• 沒有找到結果。

全域可壓縮流場計算方法之開發應用於氣動聲學之前期研究

N/A
N/A
Protected

Academic year: 2021

Share "全域可壓縮流場計算方法之開發應用於氣動聲學之前期研究"

Copied!
156
0
0

加載中.... (立即查看全文)

全文

(1)

An investigation of computational methods

for all speed compressible flow field for an application of

the preliminary study in aeroacoustics

(2)

An investigation of computational methods

for all speed compressible flow field for an application of

the preliminary study in aeroacoustics

Student

Chung-Gang Li

Advisor

Wu-Shung Fu

A Thesis

Submitted to Department of Mechanical Engineering College of Engineering National Chiao Tung University

in partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy in

Mechanical Engineering June 2011

(3)

i

Preconditioning

dissipative model

OpenMp GPU(Graphics processing unit)

(4)

An investigation of computational methods

for all speed compressible flow field for an application of the preliminary study in aeroacoustics

Abstract

With the improvement of the life quality, the noise induced by aeroacoustic becomes one of the most important and complicated problems of the noise control. Before resolving the problems of the aeroacoustics, due to the necessary of defining the aeroacoustic source, the aim of this study will develop a computational method for all speed regions. In order to obtain the accurate information of the aeroacoustic source, the preconditioning method is adopted to make the program is suitable for all speed regions. Besides, due to the serious effect of the boundary conditions on fluid and acoustic fields, the computational method should be matched with the non-reflection boundary condition. With the non-reflection boundary condition, the accuracy can be increased and the efficiency can be improved. In the turbulence modeling, the dissipative model is created to generalize the computational method. The extra equations for the motions of small scales can be elimated and the efficiency can be improved. Besides, this model is also available in the curvilinear coordinate without any modifications so it can be used more general in real applications. Finally, because the tremendous computational time is demanded, parallel computation by OpenMp and GPU are built to improve the efficiency. Therefore, the computational method developed in this study can be potentially a basement in the computational aeroacoustic.

(5)

iii

(6)

i ii iii iv v vi viii 1 6 LES 19 23 51 58 62 135 137 1 143

(7)

v 1. (4-71) (4-72) 41 2. Khanafer Vafai [40] 75 3. 0.005 86 4. 0.5 93 5. Dissipative model 101 6. 131

(8)

1. 8 2. 12 3. 15 4. 18 5. 27 6. L1 L2 L3 L4 L5 47 7. Roe scheme [20] 52

8. Roe scheme [20] Reynolds stress 53

9. Roe scheme [20] 54 10. filter 57 11. CUDA 61 12 local 63 13 Ra 64 14. 4 10 Ra= 67 15. 72 16. Khanafer Vafai [41] 74 17. 4 10 Ra= 77 18 Isothermal surfaces 81 19 z x=W x=W / 2 x=0 local 83 20 Rayleigh 84 21. 87 22. φ=40% 89

23. LES Smagorinsky model [20] 90

24. LES Smagorinsky model [20] Reynolds stress 91

25. LES Smagorinsky model [20] 92

26. LES Smagorinsky model [20] Reynolds stress 94

27. LES Smagorinsky model [20] 95

(9)

vii

29 LES Smagorinsky model [45] 97

30 (0.5 ) 98

31. ILES dissipative model [20] 102

32. ILES dissipative model [20] Reynolds stress 103

33. ILES dissipative model [20] 104

34. ILES dissipative model [46] 105

35. ILES dissipative model [46] Reynolds stress 106

36. ILES dissipative model [46] 107

37. ILES dissipative model [47] 108

38. ILES dissipative model [47] Reynolds stress 109

39. ILES dissipative model [47] 110

40. ILES dissipative model [47] 111

41. ILES dissipative model [47] Reynolds stress 112

42. ILES dissipative model [47] 113

43. ILES dissipative model [48] 114

44. ILES dissipative model [48] Reynolds stress 115

45. ILES dissipative model [48] 116

46. xy xz yz 118 47. Isothermal surfaces Reτ =180 500 940 119 48. ( xz ) (xz ) 121 49. 122 50. 124 51. 125 52. 126 53. spectra(dB) 127 54 130 55 132 56 [51] 133 57 [51] 134

(10)

c original acoustic wave speed (m s/ ) ER Energy ratio , , F G H flux vectors g acceleration of gravity ( 2 / m s ) ( ) G φ Filter function , , i j k Location index J Jacobian of transformation k Thermal conductivity (w m K/ ⋅ ) l Length (m) . Ma Mach number

Nu Local Nusselt numbers defined in Eq. (7-1), (7-11) and (7-18)

Nu Average Nusselt numbers defined in Eq. (7-3), (7-6), (7-7), (7-8),

(7-19) and (7-20) 

Nu Average Nusselt numbers defined in Eq. (7-13) and (7-15)

P Pressure ( Pa ) Pr Prandtl number

rms Root mean square

R Gas constant (J kg K ) / /

Ra Rayleigh number defined in Eq. (7-2), (7-4), (7-5), (7-9) and (7-10) 

Ra Rayleigh number defined in Eq. (7-14)

*

Ra Rayleigh number defined in Eq. (7-12)

Re Reynolds number based on characteristic velocity Reτ Reynolds number based on friction velocity

S Source term vector

t Physical time (s)

T Temperature(K )

U conserved variable vector

p

U primitive variable vector

uτ Friction velocity τ ρw/ (m s/ ) , ,

x y z Cartesian axes ( m )

(11)

ix

Greek symbols

ρ density ( 3

/

kg m )

γ Specific heat ratios Cp/Cv

µ viscosity ( 2

/

N s m⋅ )

w

τ Wall shear stress ( Pa )

β Thermal expansion coefficient (1/ K )

Γ Preconditioning matrix

ε Coefficient of dissipative model τ Artificial time (s)

Mathematical Operators

(12)

(CEN) 2001 125

(structure-borne) (Structure-borne noise) (air-borne)

(13)

2

Lighthill [1] Lighthill

Lighthill’s analogy Williams [2] Lighthill’s analogy Lighthill

Navier-Stokes Ffowcs Williams-Hawkings ( FW-H ) Lighthill 1992 William [3] CAA(Computational AeroAcoustic) CFD CAA Lighthill’s analogy CFD

Ohnishi [4] Lighthill’s analogy

Kenji [5]

Lighthill Prieur [6]

FW-H Kirchhoff

FW-H [2] Kirchhoff

Lighthill’s analogy Liner Euler Equation(LEE) Addad [7] Star-CD

LEE (vortex) (acoustic source)

[8] Euler Equation Bogey [9]

(14)

( 0.3 ) ( 0.3 )

Navier-Stokes

CFL stiff

Briley [10] preconditioning

Navier-Stokes Turkel[11] preconditioning Choi [12]

stiff factorization error

preconditioning 0.05

Choi [12] [13] preconditioning

Roe[14] averaged

variables Roe

Weiss [15] Choi Roe

preconditioning N-S dual time stepping

density based pressure based

Patankar Spalding[16] SIMPLE(Semi-Implicit Method for Pressure Linked Equations) pressure based

pressure based

(15)

