• 沒有找到結果。

藉由複雜來計算局部上的模

N/A
N/A
Protected

Academic year: 2021

Share "藉由複雜來計算局部上的模"

Copied!
84
0
0

加載中.... (立即查看全文)

全文

(1)國立臺灣師範大學數學系碩士班碩士論文. 指導教授:. 劉容真. 博士. Computation of Local Cohomology Modules via Čech Complexes. 研 究 生:. 李典匡. 中 華 民 國 九 十 八 年 六 月.

(2)  . 致謝詞    我能順利完成這篇論文,首先要感謝的就是劉容真老師,老師對 於學術上嚴謹認真的態度,都將做為我往後努力學習的目標。過去的 兩年,不管是在課業上還是生活上,劉容真老師都給予我相當大的支 持與鼓勵,當老師的學生真的很幸福。感謝洪有情老師以及林惠雯老 師在百忙之中抽空擔任我的口試委員,老師們口試時給的建議讓我獲 益良多。  感謝同門的好友小島、韋達,陪我一起努力、奮鬥;感謝文傑、 宜容、建勳、婷婷、承緯這兩年的陪伴;特別是晉宇、雅芳,在碩二 下學期陪我走過最黑暗的時期,在我難過時陪我聊天散心,真的真 的…謝謝;也謝謝小金出現在這最後兩個月,給了我許多正面的想法 並且相信自己;最後我要感謝我的家人,有你們在背後支持我,才能 讓我能無後顧之憂的完成課業。   .

(3) Contents 1 Introduction. 1. 2 A Special Case. 6. 3 The General Case. 20. References. 81.

(4) 1. Introduction. Let (A, m, k) be a Noetherian local ring with maximal ideal m and let M be an A-module. We define Γm (M ) = {y ∈ M | mk y = 0 for some k ≥ 0}. It is not difficult to check that Γm (−) is a left exact additive functor on the category n of A-modules. The right derived functor associate to Γm (−), denoted by Hm (−), is. called the local cohomology functor. In other words, take an injective resolution I of M and delete M , then we get a cochain complex Γm (I) by applying the functor Γm n to every term in I. Then the nth local cohomology module Hm (M ) of M is the nth n cohomology H n (Γm (I)) associate to Γm (I), i.e., Hm (M ) = H n (Γm (I)). In this thesis, i we compute the local cohomology modules Hm (A) for the Noetherian local ring A = Rp. where R = Q[x0 , x1 , . . . , xn , w]/hx0 w, w2 i and p = hx0 , x1 , . . . , xn , wiR. Our strategy is ˇ making use of Cech complexes.. ˇ Definition 1.1 Let x1 , x2 , . . . , xn be a sequence of elements of a ring R. The Cech complex with respect to the sequence x1 , x2 , . . . , xn is the cochain complex d. d. dn−1. 0 1 C : 0 −→ C 0 −→ C 1 −→ · · · −→ C n −→ 0. where C t =. L. 1≤i1 <i2 <...<it ≤n. Rxi1 xi2 ···xit and the differentiation dt : C t → C t+1 is given. on the component Rxi1 ···xit → Rxj1 xj2 ···xjt+1 to be   (−1)s−1 · nat : R ˆ xi1 ···xit → (Rxi1 ···xit )xjs if {i1 , . . . , it } = {j1 , . . . , js , . . . , jt+1 },  0 otherwise. Note that nat : Rxi1 ···xit → (Rxi1 ···xit )xjs is the natural homomorphism defined by r xki r 7→ . (xj1 · · · xjt )k (xj1 · · · xjt xi )k We use Example 1.2 to illustrate this definition. 1.

(5) ˇ Example 1.2 Let R = Q[x0 , x1 , w]/hx0 w, w2 i, and we consider the Cech complex with respect to the sequence x0 , x1 d. d. d. 0 → R →0 Rx0 ⊕ Rx1 →1 Rx0 x1 →2 0. We think of R as Q[x0 , x1 ] + Q[x1 ]w. Note that x0 w = 0 in R, so w = 0 in Rx0 and Rx0 x1 . Thus we think of Rx0 , Rx1 , and Rx0 x1 as ∞ X 0 , Rx0 = Q[x0 , x1 ] + Q[x1 ]x−α 0 α0 =1. Rx1 = Q[x0 , x1 ] + Q[x1 ]w +. ∞ X. 1 Q[x0 ]x−α 1. Rx0 x1 = Q[x0 , x1 ] +. α0 =1. 0 Q[x1 ]x−α 0. 1 , Qwx−α 1. α1 =1. α1 =1 ∞ X. +. ∞ X. +. ∞ X. 1 Q[x0 ]x−α 1. α1 =1. +. ∞ X ∞ X. 0 −α1 x1 . Qx−α 0. α0 =1 α1 =1. 1. Note that the map nat : R → Rx0 sends every element in Q[x0 , x1 ] to itself and sends every element in Q[x1 ]w to zero. Indeed, for a ∈ Q[x1 ]w in R, since a is a multiple of w and since x0 w = 0 in R, nat(a) = a/1 = ax0 /x0 = 0. Moreover, the map nat : R → Rx1 sends every element in Q[x0 , x1 ] or Q[x1 ]w to itself. Therefore, for α + β ∈ R with α ∈ Q[x0 , x1 ] and β ∈ Q[x1 ]w, d0 (α + β) = d0 (α) + d0 (β) = (α, α) + (0, β) = (α, α + β) ∈ Rx0 ⊕ Rx1 . ∞ P. 2. Note that the map nat : Rx0 → Rx0 x1 sends every element in Q[x0 , x1 ] or. 0 Q[x1 ]x−α 0. α0 =1. to itself. Moreover, the map nat : Rx1 → Rx0 x1 sends every element in Q[x0 , x1 ] ∞ ∞ P P 1 1 or Q[x0 ]x−α to itself, and it sends every element in Q[x ]w or Qwx−α to 1 1 1 α1 =1. zero. Therefore, for α1 +α2 ∈ Rx0 with α1 ∈ Q[x0 , x1 ] and α2 ∈. ∞ P α0 =1. for β1 + β2 + β3 + β4 ∈ Rx1 with β1 ∈ Q[x0 , x1 ], β2 ∈ Q[x1 ]w, β3 ∈ and β4 ∈. ∞ P. α1 =1 0 Q[x1 ]x−α , and 0. ∞ P. Q[x0 ]x1−α1 ,. α1 =1 1 Qwx−α , 1. α1 =1. d1 (α1 + α2 , β1 + β2 + β3 + β4 ) = d1 (α1 , 0) + d1 (α2 , 0) + d1 (0, β1 ) + d1 (0, β2 ) + d1 (0, β3 ) + d1 (0, β4 ) = −α1 − α2 + β1 + β3 ∈ Rx0 x1 . 2.

(6) It is well-know that if (A, m, k) is a Noetherian local ring with maximal ideal m n (A) ' H n (CA ) for all and if x1 , x2 , . . . , xn ∈ A generate an m-primary ideal, then Hm. n ≥ 0, where CA is the cochain complex with respect to the sequence x1 , x2 , . . . , xn . A proof with complete detail for this fact can be found in [C]. Moreover, for a cochain complex C over a ring R, taking cohomology commutes with tensoring a flat R-module, i.e., H i (C) ⊗ M ' H i (C ⊗ M ) if M is a flat R-module.. Theorem 1.3 Let C be a cochain complex of R-modules and let M be a flat R-module. Then H n (C) ⊗R M ' H n (C ⊗R M ), for all n.. Proof. First note that if N1 is a submodule of an R-module N , N1 ⊗R M can be thought as a submodule of N ⊗ M . More precisely, since the inclusion map ι : N1 → N is one-to-one and since M is a flat R-module, the map ι ⊗ 1M : N1 ⊗R M −→ N ⊗R M is one-to-one and so we can identify N1 ⊗R M with the image of ι ⊗ 1M in N ⊗R M . dn−2. dn−1. dn+1. d. n Since C : · · · −→ C n−1 −→ C n −→ C n+1 −→ · · · is a cochain complex of R-modules,. we have the following short exact sequence ι. π. 0 −→ Im dn−1 −→ Ker dn −→ Ker dn /Im dn−1 −→ 0, where ι is the inclusion map and π is the canonical projection. Since M is a flat R-module, we have that ι⊗1. π⊗1. M 0 −→ Im dn−1 ⊗ M −→ Ker dn ⊗ M −→M (Ker dn /Im dn−1 ) ⊗ M −→ 0. is also exact. Hence, we have Ker (π ⊗ 1M ) = Im (ι ⊗ 1M ) = Im dn−1 ⊗ M = Im (dn−1 ⊗ 1M ). Furthermore, by the First Isomorphism Theorem, we have (Ker dn /Im dn−1 ) ⊗ M ' (Ker dn ⊗ M )/Ker (π ⊗ 1M ) = (Ker dn ⊗ M )/Im (dn−1 ⊗ 1M ). 3.

(7) Next, we claim that Ker dn ⊗ M = Ker (dn ⊗ 1M ). We consider the short exact sequence ι. d. n Im dn+1 −→ 0 0 −→ Ker dn −→ C n −→. where ι : Ker dn → C n is the inclusion map. Since M is a flat R-module, we have that dn ⊗1. ι⊗1. M 0 −→ Ker dn ⊗ M −→ C n ⊗ M −→M Im dn ⊗ M −→ 0. is also exact. Thus, Ker (dn ⊗ 1M ) = Im (ι ⊗ 1M ) = Ker dn ⊗ M . Hence, we have (Ker dn /Im dn−1 ) ⊗ M ' Ker (dn ⊗ 1M )/Im (dn−1 ⊗ 1M ), i.e., H n (C) ⊗R M ' H n (C ⊗R M ). 2. In particular, if S is a multiplicatively closed subset of a ring R, then S −1 R is a flat dn−2. dn−1. dn+1. d. n R-module. Hence, if C : · · · −→ C n−1 −→ C n −→ C n+1 −→ · · · is a cochain complex. and if we let CS −1 R denote the cochain complex S −1 dn−2. S −1 dn−1. S −1 dn+1. S −1 d. CS −1 R : · · · −→ S −1 C n−1 −→ S −1 C n −→n S −1 C n+1 −→ · · · , then H n (CS −1 R ) ' H n (C ⊗R S −1 R) ' H n (C) ⊗R S −1 R ' S −1 H n (C). Hence, taking cohomology commutes with taking localization. Therefore, in order to compute i the local cohomology modules Hm (A) for the Noetherian local ring A = Rp where. R = Q[x0 , x1 , . . . , xn , w]/hx0 w, w2 i and p = hx0 , x1 , . . . , xn , wiA, we first compute the ˇ cohomology modules H t (C), where C is the Cech complex with respect to the sequence x0 , x1 , . . . , xn in R, and then compute H t (C)p for each t, which is isomorphic to H t (Cp ). Since Cp0 = Rp = A and since for each t = 1, 2, . . . , n + 1 Cpt =. M. Rxi1 xi2 ···xit. 0≤i1 <···<it ≤n. =. M.  p. =. M. Rxi1 xi2 ···xit. 0≤i1 <···<it ≤n.  p. =. M. (Rp )xi1 xi2 ···xit. 0≤i1 <···<it ≤n. Axi1 xi2 ···xit ,. 0≤i1 <···<it ≤n. ˇ Cp is indeed the Cech complex with respect to the sequence x0 , x1 , . . . , xn in Rp = A. Moreover, since x0 , x1 , . . . , xn generate an m = pp -primary ideal in A, for each t, we have t Hm (A) ' H t (Cp ) ' H t (C)p .. 4.

(8) In Section 3, we show that H t (C) = 0 for all t = 0, 1, . . . , n − 1 and n. H (C) = H n+1 (C) =. ∞ X ∞ X. ···. α1 =1 α2 =1 ∞ X ∞ X α0 =1 α1 =1. ∞ X αn =n ∞ X. ···.  2 n exˆ0 x1 x2 ···xn + Im dn−1 /Im dn−1 6= 0, · · · x−α Qwx1−α1 x−α 2 n  0 −α1 n + Im dn /Im dn 6= 0. x1 · · · x−α Qx−α 0 n. αn =1. n+1 n t (A) 6= 0. Also, because (A) 6= 0, Hm (A) = 0 for all t = 0, 1, . . . , n − 1 and Hm Hence, Hm. the notation and computation is very complicated, we do the special case, n = 2, in Section 2 first.. 5.

