Fundamentals of Computer Systems
The MIPS Instruction Set
Stephen A. Edwards and
Martha A. Kim
Columbia University
Spring 2012
Instruction Set Architectures MIPS
The GCD Algorithm MIPS Registers Types of Instructions
Computational Load and Store Jump and Branch Other
Instruction Encoding Register-type Immediate-type Jump-type Assembler
Pseudoinstructions
Higher-Level Constructs Expressions
Conditionals Loops
Arrays
Strings & Hello World ASCII
Subroutines
Towers of Hanoi Example Factorial Example
Memory Layout
Differences in Other ISAs
Machine, Assembly, and C Code
00010000100001010000000000000111 00000000101001000001000000101010 00010100010000000000000000000011 00000000101001000010100000100011 00000100000000011111111111111100 00000000100001010010000000100011 00000100000000011111111111111010 00000000000001000001000000100001 00000011111000000000000000001000
beq $4, $5, 28 slt $2, $5, $4 bne $2, $0, 12 subu $5, $5, $4 bgez $0 -16 subu $4, $4, $5 bgez $0 -24 addu $2, $0, $4 jr $31
gcd:
beq $a0, $a1, .L2 slt $v0, $a1, $a0 bne $v0, $zero, .L1 subu $a1, $a1, $a0
b gcd
.L1:
subu $a0, $a0, $a1
b gcd
.L2:
move $v0, $a0
j $ra
int gcd(int a, int b) {
while (a != b) {
if (a > b) a = a - b; else b = b - a; }
return a; }
Machine, Assembly, and C Code
00010000100001010000000000000111 00000000101001000001000000101010 00010100010000000000000000000011 00000000101001000010100000100011 00000100000000011111111111111100 00000000100001010010000000100011 00000100000000011111111111111010 00000000000001000001000000100001 00000011111000000000000000001000
beq $4, $5, 28 slt $2, $5, $4 bne $2, $0, 12 subu $5, $5, $4 bgez $0 -16 subu $4, $4, $5 bgez $0 -24 addu $2, $0, $4 jr $31
gcd:
beq $a0, $a1, .L2 slt $v0, $a1, $a0 bne $v0, $zero, .L1 subu $a1, $a1, $a0
b gcd
.L1:
subu $a0, $a0, $a1
b gcd
.L2:
move $v0, $a0
j $ra
int gcd(int a, int b) {
while (a != b) {
if (a > b) a = a - b; else b = b - a; }
return a; }
Machine, Assembly, and C Code
00010000100001010000000000000111 00000000101001000001000000101010 00010100010000000000000000000011 00000000101001000010100000100011 00000100000000011111111111111100 00000000100001010010000000100011 00000100000000011111111111111010 00000000000001000001000000100001 00000011111000000000000000001000
beq $4, $5, 28 slt $2, $5, $4 bne $2, $0, 12 subu $5, $5, $4 bgez $0 -16 subu $4, $4, $5 bgez $0 -24 addu $2, $0, $4 jr $31
gcd:
beq $a0, $a1, .L2 slt $v0, $a1, $a0 bne $v0, $zero, .L1 subu $a1, $a1, $a0
b gcd
.L1:
subu $a0, $a0, $a1
b gcd
.L2:
move $v0, $a0
j $ra
int gcd(int a, int b) {
while (a != b) {
if (a > b) a = a - b; else b = b - a; }
return a; }
Machine, Assembly, and C Code
00010000100001010000000000000111 00000000101001000001000000101010 00010100010000000000000000000011 00000000101001000010100000100011 00000100000000011111111111111100 00000000100001010010000000100011 00000100000000011111111111111010 00000000000001000001000000100001 00000011111000000000000000001000
beq $4, $5, 28 slt $2, $5, $4 bne $2, $0, 12 subu $5, $5, $4 bgez $0 -16 subu $4, $4, $5 bgez $0 -24 addu $2, $0, $4 jr $31
gcd:
beq $a0, $a1, .L2 slt $v0, $a1, $a0 bne $v0, $zero, .L1 subu $a1, $a1, $a0
b gcd
.L1:
subu $a0, $a0, $a1
b gcd
.L2:
move $v0, $a0
j $ra
int gcd(int a, int b) {
while (a != b) {
if (a > b) a = a - b;
else b = b - a;
}
return a;
}
Algorithms
al·go·rithm
a procedure for solving a mathematical problem (as of finding the greatest common divisor) in a finite number of steps that frequently involves repetition of an
operation; broadly : a step-by-step procedure for solving a problem or accomplishing some end especially by a computer
Merriam-Webster
The Stored-Program Computer
John von Neumann, First Draft of a Report on the EDVAC, 1945.