4

Rudy [17]

Poinsot [18] Navier-Stokes characteristics boundary conditions(NSCBC)

Freund [19]

0.3

DNS(Direct Numerical Simulation) RANS(Reynolds Averaged Navier-Stokes) LES(Large Eddy Simulation)

DNS DNS Benchmark Kim [20] RANS LES DNS RANS DNS RANS LES

(large scale) (small scale)

LES LES (ILES)

LES Smagorinsky dynamic

Boris [21] Grinstein [22]

(compressible turbulent flow) LES preconditioning

Lessani [23] LES preconditioning

(16)

Xu [24] LES pipe DNS Alkishriwi [25] LES preconditioning

multigrid Reτ =590 Re=3900 Runge-Kutta 4-60 Bossinesq 30 [26] correlation DNS

(17)

6 2.1 1 l0 w 2 l 1 l l3 Th 298.06 c T = K P0 =1atm (101300Pa) (1) (2) (3) N-S U F G S t x y++= ∂ ∂ ∂ (2-1) PRT (2-2) U F G S

(18)

u U v E ρ ρ ρ ρ       =       2 xx xy xx xy u u P F uv T Eu Pu k u v x ρ ρ τ ρ τ ρ τ τ     + −   =    ∂  +    ∂   2 yy yx yy v vu G v P T Ev Pv k u v y ρ ρ ρ τ ρ τ τ         = + −   ∂  +      0 0 0 ( ) 0 ( ) g S gu ρ ρ ρ ρ     − −   =   − −    2 2 1 ( ) ( 1) 2 p E u v ρ γ = + + − Sutherland’s law 3 0 2 0 0 110 ( ) ( ) 110 T T T T T µ =µ + + (2-4) ( ) ( ) ( 1) Pr T R k T µ γ γ = − (2-5) 3 0 1.18kg m/ ρ = 2 9.81 / g= m s µ0 =1.85 10× −5N s m⋅ / 2 T0 =298.06K 1.4 γ = R=287 /J kg K/ Pr=0.72 (2-3)

(19)

8 1.

Outlet

Non-reflecting

Inlet

Non-reflecting

A

B

C

D

E

F

A

(20)

2.2 2 11W 2W W 2W 2W Th 298.06 c T = K P0 =1atm (1) (2) (3) N-S H + U F G S t x y z++∂ ∂ = ∂ ∂ ∂ ∂ (2-6) PRT (2-7)

(21)

10 U F G H S u U v w E ρ ρ ρ ρ ρ         =         2 xx xy xz xx xy xz u u P uv F uw T Eu Pu k u v w x ρ ρ τ ρ τ ρ τ ρ τ τ τ     + −     =  −      +    ∂   2 yx yy yz yx yy yz v uv v P G vw T Ev Pv k u v w y ρ ρ τ ρ τ ρ τ ρ τ τ τ     −    + −  =  −     + − − − −   ∂   2 zx zy zz zx zy zz w uw vw H w P T Ew Pw k u v w z ρ ρ τ ρ τ ρ τ ρ τ τ τ         = + −     + − − − −   ∂   0 0 0 0 ( ) 0 ( ) S g gv ρ ρ ρ ρ         = − −     − −    2 2 2 1 ( ) ( 1) 2 p E u v w ρ γ = + + + − Sutherland’s law 3 0 2 0 0 110 ( ) ( ) 110 T T T T T µ =µ + + (2-9) (2-8)

(22)

( ) ( ) ( 1) Pr T R k T µ γ γ = − (2-10) 3 0 1.18kg m/ ρ = ,g =9.81 /m s2,µ0 =1.85 10× −5N s m⋅ / 2,T0 =298.06K,γ =1.4, 287 / / R= J kg K and Pr=0.72.

(23)

12 2(a).

2(b).

(24)

2.3 LES 3 x y z u v w l1 2 l l3 (1) (2) Trong [27] 0 U F G H t x y z+++= ∂ ∂ ∂ ∂ (2-11) u U v w E ρ ρ ρ ρ ρ         =         ɶ ɶ ɶ ɶ (2-12) 2 ( 2 )[2 ( )] 3 ( 2 )[ ] ( 2 )[ ] ( 2 ) 2 { [2 ( )] [ ] [ ]} 3 t t t t i u u uu P V x u v F uv y x u w uw z x T Eu Pu k x u u v u w T u V v w k x y x z x x ρ ρ µ ρν ρ µ ρν ρ µ ρν ρ µ ρν        ∂  + − + − ∇ ⋅  = − + + ∂ ∂   + + ∂ ∂   + + ∂   − ∇⋅ + + + + − ∂ ∂ ∂ ∂ ∂ ∂  ɶ ɶ ɶ ɶ ɶ ɶ ɶ ɶ ɶ ɶ ɶ ɶ ɶ ɶ ɶɶ ɶɶ ɶ ɶ ɶ ɶ ɶ ɶ ɶ ɶ ɶ ɶ ɶ                         (2-13) Pɶ =ρRTɶ (2-14)

bar filter tilde filter

(25)

14 Sutherland’s law 3 0 2 0 0 110 ( ) ( ) 110 T T T T T µ =µ + + ɶ ɶ ɶ (2-15) 5 2 0 1.85 10 N s m/ µ = × , 0 298.06 T = K Smagorinsky νt 2 t C S ν = ∆ ɶ (2-16) 1 3 1 2 3 ( ) ∆ = ∆ ∆ ∆ , Sɶ = 2S Sɶ ɶij ij , 1( ) 2 j j ij i i u u S x x ∂ ∂ = + ∂ ∂ ɶ ɶ ɶ

(2-16) C Van Driest damping function

0.01 1 exp[ ( )] 25 d C +   =  − −    (2-17) u d d ρ τ µ + = u τ τ ρw/ τw d

(26)

3.

(27)

16 2.4 Lighthill 4 Navier-Stokes l1 2 l R 10m s/ R 3000 l1/R=50 l2/R=120 Buffer zone 10R (1) (2) (3) N-S U F G S t x y++= ∂ ∂ ∂ (2-18) PRT (2-19) U F G S u U v E ρ ρ ρ ρ       =       2 xx xy xx xy u u P F uv T Eu Pu k u v x ρ ρ τ ρ τ ρ τ τ    + −    =    ∂  +    ∂   2 yy yx yy v vu G v P T Ev Pv k u v y ρ ρ ρ τ ρ τ τ         = + −   ∂  +      (2-20)

(28)

2 2 1 ( ) ( 1) 2 p E u v ρ γ = + + − Sutherland’s law 3 0 2 0 0 110 ( ) ( ) 110 T T T T T µ =µ + + (2-21) ( ) ( ) ( 1) Pr T R k T µ γ γ = − (2-22) 3 0 1.18kg m/ ρ = 2 9.81 / g= m s µ0 =1.85 10× −5N s m⋅ / 2 T0 =298.06K 1.4 γ = R=287 /J kg K/ Pr=0.72 Lighthill 1 60R 150R 2 2 2 2 2 2 2 2 0 2 ( 2 2 ) 2 2 2 u v uv c t x y x y x y ρ′ ρ′ ρ′ ρ ρ ρ ∂ +=++ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ (2-23)