(9) 2. A Special Case. Because the notation and the computation for the general case is very complicated, in this section, we do a special case first. Let R = Q[x0 , w, x1 , x2 ]/hx0 w, w2 i, and let p be the maximal ideal hx0 , x1 , x2 , wi in R. ˇ Since hx0 , x1 , x2 i is p-primary, we consider the Cech complex with respect to the sequence x0 , x1 , x2 d. d. d. d. 0 → R →0 Rx0 ⊕ Rx1 ⊕ Rx2 →1 Rx0 x1 ⊕ Rx0 x2 ⊕ Rx1 x2 →2 Rx0 x1 x2 →3 0. We think of R as Q[x0 , x1 , x2 ] + Q[x1 , x2 ]w, which is an internal direct sum of Q-vector. 6.

(10) spaces. Similarly, we have ∞ X. Rx0 = Q[x0 , x1 , x2 ] +. 0 , Q[x1 , x2 ]x−α 0. α0 =1. Rx1 = Q[x0 , x1 , x2 ] + Q[x1 , x2 ]w + Rx2 = Q[x0 , x1 , x2 ] + Q[x1 , x2 ]w +. ∞ X α1 =1 ∞ X. 1 Q[x0 , x2 ]x−α 1. +. 1 + Q[x0 , x1 ]x−α 2. Rx0 x1 = Q[x0 , x1 , x2 ] + Rx0 x2 = Q[x0 , x1 , x2 ] +. α0 =1 ∞ X. 0 Q[x1 , x2 ]x−α 0. +. 0 + Q[x1 , x2 ]x−α 0. Rx1 x2 = Q[x0 , x1 , x2 ] + Q[x1 , x2 ]w + +. 2 Q[x1 ]wx−α + 2. ∞ X. Rx0 x1 x2 = Q[x0 , x1 , x2 ] +. ∞ X. ∞ X. + +. α1 =1 ∞ X. α1 =1 ∞ X. +. 2 + Q[x0 , x1 ]x−α 2. ∞ X ∞ X α0 =1 α1 =1 ∞ X ∞ X. 0 −α1 x1 , Q[x2 ]x−α 0. 0 −α2 x2 , Q[x1 ]x−α 0. α0 =1 α2 =1. +. 1 −α2 Q[x0 ]x−α x2 + 1. ∞ X. 1 Q[x2 ]wx−α 1. α1 =1 ∞ ∞ X X. +. ∞ X. 2 Q[x0 , x1 ]x−α 2. α2 =1 1 −α2 Qwx−α x2 , 1. α1 =1 α2 =1. 0 Q[x1 , x2 ]x−α + 0. 1 −α2 Q[x0 ]x−α x2 + 1. α1 =1 α2 =1 ∞ X ∞ X ∞ X. 1 Q[x0 , x2 ]x−α 1. 1 Q[x0 , x2 ]x−α 1. ∞ X. 1 Q[x0 , x2 ]x−α + 1. α1 =1. α0 =1 ∞ X ∞ X. ∞ X. α1 =1 α2 =1. α2 =1. 2 , Q[x1 ]wx−α 2. α2 =1. α0 =1. ∞ X. α1 =1 ∞ X. 1 , Q[x2 ]wx−α 1. α2 =1. α2 =1 ∞ X. ∞ X. ∞ X ∞ X α0 =1 α2 =1. 0 −α2 Q[x1 ]x−α x2 + 0. ∞ X. 2 Q[x0 , x1 ]x−α 2. α2 =1 ∞ X ∞ X. 0 −α1 Q[x2 ]x−α x1 0. α0 =1 α1 =1. 0 −α1 −α2 Qx−α x1 x2 . 0. α0 =1 α1 =1 α2 =1. Note that x0 w = 0 in R, so w = 0 in Rx0 , Rx0 x1 , Rx0 x2 , and Rx0 x1 x2 . For convenience, we will use some special notations. We will use the upper indices to indicate the ring where the elements come from; we use the lower indices to indicate the variables that have negative powers; we also use the notation (w) to indicate that the elements are multiple of w. For example, if F ∈ Rx1 , we write F = f 0,2 + f 0,2 (w) +. 7.

(11) fx0,2 + fx0,2 (w), where 1 1 f 0,2 ∈ Rx1 ∩ Q[x0 , x1 , x2 ], f 0,2 (w) ∈ Rx1 ∩ Q[x1 , x2 ]w, fx0,2 1. ∞ X. ∈ Rx1 ∩. 1 , Q[x0 , x2 ]x−α 1. α1 =1 ∞ X. fx0,2 (w) ∈ Rx1 ∩ 1. 1 . Q[x2 ]wx−α 1. α1 =1. The upper index 0, 2 in fx0,2 (w) means that fx0,2 (w) comes from Rxb0 x1 xb2 = Rx1 ; the lower 1 1 index x1 in fx0,2 (w) means that all terms of fx0,2 (w) have negative powers for x1 and have 1 1 nonnegative powers for x0 and x2 ; (w) in fx0,2 (w) means that fx0,2 (w) is a multiple of w. 1 1 Also, if F ∈ Rx0 x1 , we write F = f 2 + fx20 + fx21 + fx20 x1 , where f 2 ∈ Rx0 x1 ∩ Q[x0 , x1 , x2 ], fx20. ∈ Rx0 x1 ∩. fx21 ∈ Rx0 x1 ∩ fx20 x1. ∞ X α0 =1 ∞ X. 0 Q[x1 , x2 ]x−α , 0. 1 Q[x0 , x2 ]x−α , 1. α1 =1 ∞ X. ∈ Rx0 x1 ∩. ∞ X. 0 −α1 Q[x2 ]x−α x1 . 0. α0 =1 α1 =1. The upper index 2 in fx20 x1 means that fx20 x1 comes from Rx0 x1 xb2 = Rx0 x1 ; the lower index x0 x1 in fx20 x1 means that all terms of fx20 x1 have negative powers for both x0 and x1 and have nonnegative powers for x2 . Now we start to compute H i (C). The next theorem shows that H 0 (C) = 0. ˇ Theorem 2.1 Let R = Q[x0 , w, x1 , x2 ]/hx0 w, w2 i and consider the Cech complex with respect to the sequence x0 , x1 , x2 d. d. d. d. C : 0 → R →0 Rx0 ⊕ Rx1 ⊕ Rx2 →1 Rx0 x1 ⊕ Rx0 x2 ⊕ Rx1 x2 →2 Rx0 x1 x2 →3 0. 8.

(12) Then we have H 0 (C) = 0.. Proof. Let f 0,1,2 + f 0,1,2 (w) ∈ R such that d0 (f 0,1,2 + f 0,1,2 (w)) = (0, 0, 0). Then we have (f 0,1,2 , f 0,1,2 + f 0,1,2 (w), f 0,1,2 + f 0,1,2 (w)) = (0, 0, 0). Thus f 0,1,2 = 0 in Q[x0 , x1 , x2 ], and f 0,1,2 (w) = 0 in Q[x1 , x2 ]w, and so f 0,1,2 + f 0,1,2 (w) = 0 in R. Hence we get Ker d0 = 0, 2. and so H 0 (C) = 0.. In next theorem, we show that H 1 (C) = 0.. ˇ Theorem 2.2 Let R = Q[x0 , w, x1 , x2 ]/hx0 w, w2 i and consider the Cech complex with respect to the sequence x0 , x1 , x2 d. d. d. d. C : 0 → R →0 Rx0 ⊕ Rx1 ⊕ Rx2 →1 Rx0 x1 ⊕ Rx0 x2 ⊕ Rx1 x2 →2 Rx0 x1 x2 →3 0. Then we have H 1 (C) = 0.. Proof. In order to compute H 1 (C), we expand Rx0 , Rx1 , Rx2 as internal direct sums and. 9.

(13) then collect the components with the same Q-vector spaces together as the following: Rx0 ⊕ Rx1 ⊕ Rx2 = Q[x0 , x1 , x2 ] +. ∞ X. 0 Q[x1 , x2 ]x−α 0. . α0 =1. ⊕ Q[x0 , x1 , x2 ] + Q[x1 , x2 ]w + ⊕ Q[x0 , x1 , x2 ] + Q[x1 , x2 ]w +. ∞ X α1 =1 ∞ X. 1 Q[x0 , x2 ]x−α 1. +. 2 + Q[x0 , x1 ]x−α 2. α2 =1. ∞ X α1 =1 ∞ X. 1 Q[x2 ]wx−α 1. . 2 Q[x1 ]wx−α 2. . α2 =1.  = Q[x0 , x1 , x2 ] ⊕ Q[x0 , x1 , x2 ] ⊕ Q[x0 , x1 , x2 ]  + 0 ⊕ Q[x1 , x2 ]w) ⊕ Q[x1 , x2 ]w +. ∞ X.  0 ⊕0⊕0 Q[x1 , x2 ]x−α 0. α0 =1. + 0⊕ + 0⊕. ∞ X α1 =1 ∞ X.  1 Q[x0 , x2 ]x−α ⊕0 1  1 Q[x2 ]wx−α ⊕0 1. α1 =1. + 0⊕0⊕ + 0⊕0⊕. ∞ X α2 =1 ∞ X. 2 Q[x0 , x1 ]x−α 2. .  2 Q[x1 ]wx−α . 2. (1). α2 =1. Note that in the last expression of the above equation, the + are indeed internal direct. 10.

(14) sums. We also express Rx0 x1 ⊕ Rx0 x2 ⊕ Rx1 x2 similarly and get Rx0 x1 ⊕ Rx0 x2 ⊕ Rx1 x2 = Q[x0 , x1 , x2 ] ⊕ Q[x0 , x1 , x2 ] ⊕ Q[x0 , x1 , x2 ]  + 0 ⊕ 0 ⊕ Q[x1 , x2 ]w + +. ∞ X. 0 ⊕ Q[x1 , x2 ]x−α 0. α0 =1 ∞ X. ∞ X. .  0 ⊕0 Q[x1 , x2 ]x−α 0. α0 =1 ∞ X. 1 ⊕0⊕ Q[x0 , x2 ]x−α 1. 1 Q[x0 , x2 ]x−α 1. . α1 =1. α1 =1. + 0⊕0⊕. ∞ X. 1 Q[x2 ]wx−α 1. . α1 =1 ∞ X. + 0⊕. 0 Q[x0 , x1 ]x−α 2. ⊕. +. ∞ X. 2 Q[x0 , x1 ]x−α 2. . α2 =1. α2 =1. + 0⊕0⊕. ∞ X. ∞ X. 2 Q[x1 ]wx−α 2. . α2 =1 ∞ X.  0 −α1 Q[x2 ]x−α x ⊕ 0 ⊕ 0 0 1. α0 =1 α1 =1 ∞ X ∞ X. + 0⊕.  0 −α2 Q[x1 ]x−α x ⊕ 0 0 2. α0 =1 α2 =1 ∞ X ∞ X. + 0⊕0⊕ + 0⊕0⊕. α1 =1 α2 =1 ∞ X ∞ X α1 =1 α2 =1. 11. 1 −α2 Q[x0 ]x−α x2 1.  1 −α2 Qwx−α x2 , 1. . (2).