“Since the device is primarily a computer, it will have to perform the elementary operations of arithmetics most frequently. [...] It is therefore reasonable that it should contain specialized organs for just these operations.
“If the device is to be [...] as nearly as possible all purpose, then a distinction must be made between the specific instructions given for and defining a particular problem, and the general control organs which see to it that these
instructions [...] are carried out. The former must be stored in some way[...] the latter are represented by definite operating parts of the device.
“Any device which is to carry out long and complicated sequences of operations (specifically of calculations) must have a considerable memory.
Instruction Set Architecture (ISA)
Richard Neutra, Kaufmann House, 1946.
ISA: The interface or contact between the hardware and the software
Rules about how to code and interpret machine instructions:
É Execution model (program counter)
É Operations (instructions)
É Data formats (sizes, addressing modes)
É Processor state (registers)
É Input and Output (memory, etc.)
Architecture vs. Microarchitecture
Architecture:
The interface the hardware
presents to the software
Microarchitecture:
The detailed implemention of the architecture
MIPS
Microprocessor without Interlocked Pipeline Stages MIPS developed at Stanford by Hennessey et al.
MIPS Computer Systems founded 1984. SGI acquired MIPS in 1992; spun it out in 1998 as MIPS Technologies.
RISC vs. CISC Architectures
MIPS is a Reduced Instruction Set Computer. Others include ARM, PowerPC, SPARC, HP-PA, and Alpha.
A Complex Instruction Set Computer (CISC) is one alternative. Intel’s x86 is the most prominent example;
also Motorola 68000 and DEC VAX.
RISC’s underlying principles, due to Hennessy and Patterson:
É Simplicity favors regularity
É Make the common case fast
É Smaller is faster
É Good design demands good compromises
The GCD Algorithm
Euclid, Elements, 300 BC.
The greatest common divisor of two numbers does not change if the smaller is subtracted from the larger.
1. Call the two numbers a and b
2. If a and b are equal, stop: a is the greatest common divisor
3. Subtract the smaller from the larger 4. Repeat steps 2–4
The GCD Algorithm
Let’s be a little more explicit:
1. Call the two numbers a and b 2. If a equals b, go to step 8 3. if a is less than b, go to step 6
4. Subtract b from a a > b here 5. Go to step 2
6. Subtract a from b a < b here 7. Go to step 2
8. Declare a the greatest common divisor
9. Go back to doing whatever you were doing before
Euclid’s Algorithm in MIPS Assembly
gcd:
beq $a0, $a1, .L2 # if a = b, go to exit sgt $v0, $a1, $a0 # Is b > a?
bne $v0, $zero, .L1 # Yes, goto .L1
subu $a0, $a0, $a1 # Subtract b from a (b < a)
b gcd # and repeat
.L1:
subu $a1, $a1, $a0 # Subtract a from b (a < b)
b gcd # and repeat
.L2:
move $v0, $a0 # return a
j $ra # Return to caller
Instructions
Euclid’s Algorithm in MIPS Assembly
gcd:
beq $a0, $a1, .L2 # if a = b, go to exit sgt $v0, $a1, $a0 # Is b > a?
bne $v0, $zero, .L1 # Yes, goto .L1
subu $a0, $a0, $a1 # Subtract b from a (b < a)
b gcd # and repeat
.L1:
subu $a1, $a1, $a0 # Subtract a from b (a < b)
b gcd # and repeat
.L2:
move $v0, $a0 # return a
j $ra # Return to caller
Operands: Registers, etc.