(29)

18 4. Navier-Stokes Buffer zone Buffer zone Lighthill

(30)

LES

LES LES

LES (large-scale) (subgrid scale

(SGS)) LES Navier-Stokes

(subgrid-scale stress models) Smagorinsky

LES Deardorff[28]

LES tensor Kolmogorov

(filter) filter function ( , ) ( ) ( , ) U r t =U r +U r t′ (3-1) (wave number) U r t′( , ) 3 1 ˆ ( , ) ( , ) (2 ) ikr U r t U r t e dk π ′ =

′ (3-2) ( , ) f r t f r t( , ) ( , ) ( , ) ( , ) f r t G r r f r t dr ∞ ′ ′ ′ =

G r r( , )′ filter function (3-3) filter function

(31)

20 (1) Gussian filter function

( , ) 1 exp 6( 2 ) 6 i i i i i i x x G x x π   ′ = × −  ∆  ∆  (3-4)

(2) Top hat filter function 1 i ∆ 2 2 i i i i i x −∆ <x′< +xG x x( ,i i′ =) (3-5) o otherwise

(3) sharp cutoff filter function

( ) 2 ( , ) ( ) i i in i i i i i x x S G x x x x π π   −   ∆     ′ = ′ − (3-6) ∆i filter width f r( )= f r( )+ f r′( ) filter Navire-stokes 0 i i u x ∂ = ∂ (3-7) 2 2 1 ij i i i j j i j j u u P u u v t x x x x τ ρ ∂ ∂ += − + ∂ ∂ ∂ ∂ τij =u ui ju ui j =Lij+Cij+Rij (3-8) ij L (Leonard) u ui ju ui j

filter function sharp cutoff filter function

ij

(32)

modeling filtering

ij

L Cij Lij Cij Rij order Lij+Cij

ij

R (Reynold ) u ui′ ′j

SGS(subgrid scale) model Reynolds stress s ( ) 3 j k k i ij i j ij t j i u u u u R u u v x x ς ′ ′  ∂ ∂  ′ ′ = − = − +  ∂ ∂     (3-9) ij R u uk′ ′k P p P 1 3 k k P= +p ρu u′ ′ (3-10) 1 2 2 1 2 ( ) ( ) 2 j i t s j i u u v C x x  = ∆  +  ∂ ∂     1 3 1 2 3 ( ) ∆ = ∆ ∆ ∆ (3-11) 1 3 G p P K ρ = + 2 2 ( ) t G v v K C = ∆ Cv =0.094 s C 0.1 0.25 0.15 ∆ (3-4) (3-6) filter Navier-Stokes Favre-filtered(density-weighted) f filtered f Favre-averaged 1 V f GfdV V =

f ρf ρ = ɶ G filtering Navier-Stokes 0 k k u t x ρ ρ+= ∂ ∂ ɶ (3-12)

(33)

22 0 k kl kl k l l k l l u p u u t x x x x ρ ρ τ σ ∂ +++= ∂ ∂ ∂ ∂ ∂ ɶ ɶ ɶ ɶ (3-13) ( ) 0 t kl l t l l k kl k v l l l l l l l E q E u pu u k T u C t x x x x x x x ρ τ σ ∂ ++ ∂ ∂ ++= ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ɶ ɶ ɶ ɶ ɶ ɶ ɶ (3-14) pRTɶ (3-15) Navier-Stokes (3-13) kl σ  ( ) kl uu u uk l σ =ρ − ɶ ɶ (3-16)

LES (close system) (3-16)

Moin (3-16) 2 1 1 2 2 ( ) 3 3 kl C S Skl Smm kl q kl σ = − ρ∆ ɶ ɶ − ɶ δ + δ (3-17) 2 ii q =σ 1 ( ) 2 k l kl l k u u S x x ∂ ∂ = + ∂ ∂ ɶ ɶ ɶ Sɶ = 2S Sɶ ɶkl kl Smagorinsky model 2 t C S ν = ∆ (3-18) 1 3 ( x y z) ∆ = ∆ ∆ ∆ S = 2S Sij ij C C Germano [29]

dynamic SGS model Trong[26]

(34)

(Euler equation) Riemann Roe (flux) preconditioning (implicit) (explicit) Navier-Stokes 0 U F G H t x y z+++= ∂ ∂ ∂ ∂ (4-1) u U v w E ρ ρ ρ ρ ρ         =          2 2 V E= +e e ( 1) p e ρ γ = − 2 2 2 V =u + +v w 2 xx xy xz xx xy xz u u p vu F wu T Eu pu k u v w x ρ ρ τ ρ τ ρ τ ρ τ τ τ    + −      =  −      +  ∂   2 yx yy yz yx yy yz v uv v p G wu T Ev pv k u v w y ρ ρ τ ρ τ ρ τ ρ τ τ τ        + −  =  −     + − − − −   ∂  

(35)

24 2 zx zy zz zx zy zz w uw vw H w p T Ew pw k u v w z ρ ρ τ ρ τ ρ τ ρ τ τ τ         =  + −      +  ∂   inviscid viscid F =F +F = 2 0 xx xy xz xx xy xz u u p uv uw T u v w Eu pu k x ρ ρ τ ρ τ ρ τ τ τ τ ρ   +       −             + + +  +   ∂   inviscid viscid G=G +G = 2 0 yx yy yz yx yy yz v vu v p vw T u v w Ev pv k y ρ ρ τ ρ τ ρ τ τ τ τ ρ              + −             + + + + −    ∂   inviscid viscid H =H +H = 2 0 zx zy zz zx zy zz w wu wv w p T u v w Ew pw k z ρ ρ τ ρ τ ρ τ τ τ τ ρ           −     +         + + +  +   ∂  

Euler equation U Finviscid Ginviscid Hinviscid 0

t x y z ∂ ∂ ∂ ∂ + + + = ∂ ∂ ∂ ∂ u U v w E ρ ρ ρ ρ ρ         =         

(36)

2 inviscid u u p uv F uw T Eu pu k x ρ ρ ρ ρ ρ    +      =       +  ∂   2 inviscid v vu v p G vw T Ev pv k y ρ ρ ρ ρ ρ        +  =      + −   ∂   2 inviscid w wu wv H w p T Ew pw k z ρ ρ ρ ρ ρ         =  +      +  ∂  

(hyperbolic) (conservative type)

(piecewise) (Riemann) 0 u u a t x+= ∂ ∂ a Jacobian (4-2) 0 ( , 0) ( ) u x =u x = L R u u 0 0 x x < > (4-3) (4-2) 0 t x U +AU = (4-4) A 1 A= ΛK K− Λ 1 ... 0 0 ... 0 : : : 0 ... m λ λ       Λ =       (1) ( ) [ ,..., m ] K = K K AK( )iiK( )i

