• 沒有找到結果。

超寬頻射頻收發電路之研製 (1/3)

N/A
N/A
Protected

Academic year: 2021

Share "超寬頻射頻收發電路之研製 (1/3)"

Copied!
5
0
0

加載中.... (立即查看全文)

全文

(1)

行政院國家科學委員會專題研究計畫 期中進度報告

子計畫五:超寬頻射頻收發電路之研製(1/3)

計畫類別: 整合型計畫

計畫編號: NSC93-2219-E-002-024-

執行期間: 93 年 08 月 01 日至 94 年 07 月 31 日

執行單位: 國立臺灣大學電信工程學研究所

計畫主持人: 王暉

報告類型: 完整報告

處理方式: 本計畫可公開查詢

中 華 民 國 94 年 5 月 10 日

(2)

九十三學年度研究計畫執行進度報告

計畫名稱:

超寬頻射頻收發電路之研製 (1/3)

Research and Development of Ultra Wide Band Tranceiver Circuits(1/3)

計畫編號:

NSC 93-2219-E-002-024

執行期限:

93 年 8 月 1 日至 94 年 7 月 31 日

主 持 人:

王 暉

執行單位:

國立台灣大學電信工程學研究所

學 門:

微波工程

二. 計畫摘要

本計畫的目標為:研發 40-48GHz 頻段超寬頻無線收發機中之升、降頻器微波積

體電路,以提升國內微波單晶積體電路之技術。

本研究的內容包括:設計用等效電路模型的建立,電路之設計及實作,並以量

測結果驗証設計理念,進而建立國內此項高頻電路之技術。

(3)

三. 預期完成之工作項目

本計畫擬於三年內,設計、研製、並分析數種升、降頻器微波電路,其分年

之研究子題如下:

第一年 進行第一循環升、降頻器單晶微波積體電路之設計與製作,

第二年 進行量測第一年所製作之電路以及設計第二循環之晶片,

第三年 進行多功能晶片之整合設計。

而每一年度擬完成項目如下:

1. 高頻電路單晶片之設計及量測,

2. 元件模型之驗証及改進。

四. 第一年 ( 93.8.1-94.7.31) 研究項目執行進度

1. 設計第一循環之晶片 ( 已完成 )

1) 低雜訊放大器之設計 ( 已完成 )

2) 混頻器之設計 ( 已完成 )

2. 元件等效電路之驗証及改進 ( 進行中 )

3. 實驗系統建立與量測 ( 近完成階段 )

4. 撰寫報告 ( 準備階段 )

五. 具體成果

已完成下列論文

Journal paper:

(4)

[3] Ren-Chieh Liu, Chin-Shen Lin, Kuo-Liang Deng, and Huei Wang, “Design and analysis of DC-to-14-GHz and 22-GHz CMOS cascode distributed amplifiers,” IEEE Journal of Solid State Circuits, vol. 39, no. 8, pp. 1370-1374, August 2004. (NSC 89-2213-E-002-178, NSC 89-2219-E-002-042 and ME-89-E-FA06-2-4-6)

[4] Ming-Da Tsai and Huei Wang, “A 0.3-25-GHz ultra-wideband mixer using commercial 0.18-µm CMOS technology," IEEE Microwave and Wireless Component Letters, vol. 14, no. 11, pp. 522-524, Nov. 2004. (ME 89-N-FA01-1-1, ME 89-E-FA06-2-4, NSC 90-2219-E-002-007, and NSC 89-2213-E-002-178) [5] Ming-Da Tsai, Kuo-Liang Deng, Huei Wang, Chun-Hung Chen, Chih-Sheng Chang,and John G. J. Chern,

“A miniature, 25-GHz 9-dB CMOS cascaded single-stage distributed amplifier," IEEE Microwave and

Wireless Component Letters, vol. 14, no. 12, pp. 554-556, Dec. 2004. (ME 89-N-FA01-1-1, ME

89-E-FA06-2-4, NSC 90-2219-E-002-007, and NSC 89-2213-E-002-178)