(15) which is also an internal direct sum. Moreover, note that  d1 Q[x0 , x1 , x2 ] ⊕ Q[x0 , x1 , x2 ] ⊕ Q[x0 , x1 , x2 ] ⊆ Q[x0 , x1 , x2 ] ⊕ Q[x0 , x1 , x2 ] ⊕ Q[x0 , x1 , x2 ],  d1 0 ⊕ Q[x1 , x2 ]w) ⊕ Q[x1 , x2 ]w ⊆ 0 ⊕ 0 ⊕ Q[x1 , x2 ]w, d1. ∞ X. 0 Q[x1 , x2 ]x−α 0. ∞ ∞ X  X −α0 0 ⊕ 0, Q[x1 , x2 ]x−α ⊕0⊕0 ⊆ Q[x1 , x2 ]x0 ⊕ 0. α0 =1. d1 0 ⊕ d1 0 ⊕. ∞ X α1 =1 ∞ X. 1 Q[x0 , x2 ]x−α 1.  ⊕0 ⊆. α0 =1 ∞ X. d1 0 ⊕ 0 ⊕. 1 Q[x0 , x2 ]x−α 1. ⊕0⊕.  1 ⊕0 ⊆0⊕0⊕ Q[x2 ]wx−α 1 ∞ X α2 =1 ∞ X. 2 Q[x0 , x1 ]x−α 2. . ⊆0⊕. ∞ X. 1 , Q[x0 , x2 ]x−α 1. 1 , Q[x2 ]wx−α 1. α1 =1 ∞ X. 0 Q[x0 , x1 ]x−α 2. α2 =1 ∞ X.  2 Q[x1 ]wx−α ⊆0⊕0⊕ 2. α2 =1. ∞ X α1 =1. α1 =1. α1 =1. d1 0 ⊕ 0 ⊕. α0 =1. ⊕. ∞ X. 2 , Q[x0 , x1 ]x−α 2. α2 =1 2 Q[x1 ]wx−α . 2. (3). α2 =1. Hence, if we express every element a in Rx0 ⊕Rx1 ⊕Rx2 as a = b1 +b2 +b3 +b4 +b5 +b6 +b7 , where b1 ∈ Q[x0 , x1 , x2 ] ⊕ Q[x0 , x1 , x2 ] ⊕ Q[x0 , x1 , x2 ], b2 ∈ 0 ⊕ Q[x1 , x2 ]w) ⊕ Q[x1 , x2 ]w, ∞ ∞ P P 0 1 b3 ∈ Q[x1 , x2 ]x−α ⊕ 0 ⊕ 0, b4 ∈ 0 ⊕ Q[x0 , x2 ]x−α ⊕ 0, 0 1 α0 =1. b5 ∈ 0 ⊕. ∞ P α1 =1. b7 ∈ 0 ⊕ 0 ⊕. α1 =1 1 Q[x2 ]wx−α 1. ∞ P. ⊕ 0,. b6 ∈ 0 ⊕ 0 ⊕. ∞ P. 2 Q[x0 , x1 ]x−α , 2. α2 =1 2 Q[x1 ]wx−α , 2. α2 =1. then we have a ∈ Ker d1 ⇔ b1 , b2 , b3 , b4 , b5 , b6 , b7 ∈ Ker d1 . Similarly, because R = Q[x0 , x1 , x2 ] + Q[x1 , x2 ]w and because  d0 Q[x0 , x1 , x2 ] ⊆ Q[x0 , x1 , x2 ] ⊕ Q[x0 , x1 , x2 ] ⊕ Q[x0 , x1 , x2 ],  d0 Q[x1 , x2 ]w ⊆ 0 ⊕ Q[x1 , x2 ]w ⊕ Q[x1 , x2 ]w, with the notation as above, we have a ∈ Im d0 ⇔ b1 , b2 ∈ Im d0 and b3 = b4 = b5 = b6 = b7 = 0. Hence, in order to show Ker d1 ⊆ Im d0 , it suffices to show that for each 1 ≤ i ≤ 7, if bi ∈ Ker d1 , then bi ∈ Im d0 . 1. For the component Q[x0 , x1 , x2 ]⊕Q[x0 , x1 , x2 ]⊕Q[x0 , x1 , x2 ] in Rx0 ⊕Rx1 ⊕Rx2 , we let (f 1,2 , f 0,2 , f 0,1 ) ∈ Q[x0 , x1 , x2 ] ⊕ Q[x0 , x1 , x2 ] ⊕ Q[x0 , x1 , x2 ] in Rx0 ⊕ Rx1 ⊕ Rx2 such 12.

(16) that d1 (f 1,2 , f 0,2 , f 0,1 ) = (0, 0, 0) in Rx0 x1 ⊕ Rx0 x2 ⊕ Rx1 x2 , i.e., (f 1,2 , f 0,2 , f 0,1 ) ∈ Ker d1 . Then we have (−f 1,2 + f 0,2 , −f 1,2 + f 0,1 , −f 0,2 + f 0,1 ) = (0, 0, 0), so we get f 1,2 = f 0,2 = f 0,1 in Q[x0 , x1 , x2 ]. Hence (f 1,2 , f 0,2 , f 0,1 ) = (f 1,2 , f 1,2 , f 1,2 ) = d0 (f 1,2 ) ∈ Im d0 . 2. For the component 0 ⊕ Q[x1 , x2 ]w ⊕ Q[x1 , x2 ]w in Rx0 ⊕ Rx1 ⊕ Rx2 , we let (0, f 0,2 (w), f 0,1 (w)) ∈ 0 ⊕ Q[x1 , x2 ]w ⊕ Q[x1 , x2 ]w in Rx0 ⊕ Rx1 ⊕ Rx2 such that d1 (0, f 0,2 (w), f 0,1 (w)) = (0, 0, 0) in Rx0 x1 ⊕ Rx0 x2 ⊕ Rx1 x2 , i.e., (0, f 0,2 (w), f 0,1 (w)) ∈ Ker d1 . Then we have (0, 0, −f 0,2 (w) + f 0,1 (w)) = (0, 0, 0), so we get f 0,2 (w) = f 0,1 (w) in Q[x1 , x2 ]w. Hence (0, f 0,2 (w), f 0,1 (w)) = (0, f 0,2 (w), f 0,2 (w)) = d0 (f 0,2 (w)) ∈ Im d0 . 3. For the component. ∞ P α0 =1. ∞ P α0 =1. 0 ⊕ 0 ⊕ 0 in Rx0 ⊕ Rx1 ⊕ Rx2 , we let (fx1,2 , 0, 0) ∈ Q[x1 , x2 ]x−α 0 0. 0 Q[x1 , x2 ]x−α ⊕ 0 ⊕ 0 in Rx0 ⊕ Rx1 ⊕ Rx2 such that d1 (fx1,2 , 0, 0) = (0, 0, 0) in 0 0. Rx0 x1 ⊕ Rx0 x2 ⊕ Rx1 x2 , i.e., (fx1,2 , 0, 0) ∈ Ker d1 . Then we have (−fx1,2 , −fx1,2 , 0) = 0 0 0 ∞ P 0 (0, 0, 0), so we get fx1,2 = 0 in Q[x1 , x2 ]x−α . Hence (fx1,2 , 0, 0) = (0, 0, 0) ∈ 0 0 0 α0 =1. Im d0 . 4. For the component 0 ⊕ 0⊕. ∞ P α1 =1. ∞ P α1 =1. 1 Q[x0 , x2 ]x−α 1. 1 Q[x0 , x2 ]x−α ⊕ 0 in Rx0 ⊕ Rx1 ⊕ Rx2 , we let (0, fx0,2 , 0) ∈ 1 1. ⊕ 0 in Rx0 ⊕ Rx1 ⊕ Rx2 such that d1 (0, fx0,2 , 0) = (0, 0, 0) in 1. Rx0 x1 ⊕ Rx0 x2 ⊕ Rx1 x2 , i.e., (0, fx0,2 , 0) ∈ Ker d1 . Then we have (fx0,2 , 0, −fx0,2 ) = 1 1 1 ∞ P 1 (0, 0, 0), so we get fx0,2 = 0 in Q[x0 , x2 ]x−α . Hence (0, fx0,2 , 0) = (0, 0, 0) ∈ 1 1 1 α1 =1. Im d0 . 5. For the component 0⊕ 0⊕. ∞ P α1 =1. ∞ P α1 =1. 1 Q[x2 ]wx−α ⊕0 in Rx0 ⊕Rx1 ⊕Rx2 , we let (0, fx0,2 (w), 0) ∈ 1 1. 1 Q[x2 ]wx−α ⊕ 0 in Rx0 ⊕ Rx1 ⊕ Rx2 such that d1 (0, fx0,2 (w), 0) = (0, 0, 0) in 1 1. Rx0 x1 ⊕ Rx0 x2 ⊕ Rx1 x2 , i.e., (0, fx0,2 (w), 0) ∈ Ker d1 . Then we have (0, 0, −fx0,2 (w)) = 1 1 ∞ P 1 Q[x2 ]wx−α . Hence (0, fx0,2 (w), 0) = (0, 0, 0) ∈ (0, 0, 0), so we get fx0,2 (w) = 0 in 1 1 1 α1 =1. Im d0 . 6. For the component 0 ⊕ 0 ⊕. ∞ P α2 =1. 2 Q[x0 , x1 ]x−α in Rx0 ⊕ Rx1 ⊕ Rx2 , we let (0, 0, fx0,1 )∈ 2 2. 13.

(17) 0⊕0⊕. ∞ P α2 =1. 2 in Rx0 ⊕ Rx1 ⊕ Rx2 such that d1 (0, 0, fx0,1 ) = (0, 0, 0) in Q[x0 , x1 ]x−α 2 2. ) = (0, 0, 0), , fx0,1 ) ∈ Ker d1 . Then we have (0, fx0,1 Rx0 x1 ⊕Rx0 x2 ⊕Rx1 x2 , i.e., (0, 0, fx0,1 2 2 2 ∞ P 2 . Hence (0, 0, fx0,1 ) = (0, 0, 0) ∈ Im d0 . so we get fx0,1 = 0 in Q[x0 , x1 ]x−α 2 2 2 α2 =1. ∞ P. 7. For the component 0⊕0⊕ 0⊕0⊕. α2 =1. ∞ P. 2 Q[x1 ]wx−α 2. α2 =1. 2 in Rx0 ⊕Rx1 ⊕Rx2 , we let (0, 0, fx0,1 (w)) ∈ Q[x1 ]wx−α 2 2. (w)) = (0, 0, 0) in in Rx0 ⊕ Rx1 ⊕ Rx2 such that d1 (0, 0, fx0,1 2. Rx0 x1 ⊕ Rx0 x2 ⊕ Rx1 x2 , i.e., (0, 0, fx0,1 (w)) ∈ Ker d1 . Then we have (0, 0, fx0,1 (w)) = 2 2 ∞ P 2 (w)) = (0, 0, 0) ∈ . Hence (0, 0, fx0,1 (w) = 0 in Q[x1 ]wx−α (0, 0, 0), so we get fx0,1 2 2 2 α2 =1. Im d0 .. From the above discussion, we have Ker d1 ⊆ Im d0 , and so H 1 (C) = 0.. In next theorem, we show that H 2 (C) = 0⊕0⊕. ∞ P ∞ P. 2.  1 −α2 Qwx−α x2 +Im d1 /Im d1 . 1. α1 =1 α2 =1. ˇ Theorem 2.3 Let R = Q[x0 , w, x1 , x2 ]/hx0 w, w2 i and consider the Cech complex with respect to the sequence x0 , x1 , x2 d. d. d. d. C : 0 → R →0 Rx0 ⊕ Rx1 ⊕ Rx2 →1 Rx0 x1 ⊕ Rx0 x2 ⊕ Rx1 x2 →2 Rx0 x1 x2 →3 0. Then we have H 2 (C) = (0 ⊕ 0 ⊕. ∞ P ∞ P. 1 −α2 Qwx−α x2 + Im d1 )/Im d1 . 1. α1 =1 α2 =1. Proof. Recall that we express Rx0 x1 x2 as ∞ X. Rx0 x1 x2 = Q[x0 , x1 , x2 ] +. 0 Q[x1 , x2 ]x−α 1. α0 =1. + +. ∞ X. ∞ X. 1 −α2 Q[x0 ]x−α x2 + 1. α1 =1 α2 =1 ∞ X ∞ X ∞ X. ∞ X. +. ∞ X. α1 =1 ∞ X. 1 Q[x0 , x2 ]x−α 1. +. 0 −α2 Q[x1 ]x−α x2 + 0. α0 =1 α2 =1 0 −α1 −α2 Qx−α x1 x2 . 0. ∞ X. 2 Q[x0 , x1 ]x−α 2. α2 =1 ∞ ∞ X X. 0 −α2 Q[x2 ]x−α x1 0. α0 =1 α1 =1. (4). α0 =1 α1 =1 α2 =1. 14.