(37)

26 W (characteristic varibales) ( 1) W =KU U =KW t t U =KW Ux=KWx (4-4) 0 t x KW +AKW = 0 t x W + ΛW = (4-5) (4-5) Canonical form Characteristic form

0 i i i w w t λ x+= ∂ ∂ 1 1 1 2 2 3 3 ... 0 0 ... 0 0 : : : : : 0 ... m t x w w w w w w λ λ               +    =                         (4-5) 0 ( , ) ( ) i i i w x t =w x−λt = i i α β 0 0 i i x t x t λ λ − < − > (4-6) i α βi U =KW 0 ( ) ( , ) ( ) m i i i i u x t =

w x−λt K 5

(38)

y

x<0 x=0 x>0 x

(39)

28 ( ) ( ) 1 1 ( , ) p m i i i i i i p u x t α K βK = = + =

+

(4-7) ( , ) u x t jump ∆u ( ) 1 m i R L i i u u u αK = ∆ = − =

ɶ (4-8) i i i α β αɶ = − exact solution

(approximation Riemann problem)

exact solution Roe[14]

0 U F t x+= ∂ ∂ (4-9) chain rule (4-9) 0 U F U t U x+ ∂ ∂ = ∂ ∂ ∂ ( ) F A U U ∂ = ∂ (4-9) ( ) 0 U U A U t x+= ∂ ∂ (4-10) ( ) A U Jaconian

Roe Jaconian A U( ) Jaconian (constant Jaconian matrix) A U Uɶ( L, R) ( ) 0 U U A U t x+= ∂ ɶ ∂ (4-11) ( , 0) U x = L R U U 0 0 x x < > (4-11)

Roe Jaconian Jaconian

(4-9)

Jaconian Roe

(40)

2. URULU A U Uɶ( L, R)→A U( ) F A U ∂ = ∂ 3. A Uɶ( LUR)=FLFR 4. Aɶ Roe Jaconian

3. conservation law Rankine-Hugoniot (4-6) (4-8) Ui+1/ 2( / )x t ( ) 1/ 2 0 ( / ) i i i L i U x t U K λ α + < = +

ɶ (4-12) ( ) 1/ 2 0 ( / ) i i i R i U x t U K λ α + > = −

ɶ (4-13) 1/ 2 i+ (face) ( ) 0 U F Q t x+= ∂ ∂ ɶ ɶ (4-11) Fɶ = AUɶ ( R) ( L) ( R) ( L) F Uɶ −F Uɶ =F UF U (4-14) 1/ 2(0) i U+ (flux) 1/ 2 ( 1/ 2(0)) ( ) ( ) i i R R F+ =F Uɶ +F UF Uɶ (4-15) Fɶ = AUɶ 1/ 2 1/ 2(0) ( ) i i R R F+ =AUɶ +F UAUɶ (4-16) (4-12) (4-13) 1 ( ) ( ) 0 1 2 ( ) ( ) i m i i R i R i i i i F F U A K F U K λ α λ α + + = − ɶ

> ɶ = −

= ɶ ɶ ɶ (4-17) ( ) ( ) 1 0 1 2 ( ) ( ) i m i i R i L i i i i F F U A K F U K λ α λ α − + = + ɶ

> ɶ = +

= ɶ ɶ ɶ (4-18)

(41)

30 (4-17) (4-18) λɶi− λɶi+ 1 2 i F + ( ) 1 1 2 1 ( ) ( ) 2 m i R L i i i i F F U F U λ αK + =   = + −

ɶ ɶ  (4-19) (4-7) 1 2 i F + 1 2 1 ( ) ( ) 2 R L i F F U F U A U +   = + − ∆ɶ (4-20) R L U U U ∆ = − 1 Aɶ = Aɶ+−Aɶ− = ΛKɶ ɶ ɶK− 1 2 ( , ,..., m) diag λ λ λ Λ =ɶ ɶ ɶ ɶ ( ) 0 t x U +F U = (4-21) 1 2 u U u u ρ ρ     = =      1 2 2 2 f u F f u a p ρ ρ     = = +      a (4-21) jacobian 2 2 0 1 ( ) 2 F A U a u u U   ∂ = =    (4-22) 1 u a λ = − λ2 = +u a (1) 1 K u a   =    (2) 1 K u a   = +    parameter vector 1 2 q U Q q u ρ ρ ρ     = =      (4-23) F U Q 2 1 1 1 2 1 2 u q U q Q u q q     = = =      (4-24) 1 1 2 2 2 2 2 2 1 f q q F f q a q     = = +      (4-25)

(42)

U ∆ ∆F averaged vector 1 2 1 1 ( ) 2 2 L R L R L L R R q Q Q Q q u u ρ ρ ρ ρ  +    = = + =   +     ɶ ɶ ɶ (4-26) ( ) Bɶ =B Qɶ ɶ Cɶ =C Qɶ ɶ( ) U B Q ∆ = ∆ɶ ∆ = ∆F C Qɶ (4-27) (4-27) 1 ( ) F CBU ∆ = ɶ ɶ ∆ (4-28) 3 Jcaobian 1 Aɶ =CBɶ ɶ (4-29) − (4-29) 1 2 1 2q 0 B q q   =    ɶ ɶ ɶ ɶ 2 1 2 2 1 2 2 q q C a q q   =    ɶ ɶ ɶ ɶ ɶ (4-30) (4-29) 2 2 0 1 2 A a u u   =    ɶ ɶ ɶ (4-31)

uɶ Roe averaged velocity

L L R R L R u u u ρ ρ ρ ρ + = + ɶ (4-32) preconditioning Weiss Smith preconditioning [15] 0 U F G H t x y z+++= ∂ ∂ ∂ ∂ (4-33) (4-33) (conserved variables) (primitive variables) 0 p U F G H M t x y z+++= ∂ ∂ ∂ ∂ (4-34) [ ]T p U = P u v w T M

(43)

32 0 0 0 0 0 0 0 0 0 1 p T p T p T p p T p T p u u U v v M U w w H u v w H C ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ       ∂ = = ∂      +    (4-35) p p ρ ρ =∂ ∂ T T ρ ρ =∂ ∂ (4-35) K 2 1 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 ( ) 0 0 0 T p u v K w H V C ρ ρ         = −         (4-36) K M 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 p T p KM C ρ ρ ρ ρ ρ ρ         =         (4-37) (4-37) (4-34) ( ) 0 p p u v w t x y z ρ ρ ρ ρ ∂ +∂ +∂ +∂ = ∂ ∂ ∂ ∂ (4-38) (4-38) 2 ( ) 0 p u v w C t x y z γ ∂ +∂ρ +∂ρ +∂ρ = ∂ ∂ ∂ ∂ (4-39) C (4-39) ρp (4-38) 0 u v w x y z ρ ρ ρ ∂ ++= ∂ ∂ ∂ (4-40) (4-37) ρp (local velocity) (order) CFL

(44)