[6] Kang-Wei Fan, Ching-Chih Weng, Zou-Min Tsai, Huei Wang and Shyh-Kang Jeng, “K-Band MMIC active band-pass filters," IEEE Microwave and Wireless Component Letters, vol. 15, no. 1, pp. 19-21, Jan. 2005. (NSC 90-2219-E-002-007, and NSC 89-2213-E-002-178)

[7] Ming-Fong Lei and Huei Wang, "An analysis of miniaturized dual mode bandpass filter structure using shunt capacitance perturbation," IEEE Trans. on Microwave Theory and Tech., vol. 53, no. 3, pp. 861-867, March, 2005. (NSC 89-2213-E-002-178, NSC 89-2219-E-002-042 and ME-89-E-FA06-2-4-6)

[8] Ming-Da Tsai, Yi-Hsien Cho, and Huei Wang, “A 5-GHz low phase noise differential Colpitts CMOS VCO," to appear in IEEE Microwave and Wireless Component Letters. (NSC 90-2219-E-002-007, and NSC 89-2213-E-002-178)

Conference paper

[1] Tian-Wei Huang, Pei-Si Wu, Ren-Chieh Liu, Jeng-Han Tsai, Huei Wang, and Tzi-Dar Chieuh, “Boundary scan for 5-GHz RF pins using LC isolation networks,” Proc. of 22nd IEEE VLSI Test Symposium, Napa

Valley, CA, USA, April 2004.

[2] Chi-Hsueh Wang, Yo-Shen Lin, Huei Wang, and Chun-Hsiung Chen, “A Q-band miniaturized uniplanar MMIC HEMT mixer,” 2004 IEEE MTT-S International Microwave Symposium Digest, vol. 1, pp. 187-190, Dallas, Texas, June, 2004.

[3] Ming-Da Tasi, Chin-Shen Lin, Chi-Hsueh Wang, Chun-Hsien Lien and Huei Wang, “A 0.1-23-GHz SiGe BiCMOS analog multiplier and mixer based on attenuation-compensation technique,” 2004 IEEE RFIC

Symposium Digest, pp. 417-420, Dallas, Texas, June, 2004. (NSC 91-2219-E-002-014, NSC

91-2213-E-002-019 and ME 89-E-FA06-2-4-6)

[4] Pei-Si Wu, Chao-Hsiung, Tseng, Ming-Fong Lei, Tian-Wei Huang, Huei Wang, and Philip Liao, “3-D X-band new transformer balun configuration using the multilayer ceramic technologies,” 34th European Microwave Conference Proceedings, vol. 1, pp. 385-388, Amsterdam, Netherlands, Oct., 2004. (NSC

93-2725-E-002-PAE, NSC 93-2219-E-002-016, NSC 93-2219-E-002-024 and NSC-2213-E-002-033) [5] Ming-Da Tsai, Huei Wang, Jui-Feng Kuan, and Chih-Ping Chao, “A miniature 4.3-7-GHz, 1-V CMOS

LNA with helical inductors,” 34th European Microwave Conference Proceedings, vol. 1, pp. 29-32,

Amsterdam, Netherlands, Oct., 2004. (NSC 92-2213-E-002-069 and NSC 93-2752-E-002-002-PAE) [6] Chin-Shen Lin, Ming-Da, Tsai, Huei Wang, Yu-Chi Wang, and Chung-Hsu Chen, “A monolithic HBT

broadband Darlington amplifier using modified triple Darlington pair,” European GAAS Conference

Proceedings, pp. 331-334, Amsterdam, Netherlands, Oct., 2004. (NSC 93-2725-E-002-PAE, NSC

93-2219-E-002-016, NSC 93-2219-E-002-024 and NSC-2213-E-002-033)

[7] Hong-Yeh Chang, Huei Wang, Yu-Chi Wang, Pane-Chane Chao, and Chung-Hsu Chen, “A 22-GHz ultra low phase noise push-push dielectric resonator oscillator using MMICs,” European GAAS Conference

Proceedings, pp. 33-36, Amsterdam, Netherlands, Oct., 2004. (NSC 93-2725-E-002-PAE, NSC

93-2219-E-002-016, NSC 93-2219-E-002-024 and NSC-2213-E-002-033)

[8] Tsung-Liang Lin, Ren-Chieh Liu, Ming-Da Tsai, and Huei Wang, "A low-noise low-Power transimpedance amplifier for 10-G/s optical communications," 16th Asia Pacific Microwave Conference Technical Digest, New Dehli,

India, Dec., 2004.