(18) We will use expressions (1) and (2) to compute H 2 (C). Note that d2 (Q[x0 , x1 , x2 ] ⊕ Q[x0 , x1 , x2 ] ⊕ Q[x0 , x1 , x2 ]) ⊆ Q[x0 , x1 , x2 ], d2 (0 ⊕ 0 ⊕ Q[x1 , x2 ]w) = 0, d2 (. ∞ X. 0 ⊕ Q[x1 , x2 ]x−α 0. ∞ X α0 =1. α0 =1 ∞ X. 1 ⊕0⊕ Q[x0 , x2 ]x−α 1. d2 (. ∞ X. 1 )⊆ Q[x0 , x2 ]x−α 1. ∞ X. d2 (0 ⊕ 0 ⊕. α0 =1 ∞ X. 0 , Q[x1 , x2 ]x−α 0. 1 , Q[x0 , x2 ]x−α 1. α1 =1. α1 =1. α1 =1. ∞ X. 0 ⊕ 0) ⊆ Q[x1 , x2 ]x−α 0. 1 ) = 0, Q[x2 ]wx−α 1. α1 =1 ∞ X. d2 (0 ⊕. 2 Q[x0 , x1 ]x−α 2. ⊕. ∞ X. 2 ) Q[x0 , x1 ]x−α 2. ⊆. ∞ X. d2 (0 ⊕ 0 ⊕. 0 , Q[x0 , x1 ]x−α 2. α2 =1. α2 =1. α2 =1. ∞ X. 2 Q[x1 ]wx−α ) = 0, 2. α2 =1. d2 (. ∞ X ∞ X. 0 −α1 Q[x2 ]x−α x1 0. α0 =1 α1 =1 ∞ X ∞ X. d2 (0 ⊕. 0 −α2 Q[x1 ]x−α x2 ⊕ 0) ⊆ 0. α0 =1 α2 =1 ∞ X ∞ X. d2 (0 ⊕ 0 ⊕. d2 (0 ⊕ 0 ⊕. ⊕ 0 ⊕ 0) ⊆. α1 =1 α2 =1 ∞ X ∞ X. 1 −α2 Q[x0 ]x−α x2 ) ⊆ 1. ∞ X ∞ X α0 =1 α1 =1 ∞ X ∞ X α0 =1 α2 =1 ∞ X ∞ X. 0 −α1 Q[x2 ]x−α x1 , 0. 0 −α2 Q[x1 ]x−α x2 , 0. 1 −α2 Q[x0 ]x−α x2 , 1. α1 =1 α2 =1 1 −α2 Qwx−α x2 ) = 0. 1. (5). α1 =1 α2 =1. Hence, if we express every element a in Rx0 x1 ⊕ Rx0 x2 ⊕ Rx1 x2 as a = b1 + b2 + b3 + b4 + b5 + b6 + b7 + b8 + b9 + b10 + b11 , where b1 ∈ Q[x0 , x1 , x2 ] ⊕ Q[x0 , x1 , x2 ] ⊕ Q[x0 , x1 , x2 ], ∞ ∞ P P 0 0 b3 ∈ Q[x1 , x2 ]x−α ⊕ Q[x1 , x2 ]x−α ⊕ 0, 0 0 α0 =1. ∞ P. b5 ∈ 0 ⊕ 0 ⊕ b7 ∈ 0 ⊕ 0 ⊕. α1 =1 ∞ P. α0 =1. α1 =1. 1 Q[x2 ]wx−α , 1. b6 ∈ 0 ⊕. 2 Q[x1 ]wx−α , 2. b8 ∈. α2 =1. b9 ∈ 0 ⊕. ∞ P ∞ P. α0 =1 α2 =1 ∞ P. b11 ∈ 0 ⊕ 0 ⊕. b2 ∈ 0 ⊕ 0 ⊕ Q[x1 , x2 ]w, ∞ ∞ P P 1 1 b4 ∈ Q[x0 , x2 ]x−α ⊕0⊕ Q[x0 , x2 ]x−α , 1 1 ∞ P. α2 =1 ∞ P ∞ P α0 =1 α1 =1. 0 −α2 Q[x1 ]x−α x2 0. ∞ P. ⊕ 0,. b10 ∈ 0 ⊕ 0 ⊕. 0 Q[x0 , x1 ]x−α ⊕ 2. α1 =1 α2 =1. 15. 2 Q[x0 , x1 ]x−α , 2. α2 =1 0 −α1 Q[x2 ]x−α x1 ⊕ 0 ⊕ 0, 0. ∞ P ∞ P α1 =1 α2 =1. 1 −α2 Qwx−α x2 , 1. α1 =1 ∞ P. 1 −α2 Q[x0 ]x−α x2 , 1.

(19) then we have a ∈ Ker d2 ⇔ b1 , b2 , b3 , b4 , b5 , b6 , b7 , b8 , b9 , b10 , b11 ∈ Ker d2 . Similarly, from (3), with the notation as above, we have a ∈ Im d1 ⇔ b1 , b2 , b3 , b4 , b5 , b6 , b7 ∈ Im d1 and b8 = b9 = b10 = b11 = 0. In the following discussion, we will see that for 1 ≤ i ≤ 10, if ∞ P ∞ P 1 −α2 x2 , bi ∈ Ker d2 , then bi ∈ Im d1 , and in the last component b11 ∈ 0⊕0⊕ Qwx−α 1 α1 =1 α2 =1. b11. ˘ ∈ Ker d2 . Hence, instead of considering the Cech complex d. d. Rx0 ⊕ Rx1 ⊕ Rx2 →1 Rx0 x1 ⊕ Rx0 x2 ⊕ Rx1 x2 →2 Rx0 x1 x2 , we consider the restricted complex for each component.. d. 1. For the component Q[x0 , x1 , x2 ] ⊕ Q[x0 , x1 , x2 ] ⊕ Q[x0 , x1 , x2 ] →1 Q[x0 , x1 , x2 ] ⊕ d. Q[x0 , x1 , x2 ] ⊕ Q[x0 , x1 , x2 ] →2 Q[x0 , x1 , x2 ], we let (f 2 , f 1 , f 0 ) ∈ Q[x0 , x1 , x2 ] ⊕ Q[x0 , x1 , x2 ] ⊕ Q[x0 , x1 , x2 ] in Rx0 x1 ⊕ Rx0 x2 ⊕ Rx1 x2 such that d2 (f 2 , f 1 , f 0 ) = 0 in Rx0 x1 x2 , i.e., (f 2 , f 1 , f 0 ) ∈ Ker d2 . Then we have f 2 − f 1 + f 0 = 0, so we get f 0 = −f 2 + f 1 in Q[x0 , x1 , x2 ]. Hence (f 2 , f 1 , f 0 ) = (f 2 , f 1 , −f 2 + f 1 ) = d1 (0, f 2 , f 1 ) ∈ Im d1 . d. d. 2. For the component 0 ⊕ Q[x1 , x2 ]w ⊕ Q[x1 , x2 ]w →1 0 ⊕ 0 ⊕ Q[x1 , x2 ]w →2 0, we let (0, 0, f 0 (w)) ∈ 0⊕0⊕Q[x1 , x2 ]w in Rx0 x1 ⊕Rx0 x2 ⊕Rx1 x2 such that d2 (0, 0, f 0 (w)) = 0 in Rx0 x1 x2 , i.e., (0, 0, f 0 (w)) ∈ Ker d2 . Then we have (0, 0, f 0 (w)) = d1 (0, 0, f 0 (w)) ∈ Im d1 . 3. For the component d2. 0→. ∞ P. ∞ P α0 =1. 0 Q[x1 , x2 ]x−α , 0. α0 =1. ∞ P. d. 0 Q[x1 , x2 ]x−α ⊕0⊕0 →1 0. 0 Q[x1 , x2 ]x−α ⊕ 0. α0 =1. we let (fx20 , fx10 , 0) ∈. ∞ P. ∞ P. Q[x1 , x2 ]x0−α0 ⊕. α0 =1. 0 Q[x1 , x2 ]x−α ⊕ 0. α0 =1. ∞ P. 0 Q[x1 , x2 ]x−α ⊕ 0. α0 =1. 0 in Rx0 x1 ⊕ Rx0 x2 ⊕ Rx1 x2 such that d2 (fx20 , fx10 , 0) = 0 in Rx0 x1 x2 , i.e., (fx20 , fx10 , 0) ∈ ∞ P 0 Ker d2 . Then we have fx20 − fx10 = 0, so we get fx10 = fx20 in Q[x1 , x2 ]x−α . 0 α0 =1. Hence (fx20 , fx10 , 0) = (fx20 , fx20 , 0) = d1 (−fx20 , 0, 0) ∈ Im d1 . 4. For the component 0⊕ ∞ P α0 =1. ∞ P. d. 1 Q[x0 , x2 ]x−α ⊕0 →1 1. α1 =1 ∞ P. d 0 Q[x1 , x2 ]x−α ⊕0 →2 0. ∞ P. 1 Q[x0 , x2 ]x−α ⊕0⊕ 1. α1 =1 1 Q[x0 , x2 ]x−α , 1. α1 =1. 16. we let (fx21 , 0, fx01 ) ∈. ∞ P α1 =1. ∞ P. 1 Q[x0 , x2 ]x−α ⊕ 1. α1 =1 1 Q[x0 , x2 ]x−α ⊕ 1.

(20) ∞ P. 0⊕. α1 =1. 1 in Rx0 x1 ⊕Rx0 x2 ⊕Rx1 x2 such that d2 (fx21 , 0, fx01 ) = 0 in Rx0 x1 x2 , Q[x0 , x2 ]x−α 1. i.e., (fx21 , 0, fx01 ) ∈ Ker d2 . Then we have fx21 + fx01 = 0, so we get fx00 = −fx20 in ∞ P 0 Q[x1 , x2 ]x−α . Hence (fx21 , 0, fx01 ) = (fx21 , 0, −fx20 ) = d1 (0, fx20 , 0) ∈ Im d1 . 0 α0 =1. ∞ P. 5. For the component 0 ⊕. d. 1 ⊕ 0 →1 0 ⊕ 0 ⊕ Q[x2 ]wx−α 1. α1 =1. we let. (0, 0, fx01 (w)). d. 1 Q[x2 ]wx−α →2 0, 1. α1 =1. ∞ P. ∈ 0⊕0⊕. ∞ P. 1 Q[x2 ]wx−α 1. in Rx0 x1 ⊕ Rx0 x2 ⊕ Rx1 x2 such. α1 =1. that d2 (0, 0, fx01 (w)) = 0 in Rx0 x1 x2 , i.e., (0, 0, fx01 (w)) ∈ Ker d2 . Then we have (0, 0, fx01 (w)) = d1 (0, −fx01 (w), 0) ∈ Im d1 . 6. For the component 0⊕0⊕ ∞ P. ∞ P α2 =1. 2 , Q[x0 , x1 ]x−α 2. we let (0, fx12 , fx02 ) ∈ 0 ⊕. α2 =1. ∞ P. d. 2 Q[x0 , x1 ]x−α →1 0⊕ 2. ∞ P. 0 ⊕ Q[x0 , x1 ]x−α 2. α2 =1 0 Q[x0 , x1 ]x−α 2. ⊕. ∞ P. ∞ P. d. 2 Q[x0 , x1 ]x−α →2 2. α2 =1. Q[x0 , x1 ]x2−α2. α2 =1. α2 =1. in Rx0 x1 ⊕ Rx0 x2 ⊕ Rx1 x2 such that d2 (0, fx12 , fx02 ) = 0 in Rx0 x1 x2 , i.e., (0, fx12 , fx02 ) ∈ ∞ P 0 Ker d2 . Then we have −fx12 + fx02 = 0, so we get fx02 = fx12 in Q[x0 , x1 ]x−α . 2 α2 =1. Hence. (0, fx12 , fx02 ). =. (0, fx12 , fx12 ). =. ∞ P. 7. For the component 0 ⊕ 0 ⊕. ∈ Im d1 . d. 2 Q[x1 ]wx−α →1 0 ⊕ 0 ⊕ 2. α2 =1. we let (0, 0, fx02 (w)) ∈ 0 ⊕ 0 ⊕. d1 (0, 0, fx12 ). ∞ P. d. 2 Q[x1 ]wx−α →2 0, 2. α2 =1. ∞ P. 2 Q[x1 ]wx−α 2. in Rx0 x1 ⊕ Rx0 x2 ⊕ Rx1 x2 such. α2 =1. that d2 (0, 0, fx02 (w)) = 0 in Rx0 x1 x2 , i.e., (0, 0, fx02 (w)) ∈ Ker d2 . Then we have (0, 0, fx02 (w)) = d1 (0, 0, fx02 (w)) ∈ Im d1 . d. 8. For the component 0⊕0⊕0 →1 2 , 0, 0) ∈ we let (f0,1. ∞ P ∞ P. ∞ P ∞ P. d. 0 −α1 Q[x2 ]x−α x1 ⊕0⊕0 →2 0. α0 =1 α1 =1. ∞ P ∞ P. 0 −α1 Q[x2 ]x−α x1 , 0. α0 =1 α1 =1. 0 −α1 Q[x2 ]x−α x1 ⊕ 0 ⊕ 0 in Rx0 x1 ⊕ Rx0 x2 ⊕ Rx1 x2 such 0. α0 =1 α1 =1 2 2 that d2 (f0,1 , 0, 0) = 0 in Rx0 x1 x2 , i.e., (f0,1 , 0, 0) ∈ Ker d2 . Then we have fx20 x1 = 0 ∞ ∞ P P 2 0 −α1 in Q[x2 ]x−α x1 . Hence (f0,1 , 0, 0) = (0, 0, 0) ∈ Im d1 . 0 α0 =1 α1 =1 d. 9. For the component 0⊕0⊕0 →1 0⊕ 1 we let (0, f0,2 , 0) ∈ 0 ⊕. ∞ P ∞ P. ∞ P ∞ P. α0 =1 α2 =1. d. 0 −α2 Q[x1 ]x−α x2 ⊕0 →2 0. ∞ P ∞ P. 0 −α1 Q[x2 ]x−α x1 , 0. α0 =1 α1 =1. 0 −α2 Q[x1 ]x−α x2 ⊕ 0 in Rx0 x1 ⊕ Rx0 x2 ⊕ Rx1 x2 such 0. α0 =1 α2 =1 1 1 that d2 (0, f0,2 , 0) = 0 in Rx0 x1 x2 , i.e., (0, f0,2 , 0) ∈ Ker d2 . Then we have −fx10 x2 = 0, ∞ ∞ P P 1 0 −α2 so we get fx10 x2 = 0 in Q[x1 ]x−α x2 . Hence (0, f0,2 , 0) = (0, 0, 0) ∈ Im d1 . 0 α0 =1 α2 =1. 17.