θ ρp 2 1 1 ( ) r p U TC θ = − (4-41) ε×Umax if u < ×ε C Ur = u if ε× < <C u C (4-42) C if u >C ε 5 10− (stagnation point) (singular point) Ur

(local diffusion velocity) Ur

max( , ) r r U U x ν = ∆ θ (4-37) Γnc 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 T nc p C θ ρ ρ ρ ρ ρ         Γ =         (4-43) (4-34) ( ) 0 p nc U F G H K t x y z ∂ ∂ ∂ ∂ Γ + + + = ∂ ∂ ∂ ∂ (4-44) (4-44) 1 K− 1 ( nc) p 0 U F G H K t x y zΓ+++= ∂ ∂ ∂ ∂ (4-45) (4-45)

(45)

34 1 0 0 0 0 0 0 0 0 0 1 nc p T u u T v K v T w w T H u v w H C T ρ θ ρ θ ρ ρ θ ρ ρ θ ρ ρ θ ρ ρ ρ ρ − −       −         Γ = Γ =           − +       (4-46) 0 p U F G H t x y z ∂ ∂ ∂ ∂ Γ + + + = ∂ ∂ ∂ ∂ (4-47) Roe (4-20) Fi+1/ 2 1( ( ) ( )) 2 F UR +F UL artificial viscosity term 1

2 A U

ɶ preconditioning

artificial viscosity term

1 1 1 0 ( ) 0 ( ) 0 ( ) 0 p p p p p p p U F G H t x y z U F G H t x y z U U U U A B C t x y z U U U U AM BM CM t x y z − − − ∂ ∂ ∂ ∂ Γ + + + = ∂ ∂ ∂ ∂ ∂ + Γ++= ∂ ∂ ∂ ∂ ∂ + Γ + + = ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ + Γ + + = ∂ ∂ ∂ ∂ p U M U ∂ = ∂

artificial viscosity terms 1 1 2 1 1 ( ) ( ) 2 2 n R L R L i F F FAM U U + = + − Γ Γ + (4-48) 1 1 AM KA DA KA − − Γ = × × (4-47) Navier-Stokes dual time

(46)

stepping[15]

Navier-Stokes artificial time

term 0 U U F G H t x y z τ ∂ ++++= ∂ ∂ ∂ ∂ ∂ (4-49) τ artificial time t physical time

artificial time term preconditioning

0 p U U F G H t x y z τ ∂ ∂ ∂ ∂ ∂ Γ + + + + = ∂ ∂ ∂ ∂ ∂ (4-50)

artificial time term physical time term

1 1 1 1 1 1 1 1 1 , , , , , , , , 2 2 2 2 2 2 3 4 2 1 1 1 ( ) ( ) ( ) 0 k k k n n p p k k k k k k i j k i j k i j k i j k k k U U U U U t F F G G H H τ ξ η ζ + + − ′ ′ ′ ′ ′ ′ + − + − + − − − + Γ + ∆ ∆ + − + − + − = ∆ ∆ ∆ (4-51) bar 2 k′ =k

Runge Kutta k′ = +k 1 LUSGS

kn 1 k k p p U U τ + Γ ∆ (4-51) N-S Runge Kutta 1 3 2 1 1 3 3 3 2 2 1 3 3 3 ( ) 2 3 1 1 3 ( ) 4 4 4 2 1 2 2 3 ( ) 3 3 3 2 k k k p p k k k k p p p k k k k p p p U U M R t U U U M R t U U U M R t τ τ τ + + + + + + + ∆ = + Γ + ∆ ∆ = + + Γ + ∆ ∆ = + + Γ + ∆ (5-52) p U M U ∂ = ∂

(47)

36 1 1 1 1 1 1 1 , , , , , , , , 2 2 2 2 2 2 3 4 ( ) 2 1 1 1 [ ( ) ( ) ( )] n n i j k i j k i j k i j k k k U U U R t F F G G H H ξ η ζ Φ − Φ Φ Φ Φ Φ Φ Φ + − + − + − − + = − ∆ − − + − + − ∆ ∆ ∆ 1 2 , , 3 3 k k k Φ = + + LUSGS 1 k U + k 1 F + 1 k k p U + =U + ∆M U (4-53) p U M U ∂ = ∂ 1 k k p p p U U + U ∆ = − 1 k k p p F + =F + ∆A U (4-54) 1 k p p F A U ∂ = ∂ Jacobian k p p G B U ∂ = ∂ k p p H C U ∂ = ∂ 1 k G + Hk (4-53) (4-54) (4-51) 1 3( ) 4 2 ( ) ( ) ( ) 0 k n n p p k k k p p p p p p U U M U U U t F A U G B U H C U ξ η ζ τ δ δ δ − ∆ + ∆ − + Γ + ∆ ∆ + + ∆ + + ∆ + + ∆ = (4-55) ξ δ δη δς (4-55) 3 [ ( )] 2 k p p p p I M A B C U R t δξ δη δζ τ Γ + + + + ∆ = ∆ ∆ (4-56) 1 3 4 ( ) ( ) 2 k n n k U U U k k k R F G H t δξ δη δζ − − + = − − + + ∆ I Γ 1 3 1 1 1 1 { [ ( ) ( ) ( )]} 2 k p p p p I M A B C U R t δξ δη δζ τ + Γ− + Γ− + Γ− + Γ− ∆ = Γ− ∆ ∆ (4-57) (4-57) Yoon Jameson[30] LUSGS

(48)

1 1 1 k p p k p p k p p A A B B C C − − − = Γ = Γ = Γ ɶ ɶ ɶ (4-58) p p Cɶp p p p p p p p p p A A A B B B C C C + − + − + − = + = + = + ɶ ɶ ɶ ɶ ɶ ɶ ɶ ɶ ɶ (4-59) 1 ( ) 2 1 ( ) 2 1 ( ) 2 p p A p p B p p C A A I B B I C C I λ λ λ ± ± ± = ± = ± = ± ɶ ɶ ɶ ɶ ɶ ɶ ɶ ɶ ɶ (4-60) A λɶ λBɶ λCɶ Aɶp Bɶp Cɶp (4-57) 1 3 1 [ ( ) ( ) ( )] 2 k p p p p p p p I M A A B B C C U R t δξ δη δζ τ + Γ− + ++ − + ++ − + ++ − ∆ = Γ− ∆ ∆ ɶ ɶ ɶ ɶ ɶ ɶ (4-61) (Ap Ap) ξ δ ɶ++ ɶ− , , 1 , 1 , (Ap Ap) Ap Ap Ap i Ap i Ap i Ap i ξ ξ ξ δ δ δ ξ ξ + + − − − + ++= − ++ + − =+ − ∆ ∆ ɶ ɶ ɶ ɶ ɶ ɶ ɶ ɶ (4-62) p Aɶ+ δξAɶp− δξ+ (4-62) (4-61) , , 1 , 1 , 1 , , 1 , 1 , , , 1 , 1 , 1 3 [ 2 ] p i p i p i p i p j p j p j p j p k p k p k p k k p A A A A I M t B B B B C C C C U R τ ξ ξ η η ζ ζ + + − − − + − + + − − + + − − − + − + − − − + Γ + + ∆ ∆ ∆ ∆ − − − − + + + + ∆ = Γ ∆ ∆ ∆ ∆ ɶ ɶ ɶ ɶ ɶ ɶ ɶ ɶ ɶ ɶ ɶ ɶ (4-63) (4-63)

