.7-GHz 0,18-μm CMOS Gain-Controlled Differentail LNA With Current Reuse for WLAN Receiver,” IEEE Microwave and Wireless Components Letters, vol. 13, no. 12, December 2003.

[25] Trung-Kien et al., “CMOS Low-Noise Amplifier Design Optimization Techniques,”

IEEE Transactions on Microwave Theory and Techniques, vol. 52 no.5 May 2004.

[26] Fatemeh Kalantari, Naser Masoumi, and roghaye Saeidi, “A 5.25GHz Low noise amplifier for WMAN Applications in 0.18μm CMOS Technology,” 2005 IEEE.

Microelectronics, 2005. ICM 2005. The 17th International Conference on 13-15. Dec.

2005 Page(s):122-127

[27] Yanjie Wang, M.Zamin Khan and Kris Iniewski, “A 0.65V, 1.9mW CMOS Low-noise

Amplifier at 5GHz,” proceeding of the 9th International Database Engineering and Application Symposium(IDEAS’05) 2005.

[28] M.N. El-Gamal, K.H Lee and T.K. Tsang, “Very low-voltage(0.8V)CMOS receiver front end for 5GHz RF application,” IEEE proc. Circuits Decices Systm. vol.149. no.516, Oct./Dec. 2002.

[29] Jihak Jung, Kyungho Chung, Taeyeoul Yun, Jaehoon Choi, and Hoontae Kim,

“Ultra-wideband low noise amplifier using a cascade feedback topology,” Silicon Monolithic integrated Circuits in RF Systems,2006. Digest of Papers. 2006 Topical Meeting on 18-20 Jan. 2006.

[30] Quail El-Gharniti, Eric Kerherve, and Jean-Baptiste Begueret, “Modeling and Characterization of On-Chip Transformers for Silicon RFIC,” IEEE Transactions on Microwave Theory and Techniques, vol. 55,no. 4, April 2007.

Vita and Publication

姓名:方瑞嫻

學歷:

國立台南女子高級中學(86 年 9 月~89 年 6 月)

國立中山大學電機工程學系(90 年 9 月~93 年 6 月)

國立交通大學電信工程所碩士班(94 年 9 月~96 年 6 月)

Publication Remarks:

International conference papers:

1. H. I. Wu, Jui Hsien Fan and Christina F. Jou, “A 0.7V Transformer-feedback CMOS Low-noise Amplifier for 5-GHz Wireless LAN”, Progress In Electromagnetics Research Symposium (PIERS 2007), March 26-30, 2007, Beijing, China.

相關文件