• 沒有找到結果。

Reversible data hiding based on multilevel histogram modification and sequential recovery

N/A
N/A
Protected

Academic year: 2021

Share "Reversible data hiding based on multilevel histogram modification and sequential recovery"

Copied!
6
0
0

加載中.... (立即查看全文)

全文

(1)

International

Journal

of

Electronics

and

Communications

(AEÜ)

jo u rn al h om e p a g e :w w w . e l s e v i e r . d e / ae u e

Reversible

data

hiding

based

on

multilevel

histogram

modification

and

sequential

recovery

Zhenfei

Zhao

a,b

,

Hao

Luo

c,∗

,

Zhe-Ming

Lu

c

,

Jeng-Shyang

Pan

d aSchoolofInformationScienceandTechnology,SunYat-senUniversity,Guangzhou,China

bHeilongjiangInstituteofScienceandTechnology,Harbin,China

cSchoolofAeronauticsandAstronautics,ZhejiangUniversity,No.38ZheDaRoad,Hangzhou310027,China dDepartmentofElectronicEngineering,NationalKaohsiungUniversityofAppliedSciences,Kaohsiung,Taiwan

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received14January2010 Accepted21January2011

Keywords:

Reversibledatahiding

Multilevelhistogrammodification Sequentialrecovery

a

b

s

t

r

a

c

t

Thispaperproposesareversibledatahidingmethodfornaturalimages.Duetothesimilarityofneighbor pixels’values,mostdifferencesbetweenpairsofadjacentpixelsareequalorclosetozero.Inthiswork, ahistogramisconstructedbasedonthesedifferencestatistics.Inthedataembeddingstage,amultilevel histogrammodificationmechanismisemployed.Asmorepeakpointsareusedforsecretbitsmodulation, thehidingcapacityisenhancedcomparedwiththoseconventionalmethodsbasedononeortwolevel histogrammodification.Moreover,asthedifferencesconcentricityaroundzeroisimproved,the distor-tionsonthehostimageintroducedbysecretcontentembeddingismitigated.Inthedataextractionand imagerecoverystage,theembeddinglevelinsteadofthepeakpointsandzeropointsisused. Accord-inglytheaffiliatedinformationismuchsmallerthaninthosemethodsofthekind.Asequentialrecovery strategyisexploitedforeachpixelisreconstructedwiththeaidofitspreviouslyrecoveredneighbor. Experimentalresultsandcomparisonswithothermethodsdemonstrateourmethod’seffectivenessand superiorperformance.

© 2011 Elsevier GmbH. All rights reserved.

1. Introduction

Datahiding,alsocalledinformationhiding,playsanimportant roleininformationsecurity.Itaimsatembeddingimperceptible confidentialinformationincovermediasuchasstillimages,videos, audios,3D meshes, etc. It consists of severalbranches suchas steganography,watermarking,visualcryptography,etc.Thedata hidingschemeproposedinthisworkcanbeclassifiedintothe cat-egoryofsteganography.Steganographyisusuallyusedforcovert communications.Thusthehighembeddingcapacity isthemain concernin this kindof technique. In contrast,watermarking is usually usedfor copyright protection and announcement. Thus researchersaimatimprovingtherobustnessofwatermark con-tentagainstintentionalorunintentionalattacks.Therefore,most availabledatahidingmethodscanprovideahighercapacitythan thatprovidedbywatermarkingschemes.Thisadvantagebroadens theapplicationscenariosofdatahiding.

Nowadays,variousdatahidingtechniqueshavebeenreportedin literatures[1,2,29–31].Asaburgeoningbranch,reversibledata hid-inghasdrawnmuchattentionamongresearchers.Itskeyproperty isnotonlythesecretdatabutalsothehostimagecanbeaccurately

∗ Correspondingauthor.Tel.:+8615858259064;fax:+8657186971612. E-mailaddress:luohao@zju.edu.cn(H.Luo).

recoveredindecoder.Therefore,itcanbeusedinthoseapplications wherethehostimages(e.g.,militarymaps,remotesensingimages, medicalimages[11],digitalizedartpictures,etc.)mustbeexactly reconstructed.Incontrast,theconventionalirreversibledatahiding methodsarenotappropriateanylonger.