(49)

38 1 (L+ +D U)∆Up = Γ−Rk (4-64) 1, , , 1, , , 1 1 1 1 ( p )i j k ( p )i j k ( p )i j k L A B C ξ + − η + − ζ + −   = − + + ∆ ∆ ∆  ɶ ɶ ɶ  (4-65) 1 , , , , 3 1 (( ) ( ) ) 2 p i j k p i j k I D M A A t τ − ξ + −  = + Γ + − ∆ ∆ ∆ ɶ ɶ , , , , , , , , 1 1 ((Bp )i j k (Bp )i j k) ((Cp )i j k (Cp )i j k) η + − ζ + −  + − + − ∆ ɶ ɶ ∆ ɶ ɶ  (4-66) 1, , , 1, , , 1 1 1 1 ( p )i j k ( p )i j k ( p )i j k U A B C ξ − + η − + ζ − +   = + + ∆ ∆ ∆  ɶ ɶ ɶ  (4-67) (4-61) 1 3 4 ( ) ( ) 2 k n n k U U U k k k R F G H t δξ δη δζ − − + = − − + + ∆ (4-1) F 2 inviscid u u p uv F uw T Eu pu k x ρ ρ ρ ρ ρ    +      =       +  ∂   (4-68) Roe scheme (4-20)

{

1

}

1 , 2 1 1 ( ) 2 R L 2 p P inviscid i F F F ε − A U + = + − Γ ∆ (4-67) Roe scheme DNS ε 1 ε ( , , , )x y z t

ε ε= Roe upwinding dissipation term 1

{

1

}

Ap UP

(50)

Abalakin [31] MUSCL (4-67) P U ∆ 1/ 2 1/ 2 L R P i i U u+ u+ ∆ = − (4-68) 1/ 2 1/ 2 1/ 2 L L i i i u+ = +uu+ (4-69) 1/ 2 1/ 2 1/ 2 R R i i i u+ = −uu+ (4-70) 1/ 2 (1 )( 1 ) ( 1) L i i i i i u+ β u+ u β u u ∆ = − − + − 1 1 2 2 1 1 ( 3 3 ) ( 3 3 ) c d i i i i i i i i u u u u u u u u θ − + + θ − − + + − + − + + − + − + (4-71) 1/ 2 (1 )( 1 ) ( 2 1) R i i i i i u+ β u+ u β u+ u+ ∆ = − − + − 1 1 2 1 2 3 ( 3 3 ) ( 3 3 ) c d i i i i i i i i u u u u u u u u θ + + θ + + + + − + − + + − + − + (4-72) β θc θd 1 4 2 8 1 8 1 2 ( ) 12 i i i i u u u u u o x x x − − − + + − + ∂ = + ∆ ∂ ∆ (4-73) ( , , )ξ η ζ ( ) / ( ) / ( ) / k x y z k x y z k x y z F F G H J G F G H J H F G H J ξ ξ ξ η η η ς ς ς = + + = + + = + + (4-74) J Jacobian 1 3 4 ( ) { [( ) / ] 2 k n n k x y z U U U R F G H J t δ ξξ ξ ξ − − + = − − + + + ∆ [( xF yG zH) / ]J [( xF yG zH) / ]}J η ζ δ η +η +η +δ ς +ς +ς (4-74) (4-64) k R ( 1, , ) ,( 1, , ) ( , 1, ) ,( , 1, ) ( , , 1) ,( , , 1) ( , , ) ,( , , ) 1 ( 1, , ) ,( 1, , ) ( , 1, ) ,( , 1, ) ( , , 1) ,( , , 1) ( , , ) k k k k i j k p i j k i j k p i j k i j k p i j k i j k p i j k k k k k i j k p i j k i j k p i j k i j k p i j k i j k L U L U L U D U U U U U U U R − − − − − − − + + + + + + ∆ + ∆ + ∆ + ∆ + ∆ + ∆ + ∆ = Γ (4-75)

(51)

40 Yoon Jameson[30] (4-64)

1 1

(L+D D) − (D U+ )∆Upk = Γ−Rk

(52)

1. (4-71) (4-72) β θc θd Order 1/3 1/3 1/3 1/3 0 -1/6 0 -1/10 0 0 -1/6 -1/15 3 4 4 5

(53)

42 (4-76) 1. forward sweep * 1 ( ) k p L+DU = Γ−R (4-77) * 1 ( ) k p p U DD U U ∆ = + ∆ (4-77) * * 1 k p p L U∆ + ∆D U = Γ−R (4-78) D U∆ *p = Γ−1Rk− ∆L U*p (4-79) * p U ∆ * 1 1 * ( k ) p p U D− − R L U ∆ = Γ − ∆ . (4-80) (4-80) * 1 * ,( , , ) ( , , )[ ( , , ) ( 1, , ) ,( 1, , ) k p i j k i j k i j k i j k p i j k U DR L U ∆ = Γ − ∆ − L( ,i j1, )kU*p i j,( , 1, )kL( , ,i j k1)U*p i j k,( , , 1)] (4-81) 1 i= j=1 k=1 ∆U*p 2. backward sweep k p U ∆ (4-77) ( ) k p p D U+ ∆U = ∆D U ∗ (4-82) (4-82) 1 k k p p p U UD U U− ∆ = ∆ − ∆ (4-83) k p U ∆ * 1 ,( , , ) ,( , , ) ( , , )[ ( 1, , ) ,( 1, , ) k k p i j k p i j k i j k i j k p i j k U U DU + U + ∆ = ∆ − ∆ + ( , 1, ) ,( , 1, ) ( , , 1) ,( , , 1)] k k i j k p i j k i j k p i j k U +U + +U +U + (4-84) 1 i= j=1 k=1 ∆U*p 3. k 1 p U + 1 k k k p p p U + =U + ∆U (4-85)

(54)

4. 1~3 1 0 k k p p U U τ + ≈ ∆ 1 1 n k p p U + =U + Unp+1 LUSGS ( , 0, ) ( ,1, ) ( , 0, ) ( ,1, ) ( , 0, ) ( ,1, ) ( , 0, ) ( ,1, ) ( , 0, ) ( ,1, ) P i k P i k u i k u i k v i k v i k w i k w i k T i k T i k = = − = − = − = (4-86) ( , , 0) ( , ,1) ( , , 0) ( , ,1) ( , , 0) ( , ,1) ( , , 0) ( , ,1) ( , , 0) ( , ,1) P i j P i j u i j u i j v i j v i j w i j w i j T i j T i j = = − = − = − = (4-87) ( , 0, ) ( ,1, ) ( , 0, ) ( ,1, ) ( , 0, ) ( ,1, ) ( , 0, ) ( ,1, ) ( , 0, ) 2 h ( ,1, ) P i k P i k u i k u i k v i k v i k w i k w i k T i k T T i k = = − = − = − = − (4-88) 0 1