(21) d. 10. For the component 0⊕0⊕0 →1 0⊕0⊕. ∞ P ∞ P. d. 1 −α2 x2 →2 Q[x0 ]x−α 1. 0 we let (0, 0, f1,2 ) ∈ 0⊕0⊕. 1 −α2 x2 , Q[x0 ]x−α 1. α1 =1 α2 =1. α1 =1 α2 =1. ∞ P ∞ P. ∞ P ∞ P. 1 −α2 x2 Q[x0 ]x−α 1. in Rx0 x1 ⊕ Rx0 x2 ⊕ Rx1 x2 such. α1 =1 α2 =1 0 0 ) ∈ Ker d2 . Then we have fx10 x2 = 0 ) = 0 in Rx0 x1 x2 , i.e., (0, 0, f1,2 that d2 (0, 0, f1,2 ∞ P ∞ P 0 1 −α2 ) = (0, 0, 0) ∈ Im d1 . x2 . Hence (0, 0, f1,2 in Q[x0 ]x−α 1 α1 =1 α2 =1 d. 11. For the component 0 ⊕ 0 ⊕ 0 →1 0 ⊕ 0 ⊕ to see that Ker d2 = 0 ⊕ 0 ⊕. ∞ P ∞ P. d. 1 −α2 x2 →2 0, it is not hard Qwx−α 1. α1 =1 α2 =1. ∞ P ∞ P. 1 −α2 x2 and Im d1 = 0. Thus, for this Qwx−α 1. α1 =1 α2 =1 ∞ P. component, Ker d2 /Im d1 = 0 ⊕ 0 ⊕. ∞ P. 1 −α2 x2 . Qwx−α 1. α1 =1 α2 =1. From the above discussion, we get H 2 (C) = (0 ⊕ 0 ⊕. ∞ P ∞ P. 1 −α2 x2 + Im d1 )/Im d1 . Qwx−α 1. α1 =1 α2 =1. 2. In next theorem, we show that H 3 (C) = (. ∞ P ∞ P ∞ P. 0 −α1 −α2 Qx−α x1 x2 +Im d2 )/Im d2 . 0. α0 =1 α1 =1 α2 =1. ˇ Theorem 2.4 Let R = Q[x0 , w, x1 , x2 ]/hx0 w, w2 i and consider the Cech complex with respect to the sequence x0 , x1 , x2 d. d. d. d. C : 0 → R →0 Rx0 ⊕ Rx1 ⊕ Rx2 →1 Rx0 x1 ⊕ Rx0 x2 ⊕ Rx1 x2 →2 Rx0 x1 x2 →3 0. Then we have H 3 (C) =. ∞ P ∞ P ∞ P.  0 −α1 −α2 Qx−α x1 x2 + Im d2 /Im d2 . 0. α0 =1 α1 =1 α2 =1. 18.

(22) Proof. It is clear that Ker d3 = Rx0 x1 x2 . Next we compute Im d2 . Im d2 = d2 (Rx0 x1 ⊕ Rx0 x2 ⊕ Rx1 x2 ) = d2 (Rx0 x1 ⊕ 0 ⊕ 0) + d2 (0 ⊕ Rx0 x2 ⊕0 ) + d2 (0 ⊕ 0 ⊕ Rx1 x2 ) = Q[x0 , x1 , x2 ] +. ∞ X. α0 =1 ∞ X. + Q[x0 , x1 , x2 ] +. + Q[x0 , x1 , x2 ] +. ∞ X. 0 + Q[x1 , x2 ]x−α 0. α0 =1 ∞ X. α1 =1 ∞ X. 0 + Q[x1 , x2 ]x−α 0. 1 + Q[x0 , x2 ]x−α 1. = Q[x0 , x1 , x2 ] +. 0 + Q[x1 , x2 ]x−α 0. +. 0 −α1 Q[x2 ]x−α x1 + 0. α0 =1 α1 =1. ∞ X. ∞ X ∞ X. 0 −α2 x2 Q[x1 ]x−α 0. 2 Q[x0 , x1 ]x−α 2. ∞ X ∞ X. 1 −α2 x2 Q[x0 ]x−α 1. α1 =1 α2 =1. 1 + Q[x0 , x2 ]x−α 1. ∞ X. 2 Q[x0 , x1 ]x−α 2. α2 =1 ∞ X ∞ X. 1 −α2 Q[x0 ]x−α x2 . 1. α1 =1 α2 =1. Hence, compare the expression (4) with the above equation and then we have H 3 (C) = Ker d3 /Im d2 =. ∞ X ∞ X ∞ X α0 =1 α1 =1 α2 =1. 2. 19. . α0 =1 α2 =1. 0 −α2 Q[x1 ]x−α x2 + 0. α0 =1 α2 =1. 0 −α1 x1 Q[x2 ]x−α 0. 2 + Q[x0 , x1 ]x−α 2. α1 =1. α0 =1 ∞ X ∞ X. α2 =1 ∞ X. ∞ X ∞ X. α0 =1 α1 =1 ∞ X ∞ X. α2 =1. α1 =1 ∞ X. 1 + Q[x0 , x2 ]x−α 1.  0 −α1 −α2 Qx−α x1 x2 + Im d2 /Im d2 . 0. . .

(23) 3. The General Case. Before we compute the general case, we first introduce some notations that we will use. ˇ Recall that in Section 2, R = Q[x0 , x1 , x2 , w]/hx0 w, w2 i and we consider the Cech complex with respect to the sequence x0 , x1 , x2 d. d. d. d. 0 → R →0 Rx0 ⊕ Rx1 ⊕ Rx2 →1 Rx0 x1 ⊕ Rx0 x2 ⊕ Rx1 x2 →2 Rx0 x1 x2 →3 0. (w), we write Rxˆ0 x1 xˆ2 for Rx1 . Using the notation, we While introducing the notation fx0,2 1 ˇ can rewrite the above Cech complex as d. d. d. d. 0 → Rxˆ0 xˆ1 xˆ2 →0 Rx0 xˆ1 xˆ2 ⊕ Rxˆ0 x1 xˆ2 ⊕ Rxˆ0 xˆ1 x2 →1 Rx0 x1 xˆ2 ⊕ Rx0 xˆ1 x2 ⊕ Rxˆ0 x1 x2 →2 Rx0 x1 x2 →3 0. ˇ Next, in the above Cech complex, we use ex0 xˆ1 xˆ2 to represent the component Rx0 xˆ1 xˆ2 in Rx0 xˆ1 xˆ2 ⊕ Rxˆ0 x1 xˆ2 ⊕ Rxˆ0 xˆ1 x2 . Similarly, we use exˆ0 x1 xˆ2 and exˆ0 xˆ1 x2 to represent the component Rxˆ0 x1 xˆ2 and Rxˆ0 xˆ1 x2 in Rx0 xˆ1 xˆ2 ⊕ Rxˆ0 x1 xˆ2 ⊕ Rxˆ0 xˆ1 x2 , respectively. Thus, for example, if (f 1,2 , f 0,2 , f 0,1 ) ∈ Rx0 xˆ1 xˆ2 ⊕ Rxˆ0 x1 xˆ2 ⊕ Rxˆ0 xˆ1 x2 , we write (f 1,2 , f 0,2 , f 0,1 ) = f 1,2 ex0 xˆ1 xˆ2 + f 0,2 exˆ0 x1 xˆ2 + f 0,1 ex0 xˆ1 xˆ2 . ˇ Next, we will introduce how we order the component of C i in the Cech complex. Take the above complex as an example. C 2 = Rx0 x1 xˆ2 ⊕ Rx0 xˆ1 x2 ⊕ Rxˆ0 x1 x2 and there are three components in C 2 . Among these three components,. 1. Rx0 x1 xˆ2 and Rx0 xˆ1 x2 both have the index x0 while Rxˆ0 x1 x2 has the index xˆ0 , so we write Rx0 x1 xˆ2 and Rx0 xˆ1 x2 before Rxˆ0 x1 x2 ; 2. Rx0 x1 xˆ2 and Rx0 xˆ1 x2 both have the index x0 , and Rx0 x1 xˆ2 has the index x1 while Rx0 xˆ1 x2 has the index xˆ1 , so we write Rx0 x1 xˆ2 before Rx0 xˆ1 x2 .. Hence, we order the components of C 2 as C 2 = Rx0 x1 xˆ2 ⊕Rx0 xˆ1 x2 ⊕Rxˆ0 x1 x2 . Next, in order to make this ordering clearer, we use another example to illustrate it. For the ring R = 20.

(24) Q[x0 , w, x1 , x2 , x3 , x4 , x5 , x6 ]/hx0 w, w2 i, we compare the components Rx0 x1 x2 x3 xˆ4 x5 xˆ6 and Rx0 x1 x2 xˆ3 x4 xˆ5 x6 of C 5 . Note that they both have the indices x0 , x1 , x2 , and Rx0 x1 x2 x3 xˆ4 x5 xˆ6 the index x3 while Rx0 x1 x2 xˆ3 x4 xˆ5 x6 has xˆ3 . Thus we write Rx0 x1 x2 x3 xˆ4 x5 xˆ6 before Rx0 x1 x2 xˆ3 x4 xˆ5 x6 when we order the components of C 5 . Now, we are ready to compute the general case.. From now on, R is the ring. Q[x0 , x1 , x2 , . . . , xn , w]/hx0 w, w2 i and p is the maximal ideal hx0 , x1 , x2 , . . . , xn , wi in R. ˇ Since hx0 , x1 , x2 , . . . , xn i is p-primary, we consider the Cech complex with respect to the sequence x0 , x1 , x2 , . . . , xn . ˇ Similar as in Section 2, we write each component that occurs in the Cech complex as an internal direct sum of Q-vector spaces. For C 0 = R, we write R = Q[x0 , x1 , . . . , xn ] + Q[x1 , x2 , . . . , xn ]w. Since x0 w = 0 in R, for C 1 = Rx0 xˆ1 xˆ2 ···ˆxn ⊕ Rxˆ0 x1 xˆ2 ···ˆxn ⊕ · · · ⊕ Rxˆ0 xˆ1 xˆ2 ···xn , we have Rx0 xˆ1 xˆ2 ···ˆxn = Q[x0 , x1 , . . . , xn ] +. ∞ X. 0 Q[x1 , x2 , . . . , xn ]x−α , 0. α0 =1. and for i = 1, 2, . . . , n, Rxˆ0 xˆ1 ···ˆxi−1 xi xˆi+1 ···ˆxn = Q[x0 , x1 , . . . , xn ] + Q[x1 , x2 , . . . , xn ]w + +. ∞ X αi =1 ∞ X. i Q[x0 , x1 , . . . , xi−1 , xi+1 , . . . , xn ]x−α i. i Q[x1 , x2 , . . . , xi−1 , xi+1 , . . . , xn ]wx−α . i. αi =1. In general, for the R-module C t =. L. 1≤i1 <i2 <...<it ≤n. Rxi1 xi2 ···xit , there are two categories of. components, namely xi1 = 0 and xi1 ≥ 1. For example, for the R-module C i+1 , because. 21.