Availablereversibledatahidingtechniquescanbedividedinto spatialdomain,transformdomainandcompresseddomain meth-ods.Inthespatialdomainbasedmethods[3–20],thesecretdatais usuallyembeddedbypixels’valuesmodification.Inthetransform domainmethods,somereversibility-guaranteedtransforms(e.g., integerdiscretecosinetransform[21,22],integerwavelet trans-form[23])are exploitedand thedata embeddingisreduced to coefficientsmodulation.Inthecompresseddomainmethods,some popularusedimagecompressiontechniques(e.g.,vector quantiza-tion[24–26],blocktruncationcoding[27],MPEGcoding[28])are involved.

Most spatial domain reversible data hiding are developed basedontwoprinciples,i.e.,differenceexpansion(DE)[3–12]and histogram modification [13–20]. In general,the former kindof methodscanprovideahighercapacitywhilethelattercanproduce abetterqualitymarkedimage.

Thispaperproposesareversibledatahidingschemebasedon histogrammodification.Itsprincipleistomodifythehistogram constructedbasedontheneighborpixeldifferencesinsteadofthe hostimage’shistogramasin[13].Manypeakpointsexistaround

1434-8411/$–seefrontmatter © 2011 Elsevier GmbH. All rights reserved. doi:10.1016/j.aeue.2011.01.014

(2)

Z.Zhaoetal./Int.J.Electron.Commun.(AEÜ)65 (2011) 814–826 815 Original histogram … 0 1 2 … PP+1 Z-1Z … 255 … … … … … 0 1 2 …PP+1 … Z-1Z… 255 … … … 0 1 2 … PP+1 … Z-1Z… 255

“0” “1”

Shifted histogram Histogram with data embedded Fig.1.Principleofreversibledatahidingbasedonhistogrammodification.

thebinzerointhishistogramduetothesimilarityofadjacentpixel values.Besides,manyzeropointsexistinbothsidesofthebinzero. Herethepeakpointreferstotheheightofhistogrambinwiththe largeststatisticalvalue(i.e.,thecountfallinginthe correspond-ingbin),and thezeropointmeansthehistogrambin withzero value.Inourcase,allthedifferencesareclassifiedintolevelsof [−255,255]andeachlevelcorrespondstoahistogrambin.Hence itisreasonabletomodifythehistogramwithamultilevel mecha-nismforhidingmoresecretdata.Indecoder,thehostimagepixels arerecoveredonebyone.Thatis,eachpixelisrecoveredaidedby itspreviouslyrecoveredneighbor.Meanwhile,thesecretdatais extractedfromthemarkedadjacentpixels’differences.

Thispaperisorganizedasfollows.Section2reviewstherelated work.Section 3 describes theproposed schemeincluding data embedding,extractionandimagerecoveryprocedures.Section4 discussesthecapacity estimation, overflowand underflow pre-vention.Experimentalresultsandperformancecomparisonswith otheralgorithmsareshowninSection5.Finally,conclusionsare giveninSection6.

2. Relatedwork

In[13],Nietal.proposedareversibledatahidingmethodbased onhistogrammodification.Inthescheme,partofthecoverimage histogramisshiftedrightwardorleftwardtoproduceredundancy fordataembedding.Theprinciplecanbeillustratedasshownin Fig.1.First,thepeakandzeropointbinsoftheoriginalhistogram arefounddenotedasb(P)andb(Z),respectively.Thenallthebins belongingtob(P)andb(Z)areshiftedrightwardonelevel.Inthis way,thebinofb(P)isemptiedandb(P+1)becomesthenewpeak point.Next,theconfidentialdatacanbeembeddedbymodulating thepixelvaluesequalingP+1.Thatis,ifencounterapixelwith valueequalingP+1,thenonebitconfidentialdatacanbehidden. Forexample,ifthecurrentprocessingconfidentialbitis“0”,we modifythepixelvalueasP;whereasifthecurrentprocessing con-fidentialbitis“1”,thepixelwithvalueP+1iskeptnochanged. Indecoder,thedataextractionandimagerecoveryistheinverse processingofdataembedding.

In[16],Lietal.proposedareversibledatahidingmethodnamed adjacentpixeldifference(APD)basedontheneighborpixel differ-encesmodification.Inthismethod,aninverse“S”orderisadopted toscantheimagepixels.AsshowninFig.2,a3×3imageblockis usedtoillustratethisprinciple.Thescandirectionismarkedasthe blueline,andtheblockcanberearrangedintoapixelsequenceas p1,p2,...,p9.