Euclid’s Algorithm in MIPS Assembly
gcd:
beq $a0, $a1, .L2 # if a = b, go to exit sgt $v0, $a1, $a0 # Is b > a?
bne $v0, $zero, .L1 # Yes, goto .L1
subu $a0, $a0, $a1 # Subtract b from a (b < a)
b gcd # and repeat
.L1:
subu $a1, $a1, $a0 # Subtract a from b (a < b)
b gcd # and repeat
.L2:
move $v0, $a0 # return a
j $ra # Return to caller
Labels
Euclid’s Algorithm in MIPS Assembly
gcd:
beq $a0, $a1, .L2 # if a = b, go to exit sgt $v0, $a1, $a0 # Is b > a?
bne $v0, $zero, .L1 # Yes, goto .L1
subu $a0, $a0, $a1 # Subtract b from a (b < a)
b gcd # and repeat
.L1:
subu $a1, $a1, $a0 # Subtract a from b (a < b)
b gcd # and repeat
.L2:
move $v0, $a0 # return a
j $ra # Return to caller
Comments
Euclid’s Algorithm in MIPS Assembly
gcd:
beq $a0, $a1, .L2 # if a = b, go to exit sgt $v0, $a1, $a0 # Is b > a?
bne $v0, $zero, .L1 # Yes, goto .L1
subu $a0, $a0, $a1 # Subtract b from a (b < a)
b gcd # and repeat
.L1:
subu $a1, $a1, $a0 # Subtract a from b (a < b)
b gcd # and repeat
.L2:
move $v0, $a0 # return a
j $ra # Return to caller
Arithmetic Instructions
Euclid’s Algorithm in MIPS Assembly
gcd:
beq $a0, $a1, .L2 # if a = b, go to exit sgt $v0, $a1, $a0 # Is b > a?
bne $v0, $zero, .L1 # Yes, goto .L1
subu $a0, $a0, $a1 # Subtract b from a (b < a)
b gcd # and repeat
.L1:
subu $a1, $a1, $a0 # Subtract a from b (a < b)
b gcd # and repeat
.L2:
move $v0, $a0 # return a
j $ra # Return to caller
Control-transfer instructions
General-Purpose Registers
Name Number Usage Preserved?
$zero 0 Constant zero
$at 1 Reserved (assembler)
$v0–$v1 2–3 Function result
$a0–$a3 4–7 Function arguments
$t0–$t7 8–15 Temporaries
$s0–$s7 16–23 Saved yes
$t8–$t9 24–25 Temporaries
$k0–$k1 26-27 Reserved (OS)
$gp 28 Global pointer yes
$sp 29 Stack pointer yes
$fp 30 Frame pointer yes
$ra 31 Return address yes
Each 32 bits wide
Only 0 truly behaves differently; usage is convention
Types of Instructions
Computational Arithmetic and logical operations
Load and Store Writing and reading data to/from memory
Jump and branch Control transfer, often conditional
Miscellaneous Everything else
Computational Instructions
Arithmetic add Add
addu Add unsigned sub Subtract
subu Subtract unsigned slt Set on less than
sltu Set on less than unsigned
and AND
or OR
xor Exclusive OR
nor NOR
Arithmetic (immediate) addi Add immediate
addiu Add immediate unsigned slti Set on l. t. immediate sltiu Set on less than unsigned andi AND immediate
ori OR immediate
xori Exclusive OR immediate lui Load upper immediate
Shift Instructions sll Shift left logical srl Shift right logical sra Shift right arithmetic sllv Shift left logical variable srlv Shift right logical variable srav Shift right arith. variable
Multiply/Divide mult Multiply
multu Multiply unsigned div Divide
divu Divide unsigned mfhi Move from HI mthi Move to HI mflo Move from LO mtlo Move to LO
Computational Instructions
Arithmetic, logical, and other computations. Example:
add $t0, $t1, $t3
“Add the contents of registers $t1 and $t3; store the result in $t0”
Register form:
operation RD, RS, RT
“Perform operation on the contents of registers RS and RT; store the result in RD”
Passes control to the next instruction in memory after running.