[9] To-Po Wang, Ming-Da Tsai, Ren-Chieh Liu and Huei Wang, "A high conversion gain and low LO power 5-6-GHz CMOS mixer," 16th Asia Pacific Microwave Conference Technical Digest, New Dehli, India, Dec., 2004.

[10] Mei-Chao Yeh, Zou-Min Tsai, and Huei Wang, "A miniature singly balanced mixer using seven-symmetric -coupled-line marchand balun," 16th Asia Pacific Microwave Conference Technical

Digest, New Dehli, India, Dec., 2004.

[11] Chi-Hsueh Wang, Huei Wang, and Chun Hsiung Chen, "A miniaturized uniplanar MMIC diode mixer with multifunction transition," 16th Asia Pacific Microwave Conference Technical Digest, New Dehli, India, Dec., 2004.

(5)

[12] Jeng-Han Tsai, Hong-Yeh Chang, Pei-Si Wu, Tian-Wei Huang, and Huei Wang, “A 44-GHz high-linearity MMIC medium power amplifier with a low-loss built-in linearizer,” 2005 IEEE MTT-S International

Microwave Symposium Digest, Long Beach, CA, June 2005.

[13] Ming-Da Tsai, Kun-You Lin, and Huei Wang, “A 5.4-mW LNA using 0.35-µm SiGe BiCMOS technology for 3.1-10.6-GHz UWB wireless receivers,” 2005 IEEE RFIC Symposium Digest, Long Beach, CA, June 2005.

[14] Shi-Chieh Shin, Szu-Fan Lai, Kun-You Lin, Ming-Da Tasi, Huei Wang and Chih-Sheng Chang, and Yung-Chih Tsai, “18-26 GHz low-noise amplifiers using 130- and 90-nm bulk CMOS technologies,”

2005 IEEE RFIC Symposium Digest, Long Beach, CA, June 2005.

[15] Mei-Chao Yeh, Ren-Chieh Liu, Zuo-Min Tsai, and Huei Wang, “A miniature low-insertion-loss, high-power CMOS SPDT switch using floating-body technique for 2.4- and 5.8-GHz applications,” 2005

參考文獻

相關文件

發射電路:為利用 PT2248 (U1,Infrared Remote Control Transmitter)及其週 邊元件、紅外線二極體(D4,IR Diode)與按鍵,共同組合成一紅外線發

Zhang, “Novel Microstrip Triangular Resonator Bandpass Filter with Transmission Zeros and Wide Bands Using Fractal-Shaped Defection,” Progress In Electromagnetics Research, PIER

3. Show the remaining statement on ad h in Proposition 5.27.s 6. The Peter-Weyl the- orem states that representative ring is dense in the space of complex- valued continuous

接收器: 目前敲擊回音法所採用的接收 器為一種寬頻的位移接收器 其與物體表

資料來源:‘ASEAN: A Community Stalled?’ in Jim Rolfe, ed., The Asia-Pacific: A Region in Transition (Honolulu: Asia-Pacific Centre for Security Studies, 2004),

• Zhen Yang, Wei Chen, Feng Wang, Bo Xu, „Improving Neural Machine Translation with Conditional Sequence Generative Adversarial Nets“, arXiv 2017. • Supervised

[13] Chun-Yi Wang, Chi-Chung Lee and Ming-Cheng Lee, “An Enhanced Dynamic Framed Slotted ALOHA Anti-Collision Method for Mobile RFID Tag Identification,” Journal

Wolfgang, "The Virtual Device: Expanding Wireless Communication Services through Service Discovery and Session Mobility", IEEE International Conference on