SupposethehostimageIisan8-bitgraylevelimagesizedas M×N.Thena pixelsequence p1,p2,...,pM×N areobtainedvia

theinverse“S”orderscan.Thedifferencesofadjacentpixelsare computedas: di=



p1 i=1 pi−1−pi 2≤i≤M×N (1)

p

1

p

6

p

2

p

5

p

3

p

4

p

7

p

8

p

9

Fig.2. Inverse“S”scanofa3× 3imageblock.

Consideringthepixelvaluessimilaritybetweenpi−1andpi,alarge

quantityofdi(2≤i≤M×N)isequalorcloseto0.Thedifference

histogramisconstructedbasedontheseM×N−1difference statis-tics.Supposethehistogrambinsfromlefttorightaredenotedby b(−255),b(−254),...,b(−1),b(0),b(1),...,b(254),b(255).Fig.3 showsthe512×512Lenaimage’sdifferencehistogram.Obviously mostdifferencesareconcentratedaroundb(0).Whenthecurve spreadsawaytobothsides,itdropsdramatically,andnodifferences fallintothosebinsfarfromb(0).

Basically,APDselectsonepairofbinsb(p1)andb(z1)(suppose

p1<z1)whereb(p1)andb(z1)denotethepeakpointandzeropoint,

respectively.Thenthebinsbetween[b(p1+1),b(z1−1)]areshifted

rightwardonelevel.Thusb(p1+1)areemptiedfordataembedding.

Thatis,ifasecretbit“1”isembedded,thedifferencesequalingp1

areaddedby1.If“0”isembedded,theyarenotchanged.

Toenhancethecapacity,APDcanalsoselecttwopairsof peak-zeropoints,e.g. [b(p1), b(z1)]and [b(z2), b(p2)] (supposep1<z1

-250 -200 -150 -100 -50 0 50 100 150 200 250 0 0.5 1 1.5 2 2.5 3x 10 4

(3)

4 0 -4 4 0 -4 4 0 -4 -4 0 4

c

d

Fig.4.HistogrammodificationforEL=0.

andz2<p2).Thenthebinsbetween[b(p1+1),b(z1−1)]areshifted

rightwardone level,andthose between[b(z2+1),b(p2−1)]are

shiftedleftwardonelevel.Thusb(p1+1)andb(p2−1)areemptied

fordataembedding.Thesecretbitsmodulationissimilarasthatin onepairofpeak-zeropointsembedding.Notetherangesof[b(p1),

b(z1)]and[b(z2),b(p2)]mustnotbeoverlapped.

3. Proposedscheme

3.1. Motivation

However,thedisadvantageofAPDmethodisthattheprovided capacityisnotveryhighduetoonlytwopairsofpeak-zeropointsat mostareemployedfordatahiding.Thislimitsitsscopeof applica-tionwherealargequantityofdataistobeembedded.Infact,more pairsofpeak-zeropointscanbeutilized.Motivatedfromthis,this workdesignedamultilevelhistogrammodificationmechanismfor alargecapacitydatahiding.

3.2. Dataembedding

In ourscheme,theinverse“S” order is adoptedtoscan the imagepixelsfordifferencegeneration.Thesecretdataarebinary sequencesproducedbypseudorandomnumbergenerator.Inthe dataembeddingstage,amultilevelhistogrammodificationstrategy isutilized.AnintegerparametercalledembeddinglevelEL(EL≥0) isinvolvedtocontrolthehidingcapacity.AlargerELindicatesmore secretdatacan beembedded. Astheembeddingoperationsfor EL>0aremorecomplicatedthanthoseofEL=0,wedescribethem forEL=0andEL>0separately.

Step1.Inverse“S”scanIintoapixelsequencep1,p2,...,pM×N.

Step2.Computethedifferencesdi(1≤i≤M×N)accordingtoEq.

(1)andconstructahistogrambasedondi(2≤i≤M×N).

Step3.SelectanEL.IfEL=0,executeStep4.IfEL>0,gotoStep5. Step4.DataembeddingforEL=0.