Arithmetic Instruction Example
a b c f g h i j
$s0 $s1 $s2 $s3 $s4 $s5 $s6 $s7
a = b - c;
f = (g + h) - (i + j);
subu $s0, $s1, $s2 addu $t0, $s4, $s5 addu $t1, $s6, $s7 subu $s3, $t0, $t1
“Signed” addition/subtraction (add/sub) throw an exception on a two’s-complement overflow; “Unsigned”
variants (addu/subu) do not. Resulting bit patterns otherwise identical.
Bitwise Logical Operator Example
li $t0, 0xFF00FF00 # "Load immediate"
li $t1, 0xF0F0F0F0 # "Load immediate"
nor $t2, $t0, $t1 # Puts 0x000F000F in $t2
li $v0, 1 # print_int
move $a0, $t2 # print contents of $t2 syscall
Immediate Computational Instructions
Example:
addiu $t0, $t1, 42
“Add the contents of register $t1 and 42; store the result in register $t0”
In general,
operation RD, RS, I
“Perform operation on the contents of register RSand the signed 16-bit immediate I; store the result in RD” Thus, I can range from−32768 to 32767.
32-Bit Constants and lui
It is easy to load a register with a constant from
−32768 to 32767, e.g.,
ori $t0, $0, 42
Larger numbers use “load upper immediate,” which fills a register with a 16-bit immediate value followed by 16 zeros; an OR handily fills in the rest. E.g., Load $t0 with 0xC0DEFACE:
lui $t0, 0xC0DE ori $t0, $t0, 0xFACE The assembler automatically expands the li
pseudo-instruction into such an instruction sequence li $t1, 0xCAFE0B0E → lui $t1, 0xCAFE
ori $t1, $t1, 0x0B0E
Multiplication and Division
Multiplication gives 64-bit result in two 32-bit registers:
HI and LO. Division: LO has quotient; HI has remainder.
int multdiv(
int a, // $a0 int b, // $a1 unsigned c, // $a2 unsigned d) // $a3 {
a = a * b + c;
c = c * d + a;
a = a / c;
b = b % a;
c = c / d;
d = d % c;
return a + b + c + d;
}
multdiv:
mult $a0,$a1 # a * b mflo $t0
addu $a0,$t0,$a2 # a = a*b + c mult $a2,$a3 # c * d mflo $t1
addu $a2,$t1,$a0 # c = c*d + a divu $a0,$a2 # a / c
mflo $a0 # a = a/c div $0,$a1,$a0 # b % a mfhi $a1 # b = b%a divu $a2,$a3 # c / d mflo $a2 # c = c/d addu $t2,$a0,$a1 # a + b addu $t2,$t2,$a2 # (a+b) + c divu $a3,$a2 # d % c
mfhi $a3 # d = d%c addu $v0,$t2,$a3 # ((a+b)+c) + d
j $ra
Shift Left
Shifting left amounts to multiplying by a power of two.
Zeros are added to the least significant bits. The constant form explicitly specifies the number of bits to shift:
sll $a0, $a0, 1
31 30 · · · 2 1 0
0
The variable form takes the number of bits to shift from a register (mod 32):
sllv $a1, $a0, $t0
Shift Right Logical
The logical form of right shift adds 0’s to the MSB.
srl $a0, $a0, 1
31 30 · · · 2 1 0
0
Shift Right Arithmetic
The “arithmetic” form of right shift sign-extends the word by copying the MSB.
sra $a0, $a0, 2
31 30 29 28 · · · 3 2 1 0
Set on Less Than
slt $t0, $t1, $t2
Set $t0 to 1 if the contents of $t1 < $t2; 0 otherwise.