(25) x0 w = 0 and so w = 0 in Rx0 x1 ...xi xˆi+1 xˆi+2 ···ˆxn , we have Rx0 x1 ···xi xˆi+1 xˆi+2 ···ˆxn = Q[x0 , x1 , x2 , . . . , xn ] +. ∞ X. 0 Q[x1 , x2 , . . . , xn ]x−α 0. α0 =1. + ··· + +. ∞ X αi =1 ∞ X. i Q[x0 , x1 , . . . , xi−1 , xi+1 , . . . , xn ]x−α i. ∞ X. 0 −α1 x1 Q[x2 , x3 , . . . , xn ]x−α 0. α0 =1 α1 =1. + ··· +. ∞ ∞ X X. −α. i Q[x0 , x1 , . . . , xi−2 , xi+1 , . . . , xn ]xi−1i−1 x−α i. αi−1 =1 αi =1. + ··· +. ∞ X ∞ X α0 =1 α1 =1. ···. ∞ X. i 0 −α1 ; Q[xi+1 , xi+2 , . . . , xn ]x−α x1 · · · x−α 0 i. αi =1. 22.

(26) because w 6= 0 in Rxˆ0 x1 x2 ···xi+1 xˆi+2 ···ˆxn , we have Rxˆ0 x1 x2 ···xi+1 xˆi+2 ···ˆxn = Q[x0 , x1 , x2 , . . . , xn ] + Q[x1 , x2 , . . . , xn ]w +. ∞ X. 1 Q[x0 , x2 , x3 , . . . , xn ]x−α 1. +. ∞ X. 1 Q[x2 , x3 , . . . , xn ]wx−α 1. α1 =1. α1 =1. + ··· +. +. + +. ∞ X αi+1 =1 ∞ X. −α. Q[x0 , x1 , x2 , . . . , xi , xi+2 , . . . , xn ]xi+1i+1 −α. Q[x1 , x2 , . . . , xi , xi+2 , . . . , xn ]wxi+1i+1. αi+1 =1 ∞ X ∞ X α1 =1 α2 =1 ∞ X ∞ X. 1 −α2 x2 Q[x0 , x3 , x4 , . . . , xn ]x−α 1. 1 −α2 Q[x3 , x4 , . . . , xn ]wx−α x2 1. α1 =1 α2 =1. + ··· +. +. ∞ ∞ X X. −α. i xi+1i+1 Q[x0 , x1 , . . . , xi−1 , xi+2 , . . . , xn ]x−α i. αi =1 αi+1 =1 ∞ ∞ X X. −α. i xi+1i+1 Q[x1 , x2 , ..., xi−1 , xi+2 , . . . , xn ]wx−α i. αi =1 αi+1 =1. + ··· +. +. ∞ X ∞ X α1 =1 α2 =1 ∞ X ∞ X α1 =1 α2 =1. ··· ···. ∞ X αi+1 =1 ∞ X. −α. 1 −α2 Q[x0 , xi+2 , . . . , xn ]x−α x2 · · · xi+1i+1 1. −α. 1 −α2 Q[xi+2 , . . . , xn ]wx−α x2 · · · xi+1i+1 . 1. αi+1 =1. Moreover, we use the same special notation that we use in Section 2. More precisely, we use the upper indices to indicate the ring where the elements come from; we use the lower indices to indicate the variables that have negative powers; we also use the notation (w) to indicate that the elements are multiple of w. For example, if we denote an element as fx0,2 (w), we know that 1 x3 1. this element comes from Rxˆ0 x1 xˆ2 x3 ···xn , 23.

(27) 2. all terms of this element have negative powers for both x1 and x3 and have nonnegative powers for x0 , x2 , x4 , . . . , xn , 3. this element is a multiple of w; in other words, we know that fx0,2 (w) ∈ 1 x2. ∞ P ∞ P. 1 −α3 x3 ∩Rxˆ0 x1 xˆ2 x3 ···xn . Q[x2 , x4 , . . . , xn ]wx−α 1. α1 =1 α3 =1. ˇ Example 3.1 Let R = Q[x0 , x1 , x2 , . . . , xn , w]/hx0 w, w2 i and let C be the Cech complex with respect to the sequence x0 , x1 , x2 , . . . , xn . Then we have H 0 (C) = 0. Proof. Note that H 0 (C) = Ker d0 , where d. 0 → Rxˆ0 xˆ1 ···ˆxn →0 Rx0 xˆ1 xˆ2 ···ˆxn ⊕ Rxˆ0 x1 xˆ2 ···ˆxn ⊕ · · · ⊕ Rxˆ0 xˆ1 xˆ2 ···ˆxn−1 xn . Let f 0,1,...,n + f 0,1,...,n (w) ∈ Rxˆ0 xˆ1 ···ˆxn = Q[x0 , x1 , . . . , xn ] + Q[x1 , x2 , . . . , xn ]w such that d0 (f 0,1,...,n + f 0,1,...,n (w)) = (0, . . . , 0). Then we have (f 0,1,...,n , f 0,1,...,n + f 0,1,...,n (w), . . . , f 0,1,...,n + f 0,1,...,n (w)) = (0, . . . , 0). Thus f 0,1,...,n = 0 in Q[x0 , x1 , . . . , xn ], and f 0,1,...,n (w) = 0 in Q[x1 , . . . , xn ]w, and so f 0,1,...,n + f 0,1,...,n (w) = 0 in R. Hence we get Ker d0 = 0, and so H 0 (C) = 0.. 2. Before we start the next theorem, we introduce some notations that will be used in the proof. We let I = {x0 , x1 , x2 , . . . , xn } and for {xi1 , xi2 , . . . , xit } ⊆ I, we let I i1 ,i2 ,...,it = I − {xi1 , xi2 , . . . , xit }. Also, for xi ∈ I and J = {xj1 , xj2 , . . . , xjt } ⊆ I, we let   (−1)s−1 if j < j < · · · < j 1 2 s−1 < i < js < · · · < jt , σ(xi , J) =  0 if x ∈ J. i. With the above notation, we can rewrite the component Rxi1 ···xit → Rxj1 xj2 ···xjt+1 in Definition 1.1, that gives the differentiation dt : C t → C t+1 , as   σ(x , J) · nat : R j xi1 ···xit → (Rxi1 ···xit )xj if {xj1 , . . . , xjt+1 } = J ∪ {xj },  0 otherwise 24.

(28) where J = {xi1 , . . . , xit }. Note that J = I A where A = I − {i1 , . . . , it }. For example, the component Rx0 x1 ···xi xˆi+1 xˆi+2 ...ˆxn → Rx0 x1 ···xi xˆi+1 xi+2 xˆi+3 ...ˆxn is the homomorphism σ(xi+2 , I i+1,i+2,...,n ) · nat : Rx0 x1 ···xi → (Rx0 x1 ···xi )xi+2 .. ˇ Example 3.2 Let R = Q[x0 , x1 , x2 , . . . , xn , w]/hx0 w, w2 i and let C be the Cech complex with respect to the sequence x0 , x1 , x2 , . . . , xn . Then we have H i+1 (C) = 0 for all 0 ≤ i ≤ n − 2.. Remark 3.3 Note that H i+1 (C) = Ker di+1 /Im di , where Rx0 x1 ···xi−1 xˆi xˆi−1 ···ˆxn ⊕ · · · ⊕ Rxˆ0 xˆ1 ···ˆxn−i xn−i+1 ···xn d. →i Rx0 x1 ···xi xˆi+1 xˆi+2 ···ˆxn ⊕ · · · ⊕ Rxˆ0 xˆ1 ···ˆxn−i−1 xn−i ···xn di+1. → Rx0 x1 ···xi+1 xˆi+2 xˆi+3 ···ˆxn ⊕ · · · ⊕ Rxˆ0 xˆ1 ···ˆxn−i−2 xn−i−1 ···xn .. Before we start to compute H i+1 (C), as we did in the proof of Theorem 2.2, we first write Rx0 x1 ···xi−1 xˆi xˆi−1 ···ˆxn , . . ., Rxˆ0 xˆ1 ···ˆxn−i xn−i+1 ···xn as internal direct sums and then collect the components with the same Q-vector spaces together to get an internal direct sum of C i = Rx0 x1 ···xi−1 xˆi xˆi−1 ···ˆxn ⊕ · · · ⊕ Rxˆ0 xˆ1 ···ˆxn−i xn−i+1 ···xn . Similarly, we also express C i+1 = Rx0 x1 ···xi xˆi+1 xˆi+2 ···ˆxn ⊕ · · · ⊕ Rxˆ0 xˆ1 ···ˆxn−i−1 xn−i ···xn and C i+2 = Rx0 x1 ···xi+1 xˆi+2 xˆi+3 ···ˆxn ⊕ · · · ⊕ Rxˆ0 xˆ1 ···ˆxn−i−2 xn−i−1 ···xn as internal direct sums. Similarly as in (3), di+1 sends each component in C i+1 to the component in C i+2 corresponding to the same Q-vector space. Hence if we express every element a in C i+1 as a sum of terms in the components with the same Q-vector spaces, then we have a ∈ Ker di+1 if and only if every term of a belongs to Ker di+1 . Similarly, we have a ∈ Im di if and only if every term of a belongs to Im di . Hence, it is sufficient to show for each component that Ker di+1 ⊆ Im di .. We first consider the component which has no negative powers for x0 , x1 , x2 , . . . , xn and not a multiple of w, i.e., the component with respect to Q[x0 , x1 , . . . , xn ]. For f ∈. 25.

(29) C i+1 , since C i+1 = Rx0 x1 ···xi xˆi+1 xˆi+2 ···ˆxn ⊕ · · · ⊕ Rx0 xˆ1 xˆ2 ···ˆxn−i xn−i+1 ···xn ⊕ Rxˆ0 x1 ···xi+1 xˆi+2 xˆi+3 ···ˆxn ⊕ · · · ⊕ Rxˆ0 xˆ1 ···ˆxn−i−1 xn−i ···xn , we write f = f i+1,i+2,...,n ex0 x1 ···xi xˆi+1 xˆi+2 ···ˆxn + · · · + f 1,2,...,n−i ex0 xˆ1 xˆ2 ···ˆxn−i xn−i+1 ···xn + f 0,i+2,i+3,...,n exˆ0 x1 ···xi+1 xˆi+2 xˆi+3 ···ˆxn + · · · + f 0,1,...,n−i−1 exˆ0 xˆ1 ···ˆxn−i−1 xn−i ···xn .. Lemma 3.4 Let f ∈ C i+1 and let f = f i+1,i+2,...,n ex0 x1 ···xi xˆi+1 xˆi+2 ···ˆxn + · · · + f 1,2,...,n−i ex0 xˆ1 xˆ2 ···ˆxn−i xn−i+1 ···xn + f 0,i+2,i+3,...,n exˆ0 x1 ···xi+1 xˆi+2 xˆi+3 ···ˆxn + · · · + f 0,1,...,n−i−1 exˆ0 xˆ1 ···ˆxn−i−1 xn−i ···xn , i.e., f is in the component which has no negative powers for x0 , x1 , x2 , . . . , xn and is not a multiple of w. Then f ∈ Ker di+1 implies f ∈ Im di .. Proof. Since di+1 (f ) = 0 in C i+2 and C i+2 = Rx0 x1 ···xi+1 xˆi+2 xˆi+3 ···ˆxn ⊕· · ·⊕Rx0 xˆ1 xˆ2 ···ˆxn−i−1 xn−i ···xn ⊕ Rxˆ0 x1 ···xi+2 xˆi+3 xˆi+4 ···ˆxn ⊕· · ·⊕Rxˆ0 xˆ1 ···ˆxn−i−2 xn−i−1 ···xn , for the component ex0 x1 ···xi+1 xˆi+2 xˆi+3 ···ˆxn , we have σ(xi+1 , I i+1,i+2,i+3,...,n )f i+1,i+2,i+3,...,n + · · · + σ(x1 , I 1,i+2,i+3,...,n )f 1,i+2,i+3,...,n + σ(x0 , I 0,i+2,i+3,...,n )f 0,i+2,i+3,...,n = 0. Then we have that the coefficient of the component exˆ0 ,x1 ,...,xi+1, xˆi+2 ,ˆxi+3 ,...,ˆxn of f is f 0,i+2,i+3,...,n = −σ(x0 , I 0,i+2,i+3,...,n )σ(xi+1 , I i+1,i+2,i+3,...,n )f i+1,i+2,i+3,...,n − ··· − σ(x0 , I 0,i+2,i+3,...,n )σ(x1 , I 1,i+2,i+3,...,n )f 1,i+2,i+3,...,n .. 26.