Step4.1.Shifttherightbinsofb(0)rightwardonelevelas:

di=



p1 if i=1 di if di≤0,2≤i≤M×N di+1 if di>0,2≤i≤M×N (2)

Step4.2.Examinedi=0(2≤i≤M×N)onebyone.Eachdifference equaling0canbeusedtohideonesecretbit.Ifthecurrent

pro-4 0 -4 4 0 -4 4 0 -4 4 0 -4 4 0 -4 4 0 -4 4 0 -4 4 0 -4

c

d

e

f

g

h

Fig.5.HistogrammodificationforEL=2.

cessingsecretbitw=0,itisnotchanged.Ifw=1,itisaddedby 1.Theoperationisas:

di =



p1 if i=1 di+w if di=0,2≤i≤M×N di if di /=0,2≤i≤M×N (3)

The histogram modification strategy for EL=0 is shown in Fig.4(a)–(d)wheretheredandbluearrowsindicateembedding “0”and“1”,respectively.Afterthat,gotoStep6.(For interpreta-tionofthereferencestocolourinthetext,thereaderisreferred tothewebversionofthearticle.)

Step5.DataembeddingforEL>0.

Step5.1.Shifttherightbinsofb(EL)rightwardEL+1levels,and shifttheleftbinsofb(−EL)leftwardELlevelsas:

di=

p1 if i=1 di if −EL≤di≤EL,2≤i≤M×N di+EL+1 if di>EL,2≤i≤M×N di−EL if di<−EL,2≤i≤M×N (4)

Step5.2.Examinedi=0(2≤i≤M×N)intherangeof[−EL,EL] onebyone.Themultileveldataembeddingstrategyisdescribed asfollows.

Step5.2.1.Embedthesecretdataas:

di =

p1 if i=1 di if −EL<di<EL,2≤i≤M×N 2×EL+w if di=EL,2≤i≤M×N −2×EL−w+1 if di=−EL,2≤i≤M×N (5) Step5.2.2.ELisdecreasedby1.

(4)

Z.Zhaoetal./Int.J.Electron.Commun.(AEÜ)65 (2011) 814–826 817

Fig.6. ExampleofdataembeddingforEL=0.

Fig.7. ExampleofdataextractionandimagerecoveryforEL=0.

(5)

Fig.23.MarkedCarimagesobtainedbyourscheme(left:220801bitshidden,33.05dB)andKimetal.’sscheme[17](right:171244bitshidden,31.40dB)withEL=9.

andAPD2denoteoneandtwopairsofpeak-zeropointsareused

respectively.ThecomparisonresultsarealsogiveninTable1.Our schemecanprovideahighercapacitythanLietal.’smethodwith goodmarkedimagesquality.

Next,ourschemeiscomparedwithKimetal.’smethod[17]. Althoughboth are based onmultilevel histogram modification, the histogram construction mechanisms are different. In gen-eral,thecapacityof differencehistogram modificationis jointly affectedby the total number of differences and the their con-centricity tob(0). In [17], the differences are computed based onsubimages’correlation andhence thenumberof differences is determined by the number of subimages. For example, if a 512×512hostimageissubsampledinto16 equal-sized subim-ages,thereare512×512×15/16=245760differencesproduced. Incontrast,thereare512×512−1=262143differencesproduced inourscheme.The histogrambinsbelongingto[b(−30),b(30)] obtainedby [17] and our schemeare shown in Fig. 11. Obvi-ously,moredifferencesinourhistogramsareconcentratedaround b(0).Asaresult,alargercapacitycanbeprovidedinourscheme thanin[17].Moreover,b(−1)isemptiedafterembeddingin[17] for the shifting leftward is one level farther than that in our scheme,and consequently theintroduced distortions are more serious.

Theperformancecomparisonsofourscheme(markedasblue) andKimetal.’smethod(markedasred)areshowninFigs.12–17. The horizontal axisdenotes the EL setfrom 0 to 9. The verti-calaxesofcapacityandPSNRarenormalizedas[0,1.0]bpp(bit perpixel)and[30,55]dB,respectively.Intheseexperiments,the hostimagesarepartitionedinto16equal-sizedsubimagesin[17]. ThesixmarkedimagesobtainedbyourschemeandKimetal.’s schemeareshowninFigs. 18–23.Alltheseresultsdemonstrate not only the capacities but also the PSNRs in our method are improved.Inotherwords,eventhoughmoresecretdataembedded inourscheme,themarkedimagesqualityisstillbetterthanthose in[17].