$t1 and $t2 are treated as 32-bit signed two’s complement numbers.
int compare(int a, // $a0 int b, // $a1 unsigned c, // $a2 unsigned d) // $a3 {
int r = 0; // $v0
if (a < b) r += 42;
if (c < d) r += 99;
return r;
}
compare:
move $v0, $zero slt $t0, $a0, $a1 beq $t0, $zero, .L1 addi $v0, $v0, 42 .L1:
sltu $t0, $a2, $a3 beq $t0, $zero, .L2 addi $v0, $v0, 99 .L2:
j $ra
Load and Store Instructions
Load/Store Instructions lb Load byte
lbu Load byte unsigned lh Load halfword
lhu Load halfword unsigned lw Load word
lwl Load word left lwr Load word right sb Store byte sh Store halfword sw Store word swl Store word left swr Store word right
The MIPS is a load/store architecture: data must be moved into registers for computation.
Other architectures e.g., (x86) allow arithmetic directly on data in memory.
Memory on the MIPS
Memory is byte-addressed.
Each byte consists of eight bits:
7 6 5 4 3 2 1 0
Bytes have non-negative integer addresses. Byte addresses on the 32-bit MIPS processor are 32 bits;
64-bit processors usually have 64-bit addresses.
0: 7 6 5 4 3 2 1 0 1: 7 6 5 4 3 2 1 0 2: 7 6 5 4 3 2 1 0
...
232− 1: 7 6 5 4 3 2 1 0 4 Gb total
Base Addressing in MIPS
There is only one way to refer to what address to load/store in MIPS: base + offset.
lb $t0, 34($t1)
00000008
$t1: (base register) + 34 (immediate offset)
42: EF FFFFFFEF
$t0:
−32768 < offset < 32767
Byte Load and Store
MIPS registers are 32 bits (4 bytes). Loading a byte into a register either clears the top three bytes or
sign-extends them.
42: F0 42($0)
$t0, lbu
000000F0
$t0:
42: F0 42($0)
$t0, lb
FFFFFFF0
$t0:
The Endian Question
MIPS can also load and store 4-byte words and 2-byte halfwords.
The endian question:
when you read a word, in what order do the bytes appear?
Little Endian: Intel, DEC, et al.
Big Endian: Motorola, IBM, Sun, et al.
MIPS can do either SPIM adopts its host’s convention
Big Endian
byte 0 byte 1 byte 2 byte 3
31 0
Little Endian
byte 3 byte 2 byte 1 byte 0
31 0
Testing Endianness
.data # Directive: ‘‘this is data’’
myword:
.word 0 # Define a word of data (=0) .text # Directive: ‘‘this is program’’
main:
la $t1, myword # pseudoinstruction: load address li $t0, 0x11
sb $t0, 0($t1) # Store 0x11 at byte 0 li $t0, 0x22
sb $t0, 1($t1) # Store 0x22 at byte 1 li $t0, 0x33
sb $t0, 2($t1) # Store 0x33 at byte 2 li $t0, 0x44
sb $t0, 3($t1) # Store 0x44 at byte 3 lw $t2, 0($t1) # 0x11223344 or 0x44332211?
j $ra
Alignment
Word and half-word loads and stores must be aligned:
words must start at a multiple of 4 bytes;
halfwords on a multiple of 2.
Byte load/store has no such constraint.
lw $t0, 4($0) # OK
lw $t0, 5($0) # BAD: 5 mod 4 = 1 lw $t0, 8($0) # OK
lw $t0, 12($0) # OK lh $t0, 2($0) # OK
lh $t0, 3($0) # BAD: 3 mod 2 = 1 lh $t0, 4($0) # OK
Jump and Branch Instructions
Jump and Branch Instructions
j Jump
jal Jump and link jr Jump to register jalr Jump and link register beq Branch on equal bne Branch on not equal
blez Branch on less than or equal to zero bgtz Branch on greater than zero
bltz Branch on less than zero
bgez Branch on greater than or equal to zero bltzal Branch on less than zero and link
bgezal Branch on greter than or equal to zero and link
Jumps
The simplest form, j mylabel
# ...
mylabel:
# ...
sends control to the instruction at mylabel. Instruction holds a 26-bit constant multiplied by four; top four bits come from current PC. Uncommon.