Poinsot Lele [18] LODI(local one-dimensional inviscid relations)

preocnditioning

LODI Navier-Stokes

(55)

44 0 p U F x τ ∂ ∂ Γ + = ∂ ∂ (4-89) 1 − Γ 1 0 p U F x τ − ∂ + Γ= ∂ ∂ (4-90) 1 F x − ∂ Γ ∂ 1 1 p 1 p p p U U F F A x U x x − ∂ − ∂ ∂ − ∂ Γ = Γ = Γ ∂ ∂ ∂ ∂ (4-91) (4-91) (4-89) primitive form 1 0 p p p U U A x τ − ∂ ∂ + Γ = ∂ ∂ (4-92) 1 p A − Γ 1 1 p A K Kλ − − Γ = (4-93) K λ Γ−1Ap Dennis [32] 1 2 3 4 5 u u u u c u c λ λ λ λ λ λ                 = =     ′ ′+         ′ ′     (4-94) ( 1) 2 u u′ = Θ + 2 2 2 ( 1) 4 2 u c c′ = Θ − + Θ Θ ≈100M2 1 Up L K x λ − ∂ = ∂ (4-95) L

(56)

1 2 3 4 5 1 ( ) ( ) ( )[ ( ) ] ( )[ ( ) ] T P P u x x x w L u x L v L L u x L P u u c u c u L x x P u u c u c u x x γ ργ ρ ρ ∂ ∂ ∂   + −     ∂             ∂     = =           + − −   ′ ′ ′ ′  + −  ∂ ∂   (4-96) L (4-94) L1 L2 L3 L4 L5 u u u u′+cu′−c′ (4-95) (4-92) 0 p U KL τ ∂ + = ∂ (4-97) (4-97) 4 5 4 5 3 2 1 4 5 1 [ ( ) ( )] 0 2 1 ( ) 0 2 0 0 1 1 1 [ ( ) ( )] 0 2 p L u c u L u c u c u L L c v L w L T L L u c u L u c u c τ τ ρ τ τ γ τ ρ γ ∂ + + − − − − = ′ ∂ ∂ + − = ′ ∂ ∂ − = ∂ ∂ + = ∂ ∂ + ++ − − − − = ′ ∂ (4-98) (4-98) 1 4 5 1 4 5 1 3 1 2 1 1 1 [ ( ) ( )] 2 ( ) 2 1 1 ( ) k k k k k k k k k k k k t p p L u c u L u c u c t u u L L c v v L t w w L t T T L t p p ρ ρ γ ρ γ + + + + + + ∆ ′ ′ = − + − − − − ′ ∆ = − − ′ = + ∆ = − ∆ + = − ∆ + − (4-99) 6(a) L1 L2 L3 L4 (4-96) L L L L u′−c

(57)

46 5 L 0 p τ ∂ = ∂ (4-98) 4 5 1 [ ( ) ( )] 0 2cL u′+ − −cu L u′− −cu = (4-100) 5 L 5 4 ( ) ( ) u c u L L u c u ′+ −′ = ′− −′ (4-101) 6(b) L4 (4-98) 1 L L2 L3 0 L5 (4-101)

(58)

(a) (b) 6. L1 L2 L3 L4 L5

aperture

channel

surroundings

fluid velocity →

aperture

channel

surroundings

fluid velocity ←

(59)

48 (0, , ) ( , , ) (0, , ) ( , , ) (0, , ) ( , , ) (0, , ) ( , , ) (0, , ) ( , , ) P j k P nx j k u j k u nx j k v j k v nx j k w j k w nx j k T j k T nx j k = = = = = (4-102) ( 1, , ) (1, , ) ( 1, , ) (1, , ) ( 1, , ) (1, , ) ( 1, , ) (1, , ) ( 1, , ) (1, , ) P nx j k P j k u nx j k u j k v nx j k v j k w nx j k w j k T nx j k T j k + = + = + = + = + = (4-103) 0 (ghost cell) nx+1 1 nx driving fore ( , , ) p( , , ) P i j kx+P i j k (4-104) β Pp βx source term (0, , ) ( , , ) p p P j k =P nx j k (4-105) ( 1, , ) (1, , ) p p P nx+ j k =P j k (4-106) β β Xu [24]

(60)

1 1 0 1 [( ) 2( ) ( ) ] n n m m n m n t Ac Ac Ac β + =β + − ∆ ɺ ɺ ɺ (4-107) Ac mɺ ∆t ()0 ()n n ()n+1 1 n+ 1. 2. 3. MUSCL (4-71) (4-72) FR FLUp 4. ∆Up (4-67) Roe Finviscid 5. 6. LUSGS (4-76) Upk+1 7. 2 6 1 3 1 10 n n n φ φ φ + − + − < , , , , p u v w T φ = 1 3 1 10 k k k φ φ φ + − + − < k 1 p U + p U (2-23) 2 2 2 2 2 2 2 2 0 2 ( 2 2 ) 2 2 2 u v uv c t x y x y x y ρ′ ρ′ ρ′ ρ ρ ρ ∂ +=++ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ (4-108) Lighthill (4-108) ρ 2 2 1 1 2 2 2 ( ) i i i o x x x ρ ρ ρ ρ′ ′+ − ′+ ′− ∂ = + ∆ ∂ ∆ (4-109) 2 1, 1 1, 1 1, 1 1, 1 2 2 ( ) ( ) ( ) ( ) ( , ) 4 i j i j i j i j uv uv uv uv uv o x y x y x y ρ ρ ρ ρ ρ ′ + + − ′ + − − ′ − + + ′ − − ∂ = + ∆ ∆ ∂ ∂ ∆ ∆ (4-110) 2 2 t ρ′ ∂ ∂

(61)

50 2 1 2 2 2 2 ( ) t t t o t t t ρ ρ ρ ρ′ ′− ′− + ′− ∂ = + ∆ ∂ ∆ (4-111) (4-109)~(4-111) (4-108) (4-109) (4-110) ρt1 ρt2 ρ′ 2 0 P′=c ρ′ (4-112)

(Sound Pressure Level, SPL) dB

10 0 20log P p L p = (4-113) 0 p 2 10 Pa× −5

(62)

dissipative model

dissipative model (4-67) Roe upwinding

dissipation term 1

{

1

}

Ap UP − Γ ∆ DNS Roe scheme(ε =1) 7 9

Reynolds stress Reτ =180 Kim [20]

DNS DNS

Trong[27] Roe scheme Smagorinsky model

damping preconditioning ε ε 0.1 0.1 ε = 0.1 ε = Truncated Navier-Stokes (TNS) TNS under resolved DNS

Domaradzki [33] (filter)

(63)

52 7. Roe scheme [20]

DNS by Kim et al. [20] The original Roe scheme

(64)