(30) Similarly for the component ex0 x1 ···xi xˆi+1 xi+2 xˆi+3 ···ˆxn , we have σ(xi+2 , I i+1,i+2,...,n )f i+1,i+2,...,n + σ(xi , I i,i+1,i+3,...,n )f i,i+1,i+3,...,n + σ(xi−1 , I i−1,i+1,i+3,...,n )f i−1,i+1,i+3,...,n + · · · + σ(x1 , I 1,i+1,i+3,...,n )f 1,i+1,i+3,...,n + σ(x0 , I 0,i+1,i+3,...,n )f 0,i+1,i+3,...,n = 0, and we have the coefficient of the component exˆ0 ,x1 ,...,xi xˆi+1 ,xi+2 xˆi+3 ,...,ˆxn of f is f 0,i+1,i+3,...,n = −σ(x0 , I 0,i+1,i+3,...,n )σ(xi+2 , I i+1,i+2,...,n )f i+1,i+2,...,n − σ(x0 , I 0,i+1,i+3,...,n )σ(xi , I i,i+1,i+3,...,n )f i,i+1,i+3,...,n − ··· − σ(x0 , I 0,i+1,i+3,...,n )σ(x1 , I 1,i+1,i+3,...,n )f 1,i+1,i+3,...,n . Repeat the same discussion for all the remaining components with index x0 , i.e., ex0 x1 ···xi xˆi+1 xˆi+2 xi+3 xˆi+4 ···ˆxn , . . . , ex0 xˆ1 xˆ2 ···ˆxn−i−1 xn−i ···xn , and we will get    f 0,i+2,i+3,...,n = −σ(x0 , I 0,i+2,i+3,...,n )σ(xi+1 , I i+1,i+2,i+3,...,n )f i+1,i+2,i+3,...,n       −···       −σ(x0 , I 0,i+2,i+3,...,n )σ(x1 , I 1,i+2,i+3,...,n )f 1,i+2,i+3,...,n       f 0,i+1,i+3,...,n = −σ(x0 , I 0,i+1,i+3,...,n )σ(xi+2 , I i+1,i+2,...,n )f i+1,i+2,...,n       −σ(x0 , I 0,i+1,i+3,...,n )σ(xi , I i,i+1,i+3,...,n )f i,i+1,i+3,...,n   −···.                  f 0,1,2,...,n−i−1           . −σ(x0 , I 0,i+1,i+3,...,n )σ(x1 , I 1,i+1,i+3,...,n )f 1,i+1,i+3,...,n .. . = −σ(x0 , I 0,1,2,...,n−i−1 )σ(xn , I 1,2,...,n−i−1,n )f 1,2,...,n−i−1,n −··· −σ(x0 , I 0,1,2,...,n−i−1 )σ(xn−i , I 1,2,...,n−i−1,n−i )f 1,2,...,n−i−1,n−i .. 27. (6).

(31) From the above relations, we can rewrite f as f = f i+1,i+2,...,n ex0 x1 ···xi xˆi+1 xˆi+2 ···ˆxn + · · · + f 1,2,...,n−i+1 ex0 xˆ1 xˆ2 ···ˆxn−i+1 xn−i+2 ···xn + − σ(x0 , I 0,i+2,i+3,...,n )σ(xi+1 , I i+1,i+2,i+3,...,n )f i+1,i+2,i+3,...,n − · · ·  − σ(x0 , I 0,i+2,i+3,...,n )σ(x1 , I 1,i+2,i+3,...,n )f 1,i+2,i+3,...,n exˆ0 x1 ···xi+1 xˆi+2 xˆi+3 ···ˆxn + − σ(x0 , I 0,i+1,i+3,...,n )σ(xi+2 , I i+1,i+2,...,n )f i+1,i+2,...,n − σ(x0 , I 0,i+1,i+3,...,n )σ(xi , I i,i+1,i+3,...,n )f i,i+1,i+3,...,n − ···  − σ(x0 , I 0,i+1,i+3,...,n )σ(x1 , I 1,i+1,i+3,...,n )f 1,i+1,i+3,...,n ex0 x1 ···xi xˆi+1 xi+2 xˆi+3 ···ˆxn + ··· + − σ(x0 , I 0,1,2,...,n−i−1 )σ(xn , I 1,2,...,n−i−1,n )f 1,2,...,n−i−1,n − · · ·  − σ(x0 , I 0,1,2,...,n−i−1 )σ(xn−i , I 1,2,...,n−i−1,n−i )f 1,2,...,n−i−1,n−i exˆ0 xˆ1 ···ˆxn−i−1 xn−i ···xn . (7) In order to show that f ∈ Im di , we need to find g ∈ C i such that di (g) = f . Note that. 28.

(32) for g = g i,i+1,...,n ex0 x1 ···xi−1 xˆi xˆi+1 ···ˆxn + · · · + g 0,1,2,...,n−i exˆ0 xˆ1 ···ˆxn−i xn−i+1 ···xn , di (g i,i+1,...,n ex0 x1 ···xi−1 xˆi xˆi+1 ···ˆxn + · · · + g 0,1,2,...,n−i exˆ0 xˆ1 ···ˆxn−i xn−i+1 ···xn )  = σ(xi , I i,i+1,i+2,...,n )g i,i+1,...,n + · · · + σ(x0 , I 0,i+1,i+2,...,n )g 0,i+1,i+2,...,n ex0 x1 ···xi xˆi+1 xˆi+2 ···ˆxn + σ(xi+1 , I i,i+1,i+2,...,n )g i,i+1,i+2,...,n + σ(xi−1 , I i−1,i,i+2,...,n )g i−1,i,i+2,...,n  + · · · + σ(x0 , I 0,i,i+2,...,n )g 0,i,i+2,...,n ex0 ...xi−1 xˆi xi+1 xˆi+2 ···ˆxn + ··· + σ(xn , I 1,2,...,n−i,n )g 1,2,...,n−i,n + · · · + σ(xn−i+1 , I 1,2,...,n−i,n−i+1 )g 1,2,...,n−i,n−i+1  + σ(x0 , I 0,1,2,...,n−i )g 0,1,2,...,n−i ex0 xˆ1 ···ˆxn−i−1 xˆn−i xn−i+1 ···xn + σ(xi+1 , I 0,i+1,i+2,i+3,...,n )g 0,i+1,i+2,...,n + · · ·  + σ(x1 , I 0,1,i+2,i+3,...,n )g 0,1,i+2,i+3,...,n exˆ0 x1 ···xi+1 xˆi+2 ···ˆxn + ··· + σ(xn , I 0,1,2,...,n−i−1,n )g 0,1,2,...,n−i−1,n + · · ·  + σ(xn−i , I 0,1,2,...,n−i−1,n−i )g 0,1,2,...,n−i−1,n−i exˆ0 xˆ1 ···ˆxn−i−1 xn−i ···xn .. (8). We compare (7) with (8). For example, for the component exˆ0 x1 ···xi+1 xˆi+2 ···ˆxn , we want to get σ(xi+1 , I 0,i+1,i+2,i+3,...,n )g 0,i+1,i+2,...,n + · · · + σ(x1 , I 0,1,i+2,i+3,...,n )g 0,1,i+2,i+3,...,n = −σ(x0 , I 0,i+2,i+3,...,n )σ(xi+1 , I i+1,i+2,i+3,...,n )f i+1,i+2,i+3,...,n − ··· − σ(x0 , I 0,i+2,i+3,...,n )σ(x1 , I 1,i+2,i+3,...,n )f 1,i+2,i+3,...,n , so we choose g 0,i+1,i+2,...,n. = −σ(xi+1 , I 0,i+1,i+2,i+3,...,n )σ(x0 , I 0,i+2,i+3,...,n ) σ(xi+1 , I i+1,i+2,i+3,...,n )f i+1,i+2,i+3,...,n , .. .. g 0,1,i+2,i+3,...,n = −σ(x1 , I 0,1,i+2,i+3,...,n )σ(x0 , I 0,i+2,i+3,...,n ) σ(x1 , I 1,i+2,i+3,...,n )f 1,i+2,i+3,...,n . 29.

(33) We do the same thing for the components exˆ0 x1 ···xi xˆi+1 xi+2 xˆi+3 ···ˆxn , . . . , exˆ0 xˆ1 ···ˆxn−i−1 xn−i ···xn and want to choose g 0,k1 ,k2 ,...,kn−i accordingly for all 0 < k1 < k2 < · · · < kn−i ≤ n. We also choose all the g k1 ,k2 ,...,kn−i+1 with k1 > 0 to be zero. Note that the term g 0,i+1,i+2,...,n not only contributes to the component exˆ0 x1 ···xi+1 xˆi+2 ···ˆxn but also contributes to the component exˆ0 x1 ···xi xˆi+1 xi+2 xˆi+3 ···ˆxn . More precisely, for the component exˆ0 x1 ···xi xˆi+1 xi+2 xˆi+3 ···ˆxn , we want to get σ(xi+2 , I 0,i+1,i+2,i+3,...,n )g 0,i+1,i+2,...,n + σ(xi , I 0,i,i+1,i+3,...,n )g 0,i,i+1,i+3,...,n + · · · + σ(x1 , I 0,1,i+1,i+3,...,n )g 0,1,i+1,i+3,...,n = −σ(x0 , I 0,i+1,i+3,...,n )σ(xi+2 , I i+1,i+2,i+3,...,n )f i+1,i+2,i+3,...,n − σ(x0 , I 0,i+1,i+3,...,n )σ(xi , I i,i+1,i+3,...,n )f i,i+1,i+3,...,n − ··· − σ(x0 , I 0,i+1,i+3,...,n )σ(x1 , I 1,i+2,i+3,...,n )f 1,i+1,i+3,...,n , and so we want to choose g 0,i+1,i+2,...,n = −σ(xi+2 , I 0,i+1,i+2,i+3,...,n )σ(x0 , I 0,i+1,i+3,...,n )σ(xi+2 , I i+1,i+2,i+3,...,n )f i+1,i+2,i+3,...,n . However, this is the same as the earlier choice, since − σ(xi+1 , I 0,i+1,i+2,i+3,...,n )σ(x0 , I 0,i+2,i+3,...,n )σ(xi+1 , I i+1,i+2,i+3,...,n ) = −(−1)i (−1)0 (−1)i+1 = (−1)2i+2 =1 and − σ(xi+2 , I 0,i+1,i+2,i+3,...,n )σ(x0 , I 0,i+1,i+3,...,n )σ(xi+2 , I i+1,i+2,i+3,...,n ) = −(−1)i (−1)0 (−1)i+1 = (−1)2i+2 = 1. 30.