6. Conclusions

Areversibledatahidingschemeisproposedinthispaper.The multilevelhistogram modificationisemployedfor data embed-ding.Ononehand,ahighercapacityisprovidedcomparedwithone ortwolevelhistogrammodificationbasedmethods.Ontheother hands,assecretdataisembeddedindifferencesofadjacentpixels values,themarkedimagesqualityisimprovedcomparedwiththat inpreviousmultilevelhistogrammodificationbasedwork.

Acknowledgments

Theauthorsthanktheeditorandtheanonymousreviewersfor theirconstructivecommentsandvaluablesuggestionsfor readabil-ityimprovement.ThisworkisfinanciallysupportedbytheNational ScientificFundofChina(Nos.61003255and61071128).

References

[1]Pan JS, Huang HC, Jain LC. Information hiding and applications. Berlin-Heidelberg,Germany:Springer;2009.

[2]CheddadA,CondellJ,CurranK,KevittsPM.Digitalimagesteganography:survey andanalysisofcurrentmethods.SignalProcessing2010;90(3):727–52. [3]TianJ.Reversibledataembeddingusingadifferenceexpansion.IEEE

Transac-tionsonCircuitsandSystemsforVideoTechnology2003;13(8):890–6. [4]Alattar AM. Reversible watermark using the difference expansion of a

generalized integer transform. IEEE Transactions on Image Processing 2004;13(8):1147–56.

[5]WengS,ZhaoY,PanJS.Anovelreversibledatahidingscheme.International JournalofInnovativeComputing,InformationandControl2008;4(2):351–8. [6] ChangCC,LuTC.Adifferenceexpansionorienteddatahidingschemefor

restoringthe originalhost images.TheJournalof SystemsandSoftware 2006;79(12):1754–66.

[7]LeeCC,WuHC,TsaiCS,ChuYP.Adaptivelosslesssteganographicschemewith centralizeddifferenceexpansion.PatternRecognition2008;41(6):2097–106. [8]LinCC,HsuehNL.Alosslessdatahidingschemebasedonthree-pixelblock

differences.PatternRecognition2008;41(4):1415–25.

[9]LuTC,ChangCC.Losslessnibbleddataembeddingschemebasedondifference expansion.ImageandVisionComputing2008;26(5):632–8.

[10]HsiaoJY,ChanKF,ChangJM.Block-basedreversibledataembedding.Signal Processing2009;89(4):556–69.

[11]LouDC,HuMC,LiuJL.Multiplelayerdatahidingschemeformedicalimages. ComputerStandards&Interfaces2009;31(2):329–35.

[12]WengS,ZhaoY,PanJS,NiR.Reversibledatahidingusingthe compand-ing techniqueand improvedDEmethod. CircuitsSystemsSignalProcess 2008;27(2):229–45.

[13]NiZ,ShiY,AnsariN,SuW.Reversibledatahiding.In:IEEEproceedingsof ISCAS’03,vol.2.2003.p.II-912–915.

[14]HuangHC,FangWC,TsaiIT.Reversibledatahidingusinghistogram-based differenceexpansion.IEEEInternationalSymposiumonCircuitsandSystems 2009:1661–4.

[15]TsaiP,HuYC,YehHL.Reversibleimagehidingschemeusingpredictivecoding andhistogramshifting.SignalProcessing2009;89(6):1129–43.

[16]Li YC, Yeh CM,ChangCC. Data hiding basedonthe similaritybetween neighboring pixels with reversibility. Digital Signal Processing 2009, doi:10.1016/j.dsp.2009.10.025.

[17]KimKS,LeeMJ,LeeHY,LeeHK.Reversibledatahidingexploitingspatial correla-tionbetweensub-sampledimages.PatternRecognition2009;42(11):3083–96. [18]LinCC,TaiWL,ChangCC.Multilevelreversibledatahidingbasedonhistogram modificationofdifferenceimages.PatternRecognition2008;41(12):3582–91. [19]GaoX,AnL,LiX,TaoD.Reversibilityimprovedlosslessdatahiding.Signal

Processing2009;89(10):2053–65.