8. Roe scheme [20] Reynolds stress DNS by Kim et al. [20] The original Roe scheme

(65)

54 9. Roe scheme [20]

DNS by Kim et al. [20]

(66)

Roe upwinding dissipation term

{

1

}

1 2ε Ap UP − Γ ∆ TNS Roe

upwinding dissipation term

ε ε [34] dissipative model dissipative model ε [34] ER 3 2 1 3 2 1 ( ) ( ) (2 ) ˆ ( ) i i i i i i u u I ER I u u = = − ∆ = = ∆

(5-1) (5-1) ui TNS ui (filter width) ∆ uˆi 2∆

(5-1) filter secondary filter primary filter box filter Jeanmart Winckelmans[35] ∆ 2∆ box filter

1 1 ( n) 0.5[ ( n ) ( n) ( n )] u y u y u y u y + − − + + − + − ∆ ∆ = + + ∆ + ∆ ∆ + ∆ (5-2) 1 1 ˆ( n) ( n ) ( n ) u y u y u y + − − + + − + − ∆ ∆ = + ∆ + ∆ ∆ + ∆ (5-3) 1 n y yn yn+1 ∆ =+ yn+1yn ∆ =− ynyn1

Approximate deconvolution[36] primary filter approximate deconvolution

1 ( ) N v N Q GI G = ≈ =

− (5-4)

(67)

56

N

Q primary filter G approximate deconvolution G box filter secondary filter ( ( )) i N i u = Q G ∆ ∗u (5-5) ˆi ( N (2 )) i u = Q G ∆ ∗u (5-6) 10 filter kc∆ =π/∆ LES

nominal cutoff wave number N =5 secondary filter

2∆ ∆ 2∆

(5-5) (5-6) (5-1) ER

primary filter secondary

filter [34] ER 0.007 0.01 ε ER 0.01 ε ER 0.007 ε ER ε 0.007≤ER≤0.01 ε ER 0.1 ε = ER 0.01 ε 0.5 DNS (ε =1) 0.1 0.5 ER 0.01 ε 0.05 ε ER ( , , , )x y z t ε ε= ( , , , )x y z t 0.5 ε = , if ER>0.01 ( , , , )x y z t 0.1 ε = , if 0.007≤ER≤0.01 (5-7) ( , , , )x y z t 0.05 ε = , if ER<0.007

(68)

10. filter Primary filter, Secondary filter, Secondary filter, Spectral filter

(69)

58

MPI (Message Passing Interface) OpenMP (Open Multi-Processing)

(Animation)

(Video Card) (Graphics processing unit GPU)

(Central Process Unit CPU)

CUDA Compute Unified Device Architecture

(Nvidia) GPU

GPU (Stream Processor

SP) CUDA CUDA CUDA CUDA 11 (Host) (CPU) (Device) CPU (serial

code) CUDA GPU

(kernel) kernel (Grid) (Block)

(Thread) kernel

(Stream Processor SP) kernel (serial code) CPU

CUDA

GPU (Stream

(70)

(Stream Processor SP) SM 8 SP (shared memory)

CUDA kernel

SM SM

(warp)

Tesla C1060 warp 32 SM

32 warp( 1024 ) warp CUDA

SM 512 warp ID ID 0~31 32~63 1~512 32 warp CUDA

GPU (Block) (Thread)

CPU

(i,j,k)

Device ( assign numbers ) = Host ( i ny nz× × + × +j nz k ) (6-1)

nx ny nz x y z

GPU

(Stream Processor SP)

CUDA (Single Instruction, Multiple Thread SMIT)

(71)

60 kernel CUDA (shared memory) (Barrier)

(72)
(73)

62 7.1 Prandtl 0.72 1atm 298.06K 5 10 Ra=

Paillere [37] local Nusselt number Rayleigh number

0 [ ( ) ] ( h c) w L T Nu k T k T T y ∂ = − ∂ (7-1) 2 3 0 2 0 ( ) Pr ( ) h c g T T L Ra T T ρ µ − = (7-2) 0 101325 P = Pa T0 =600K ρ0 =P0/(RT0) k0 T0 =600K 606K

594K、L 12 local Nusselt number

Paillere [37]

606K Gray Giorgini[26] Bossinesq

30K

Churchill Chu[38] Fu Huang[39] [38] [39] Boussinesq

1 l l1/ 2 =81 l0/l2 =102 w l/ 2 =2 Fu Huang[39]

Bossinesq Fu Huang[39]

10K [39]

13 Churchill Chu[38] Fu Huang[39] Rayleigh number

(74)

12. local Paillere et al. [37] Present results

(75)

64

13. Ra

Fu and Huang [39]

Churchill and Chu [38]

(76)

2 2 2 [ ] ( h c) w l l T Nu dx l T T y ∂ = − ∂

(7-3) 2 3 0 2 2 ( ) Prg Th T lc Ra ρ β µ − = (7-4) β Bossinesq Bossinesq 30K Rayleigh 2 3 0 2 2 0 ( ) Pr ( ) h c g T T l Ra T T ρ µ − = (7-5) 14 Ra=104 0 t> h T l l1/ 2 =19 l0/l2 =25 w l/ 2 =2 110 h c T T T K ∆ = − = 14(1) t =0.0005s 14(1)c 14(1)a 0.02 t = s 14(2)a 14(2)b 14(2)c 0.05s 14(3)a 0.1s 14(4)b

(77)

66 1s 14(5)a Dyer [40] Bernoulli [40] 15 Rayleigh Rayleigh 3 2 2 3 2 0 [ ( ) ] ( ) l l l w h c l L T Nu k T dx l k T T y + = − ∂

(7-6) Rayleigh 2 0.213 0.794 l Nu = ×Ra (7-7) (7-7) Rayleigh

(78)

0.005

t = s

14(1). Ra=104

(79)

68 0.02

t= s

14(2). Ra=104

(80)

0.05

t= s

14(3). Ra=104

(81)

70 0.1

t= s

14(4). Ra=104

(82)

1

t= s

14(5). Ra=104

(83)

72 15.

參考文獻

相關文件

(二)計算方式:雇主繼續僱用於前款計算期間內,預估成就勞動基準

For the data sets used in this thesis we find that F-score performs well when the number of features is large, and for small data the two methods using the gradient of the

Microphone and 600 ohm line conduits shall be mechanically and electrically connected to receptacle boxes and electrically grounded to the audio system ground point.. Lines in

in Proceedings of the 20th International Conference on Very Large Data

This study, analysis of numerical simulation software Flovent within five transient flow field,explore the different design of large high-temperature thermostat room

表 2.1 停車場經營管理模型之之實證應用相關文獻整理 學者 內容 研究方法 結論

(計畫名稱/Title of the Project) 提升學習動機與解決實務問題能力於實用課程之研究- 以交通工程課程為例/A Study on the Promotion of Learning Motivation and Practical

In Taiwan, a rapid increase in the sewer construction causes the large volume of sewage sludge generated.. Treated sewage sludge will be very significantly in the