(34) Similarly, g 0,i+1,i+2,...,n also contributes to the components exˆ0 x1 ···xi xˆi+1 xˆi+2 xi+3 xˆi+4 ···ˆxn , . . . , exˆ0 x1 ···xi xˆi+1 ···ˆxn−1 xn . However, we have for each j = i + 1, . . . , n, σ(xj , I 0,i+1,...,n ) = (−1)i , σ(x0 , I 0,i+1,...,j−1,j+1,...,n ) = (−1)0 , and σ(xj , I i+1,...,n ) = (−1)i+1 , and so we have g 0,i+1,i+2,...,n = −σ(xi+1 , I 0,i+1,i+2,i+3,...,n )σ(x0 , I 0,i+2,i+3,...,n )σ(xi+1 , I i+1,i+2,i+3,...,n )f i+1,i+2,...,n = −σ(xi+2 , I 0,i+1,i+2,i+3,...,n )σ(x0 , I 0,i+1,i+3,...,n )σ(xi+2 , I i+1,i+2,i+3,...,n )f i+1,i+2,...,n = ··· = −σ(xn , I 0,i+1,i+2,i+3,...,n )σ(x0 , I 0,i+1,i+3,...,n−1 )σ(xn , I i+1,i+2,i+3,...,n )f i+1,i+2,...,n . Hence, we indeed choose the same g 0,i+1,i+2,...,n even when we consider different components. In general, for all 1 ≤ k1 < k2 < · · · < kn−i ≤ n, since for each j = 1, 2, . . . , n − i, σ(xkj , I 0,k1 ,k2 ,...,kn−i )σ(xkj , I k1 ,k2 ,...,kn−i ) = (−1)kj −j (−1)kj −(j−1) = (−1)2kj −2j+1 = −1, and since σ(x0 , I 0,k1 ,...,kj−1 ,kj+1 ,...,kn−i ) = (−1)0 = 1, we have g 0,k1 ,k2 ,...,kn−i = −σ(xk1 , I 0,k1 ,k2 ,k3 ,...,kn−i )σ(x0 , I 0,k2 ,k3 ,...,kn−i )σ(xk1 , I k1 ,k2 ,k3 ,...,kn−i )f k1 ,k2 ,...,kn−i = −σ(xk2 , I 0,k1 ,k2 ,k3 ,...,kn−i )σ(x0 , I 0,k1 ,k3 ,...,kn−i )σ(xk2 , I k1 ,k2 ,k3 ,...,kn−i )f k1 ,k2 ,...,kn−i = ··· = −σ(xkn−i , I 0,k1 ,k2 ,k3 ,...,kn−i )σ(x0 , I 0,k1 ,k2 ,...,kn−i−1 )σ(xkn−i , I k1 ,k2 ,...,kn−i )f k1 ,k2 ,...,kn−i . (9) Therefore, the choices made for each g 0,k1 ,k2 ,...,kn−i while considering different components are in fact all the same. Now we use (9) to show that di (g) = f , where g = g 0,i+1,i+2,...,n exˆ0 x1 ···xi xˆi+1 xˆi+2 ···ˆxn + · · · + g 0,1,2,...,n−i exˆ0 xˆ1 ···ˆxn−i xn−i+1 ···xn , i.e., di g 0,i+1,i+2,...,n exˆ0 x1 ···xi xˆi+1 xˆi+2 ···ˆxn + · · · + g 0,1,2,...,n−i exˆ0 xˆ1 ···ˆxn−i xn−i+1 ···xn. . = f i+1,i+2,...,n ex0 x1 ···xi xˆi+1 ···ˆxn + · · · + f 1,2,...,n−i ex0 xˆ1 ···ˆxn−i xn−i+1 ···xn + f 0,i+2,i+3,...,n exˆ0 x1 ···xi+1 xˆi+2 xˆi+3 ···ˆxn + · · · + f 0,1,...,n−i−1 exˆ0 xˆ1 ···ˆxn−i−1 xn−i ···xn . 31. (10).

(35) We first take care of the components in the second line of (10), namely the components ex0 x1 ···xi xˆi+1 ···ˆxn , . . . , ex0 xˆ1 ···ˆxn−i xn−i+1 ···xn . For the component ex0 x1 ···xi xˆi+1 ···ˆxn , since the components in g that do contribute to it are the components ex0 x1 ···xi−1 xˆi xˆi+1 ···ˆxn , ex0 x1 ···xi−2 xˆi−1 xi xˆi+1 ···ˆxn , . . . , ex0 xˆ1 x2 ···xi xˆi+1 ···ˆxn , exˆ0 x1 x2 ···xi xˆi+1 ···ˆxn , and since we take g i,i+1,i+2,...,n = g i−1,i+1,i+2,...,n = · · · = g 1,i+1,i+2,...,n = 0, and g 0,i+1,i+2,...,n = −σ(xi+1 , I 0,i+1,i+2,i+3,...,n )σ(x0 , I 0,i+2,i+3,...,n )σ(xi+1 , I i+1,i+2,i+3,...,n )f i+1,i+2,...,n , we get that the coefficient of ex0 x1 ···xi xˆi+1 ···ˆxn in di (g) is σ(x0 , I 0,i+1,i+2,...,n )g 0,i+1,i+2,...,n = σ(x0 , I 0,i+1,i+2,...,n ) − σ(xi+1 , I 0,i+1,i+2,...,n )σ(x0 , I 0,i+2,...,n )σ(xi+1 , I i+1,i+2,i+3,...,n )f i+1,i+2,...,n  = (−1)0 − (−1)i (−1)0 (−1)i+1 f i+1,i+2,...,n = f i+1,i+2,...,n . Similarly, with the same argument for the remaining components ex0 x1 ···xi+1 xˆi xi+1 xˆi+2 ···ˆxn , . . . , ex0 xˆ1 ···ˆxn−i xn−i+1 ···xn in the second line of (10), we see that their coefficients are indeed f i,i+2,i+3,...,n , . . . , f 1,2,...,n−i , respectively. Next we check the first component exˆ0 x1 ···xi+1 xˆi+2 xˆi+3 ···ˆxn in the third line of (10). Note that the components in g that do contribute to the component exˆ0 x1 ···xi+1 xˆi+2 ···ˆxn are the components exˆ0 x1 ···xi xˆi+1 xˆi+2 ···ˆxn , . . . , exˆ0 xˆ1 x2 ···xi+1 xˆi+2 ···ˆxn . Moreover, since we take    g 0,i+1,i+2,...,n = −σ(xi+1 , I 0,i+1,i+2,...,n )σ(x0 , I 0,i+2,i+3,...,n )σ(xi+1 , I i+1,i+2,...,n )f i+1,i+2,...,n ,   .. .     g 0,1,i+2,...,n = −σ(x , I 0,1,i+2,i+3,...,n )σ(x , I 0,i+2,i+3,...,n )σ(x , I 1,i+2,...,n )f 1,i+2,...,n , 1. 0. 32. 1. .

(36) we see that the coefficient of exˆ0 x1 ···xi+1 xˆi+2 ···ˆxn in di (g) is σ(xi+1 , I 0,i+1,i+2,...,n )g 0,i+1,i+2,...,n + · · · + σ(x1 , I 0,1,i+2,i+3,...,n )g 0,1,i+2,...,n = σ(xi+1 , I 0,i+1,i+2,...,n ) − σ(xi+1 , I 0,i+1,i+2,...,n )σ(x0 , I 0,i+2,i+3,...,n )σ(xi+1 , I i+1,i+2,...,n )f i+1,i+2,...,n + ··· + σ(x1 , I 0,1,i+2,i+3,...,n ) − σ(x1 , I 0,1,i+2,i+3,...,n )σ(x0 , I 0,i+2,i+3,...,n )σ(x1 , I 1,i+2,...,n )f 1,i+2,...,n. . = −σ(x0 , I 0,i+2,i+3,...,n )σ(xi+1 , I i+1,i+2,...,n )f i+1,i+2,...,n − · · · − σ(x0 , I 0,i+2,i+3,...,n )σ(x1 , I 1,i+2,...,n )f 1,i+2,i+3,...,n = f 0,i+2,i+3,...,n , where the last equality follows from (6). Next we check the second component exˆ0 x1 ···xi xˆi+1 xi+2 xˆi+3 ···ˆxn in the third line of (10). Since the components in g that do contribute to the component exˆ0 x1 ···xi xˆi+1 xi+2 xˆi+3 ···ˆxn are the components exˆ0 x1 ···xi xˆi+1 xˆi+2 xˆi+3 ···ˆxn , exˆ0 x1 ···xi−1 xˆi xˆi+1 xi+2 xˆi+3 ···ˆxn , . . . , exˆ0 xˆ1 x2 ···xi xˆi+1 xi+2 xˆi+3 ···ˆxn . Use (9) and we have    g 0,i+1,i+2,...,n = −σ(xi+2 , I 0,i+1,i+2,...,n )σ(x0 , I 0,i+1,i+3,...,n )σ(xi+2 , I i+1,i+2,...,n )f i+1,i+2,...,n      g 0,i,i+1,i+3,...,n = −σ(x , I 0,i,i+1,i+3,...,n )σ(x , I 0,i+1,i+3,...,n )σ(x , I i,i+1,i+3,...,n )f i,i+1,i+3,...,n i 0 i .  ..       g 0,1,i+1,i+3,...,n = −σ(x , I 0,1,i+1,i+3,...,n )σ(x , I 0,i+1,i+3,...,n )σ(x , I 1,i+1,i+3,...,n )f 1,i+1,i+3,...,n . 1 0 1 Note that in the above relations we choose the expression g 0,i+1,i+2,...,n = −σ(xi+2 , I 0,i+1,i+2,...,n )σ(x0 , I 0,i+1,i+3,...,n )σ(xi+2 , I i+1,i+2,...,n )f i+1,i+2,...,n , instead of g 0,i+1,i+2,...,n = −σ(xi+1 , I 0,i+1,i+2,...,n )σ(x0 , I 0,i+2,...,n )σ(xi+1 , I i+1,i+2,...,n )f i+1,i+2,...,n .. 33. .

(37) Then we have that the coefficient of exˆ0 x1 ···xi xˆi+1 xi+2 xˆi+3 ···ˆxn in di (g) is σ(xi+2 , I 0,i+1,i+2,...,n )g 0,i+1,i+2,...,n + σ(xi , I 0,i,i+1,i+3,...,n ))g 0,i,i+1,i+3,...,n + · · · + σ(x1 , I 0,1,i+1,i+3,...,n )g 0,1,i+1,i+3,...,n = σ(xi+2 , I 0,i+1,i+2,...,n ) − σ(xi+2 , I 0,i+1,i+2,...,n )σ(x0 , I 0,i+1,i+3,...,n )σ(xi+2 , I i+1,i+2,...,n )f i+1,i+2,...,n + σ(xi , I 0,i,i+1,i+3,...,n ) − σ(xi , I 0,i,i+1,i+3,...,n )σ(x0 , I 0,i+1,i+3,...,n )  · σ(xi , I i,i+1,i+3,...,n )f i,i+1,i+3,...,n + ··· + σ(x1 , I 0,1,i+1,i+3,...,n ) − σ(x1 , I 0,1,i+1,i+3,...,n )σ(x0 , I 0,i+1,i+3,...,n )  · σ(x1 , I 1,i+1,i+3,...,n )f 1,i+1,i+3,...,n = −σ(x0 , I 0,i+1,i+3,...,n )σ(xi+2 , I i+1,i+2,...,n )f i+1,i+2,...,n − σ(x0 , I 0,i+1,i+3,...,n )σ(xi , I i,i+1,i+3,...,n )f i,i+1,i+3,...,n − ··· − σ(x0 , I 0,i+1,i+3,...,n )σ(x1 , I 1,i+1,i+3,...,n )f 1,i+1,i+3,...,n = f 0,i+1,i+3,...,n , where the last equality follows from (6). Similarly, we do the same argument for the remaining components exˆ0 x1 ···xi xˆi+1 xˆi+2 xi+3 xˆi+4 ···ˆxn , . . . , exˆ0 ···ˆxn−i−1 xn−i ···xn in the third line of (10) and finish the proof.. 2. Next, we consider the component which has no negative powers for x0 , x1 , x2 , . . . , xn and is a multiple of w, i.e., the component with respect to Q[x1 , x2 , . . . , xn ]w. For f (w) ∈ C i+1 , since C i+1 = Rx0 x1 ···xi xˆi+1 xˆi+2 ···ˆxn ⊕ · · · ⊕ Rx0 xˆ1 ···ˆxn−i xn−i+1 ···xn ⊕ Rxˆ0 x1 ···xi+1 xˆi+2 xˆi+3 ···ˆxn ⊕ · · · ⊕ Rxˆ0 x1 xˆ2 ···ˆxn−i xn−i+1 ···xn ⊕ Rxˆ0 xˆ1 x2 ···xi+2 xˆi+3 ···ˆxn ⊕ · · · ⊕ Rxˆ0 xˆ1 ···ˆxn−i−1 xn−i ···xn ,. 34. .

參考文獻

相關文件

了⼀一個方案,用以尋找滿足 Calabi 方程的空 間,這些空間現在通稱為 Calabi-Yau 空間。.

Understanding and inferring information, ideas, feelings and opinions in a range of texts with some degree of complexity, using and integrating a small range of reading

Writing texts to convey information, ideas, personal experiences and opinions on familiar topics with elaboration. Writing texts to convey information, ideas, personal

Writing texts to convey simple information, ideas, personal experiences and opinions on familiar topics with some elaboration. Writing texts to convey information, ideas,

This kind of algorithm has also been a powerful tool for solving many other optimization problems, including symmetric cone complementarity problems [15, 16, 20–22], symmetric

We have also discussed the quadratic Jacobi–Davidson method combined with a nonequivalence deflation technique for slightly damped gyroscopic systems based on a computation of

About the evaluation of strategies, we mainly focus on the profitability aspects and use the daily transaction data of Taiwan's Weighted Index futures from 1999 to 2007 and the

Second, we replicate the AN+MM and use European options sampling at exercise as control variates (CV-at-exercise). Last, we also replicate the AN+MM and use