[20]TaiWL,YehCM,ChangCC.Reversibledatahidingbasedonhistogram modifi-cationofpixeldifferences.IEEETransactionsonCircuitsandSystemsforVideo Technology2009;19(6):906–10.

[21] YangB,SchmuckerM,FunkW,BrushC,SunS.IntegerDCT-basedreversible watermarking for images using companding technique. Proceedings of

(6)

826 Z.Zhaoetal./Int.J.Electron.Commun.(AEÜ)65 (2011) 814–826

SPIE, Security,Steganography andWatermarkingof MultimediaContents 2004;5306:405–15.

[22]YangB,SchmuckerM,NiuX,BuschC,SunSH.Integer-DCT-basedreversible image watermarkingby adaptive coefficientmodification.Proceedings of SPIE,Security,Steganography,andWatermarkingofMultimediaContents 2005;5681:218–29.

[23]XuanG,ShiYQ,YaoQ,NiZ,YangC,GaoJ,etal.Losslessdatahidingusing histogramshiftingmethodbasedonintegerwavelets.International Work-shoponDigitalWatermarking,LectureNotesinComputerScience2006;4283: 323–32.

[24]LuZM,WangJX,LiuBB.Animprovedlosslessdatahidingschemebased onimageVQ-indexresidualvaluecoding.JournalofSystemsandSoftware 2009;82(6):1016–24.

[25] WangJX,LuZM.ApathoptionallosslessdatahidingschemebasedonVQindex tablejointneighboringcoding.InformationSciences2009;179(19):3332–48.

[26]YangB,LuZM,SunSH.ReversiblewatermarkingintheVQ-compresseddomain. In:Proceedingsofthefifthinternationalconferenceonvisualization,imaging, andimageprocessing.2005.p.289–303.

[27]ChangCC,LinCY,FanYH.Losslessdatahidingforcolorimagesbasedonblock truncationcoding.PatternRecognition2008;41(7):2347–57.

[28]MobasseriBG,CinalliD.Losslesswatermarkingofcompressedmediausing reversiblydecodablepackets.SignalProcessing2006;86(5):951–61. [29] LiLD,GuoBL.Localizedimagewatermarkinginspatialdomainresistantto

geometricattacks.InternationalJournalofElectronicsandCommunications (AEU)2009;63(2):4.p.123–31.

[30]WangZH,KieuTD,ChangCC,LiMC.Anovelinformationconcealingmethod basedonexploitingmodificationdirection.JournalofInformationHidingand MultimediaSignalProcessing2010;1(1):1–9.

[31] BesdokE.Hidinginformationinmultispectralspatialimages.International JournalofElectronicsandCommunications(AEU)2005;59:15–24.

數據

Fig. 1. Principle of reversible data hiding based on histogram modification.
Fig. 4. Histogram modification for EL = 0.
Fig. 7. Example of data extraction and image recovery for EL = 0.
Fig. 23. Marked Car images obtained by our scheme (left: 220801 bits hidden, 33.05 dB) and Kim et al.’s scheme [17] (right: 171244 bits hidden, 31.40 dB) with EL = 9.

參考文獻

相關文件

• Use table to create a table for column-oriented or tabular data that is often stored as columns in a spreadsheet.. • Use detectImportOptions to create import options based on

It is based on the probabilistic distribution of di!erences in pixel values between two successive frames and combines the following factors: (1) a small amplitude

contributions to the nearby pixels and writes the final floating point image to a file on disk the final floating-point image to a file on disk. • Tone mapping operations can be

Based on Biot’s three-dimensional consolidation theory of porous media, analytical solutions of the transient thermo-consolidation deformation due to a point heat source buried in

Based on Biot’s three-dimensional consolidation theory of porous media, analytical solutions of the transient thermo-consolidation deformation due to a point heat source buried

Zhang, “A flexible new technique for camera calibration,” IEEE Tran- scations on Pattern Analysis and Machine Intelligence,

Therefore, a new method, which is based on data mining technique, is proposed to classify driving behavior in multiclass user traffic flow.. In this study, driving behaviors

Abstract: This paper presents a meta-heuristic, which is based on the Threshold Accepting combined with modified Nearest Neighbor and Exchange procedures, to solve the Vehicle