Jump to register sends control to a 32-bit absolute address in a register:
jr $t3
Instructions must be four-byte aligned;
the contents of the register must be a multiple of 4.
Jump and Link
Jump and link stores a return address in $ra for implementing subroutines:
jal mysub
# Control resumes here after the jr
# ...
mysub:
# ...
jr $ra # Jump back to caller
jalr is similar; target address supplied in a register.
Branches
Used for conditionals or loops. E.g., “send control to myloopif the contents of $t0 is not equal to the contents of $t1.”
myloop:
# ...
bne $t0, $t1, myloop
# ...
beq is similar “branch if equal”
A “jump” supplies an absolute address; a “branch”
supplies an offset to the program counter.
On the MIPS, a 16-bit signed offset is multiplied by four and added to the address of the next instruction.
Branches
Another family of branches tests a single register:
bgez $t0, myelse # Branch if $t0 positive
# ...
myelse:
# ...
Others in this family:
blez Branch on less than or equal to zero bgtz Branch on greater than zero
bltz Branch on less than zero
bltzal Branch on less than zero and link
bgez Branch on greater than or equal to zero
bgezal Branch on greter than or equal to zero and link
“and link” variants also (always) put the address of the next instruction into $ra, just like jal.
Other Instructions
syscall causes a system call exception, which the OS catches, interprets, and usually returns from.
SPIM provides simple services: printing and reading integers, strings, and floating-point numbers, sbrk() (memory request), and exit().
# prints "the answer = 5"
.data str:
.asciiz "the answer = "
.text
li $v0, 4 # system call code for print_str la $a0, str # address of string to print syscall # print the string
li $v0, 1 # system call code for print_int li $a0, 5 # integer to print
syscall # print it
Other Instructions
Exception Instructions tge tlt ... Conditional traps
break Breakpoint trap, for debugging eret Return from exception
Multiprocessor Instructions
ll sc Load linked/store conditional for atomic operations sync Read/Write fence: wait for all memory loads/stores
Coprocessor 0 Instructions (System Mgmt) lwr lwl ... Cache control
tlbr tblwi ... TLB control (virtual memory)
... Many others (data movement, branches) Floating-point Coprocessor Instructions add.d sub.d ... Arithmetic and other functions
lwc1 swc1 ... Load/store to (32) floating-point registers bct1t ... Conditional branches
Instruction Encoding
Register-type: add, sub, xor, . . .
op:6 rs:5 rt:5 rd:5 shamt:5 funct:6
Immediate-type: addi, subi, beq, . . .
op:6 rs:5 rt:5 imm:16
Jump-type: j, jal . . .
op:6 addr:26
Register-type Encoding Example
op:6 rs:5 rt:5 rd:5 shamt:5 funct:6
add $t0, $s1, $s2
add encoding from the MIPS instruction set reference:
SPECIAL
000000 rs rt rd 0
00000
ADD 100000
Since $t0 is register 8; $s1 is 17; and $s2 is 18,
000000 10001 10010 01000 00000 100000
Register-type Shift Instructions
op:6 rs:5 rt:5 rd:5 shamt:5 funct:6
sra $t0, $s1, 5
sra encoding from the MIPS instruction set reference:
SPECIAL 000000
0
00000 rt rd sa SRA
000011
Since $t0 is register 8 and $s1 is 17,
000000 00000 10010 01000 00101 000011
Immediate-type Encoding Example
op:6 rs:5 rt:5 imm:16
addiu $t0, $s1, -42
addiu encoding from the MIPS instruction set reference:
ADDIU
001001 rs rt immediate
Since $t0 is register 8 and $s1 is 17,
001001 10001 01000 1111 1111 1101 0110
Jump-Type Encoding Example
op:6 addr:26
jal 0x5014
jal encoding from the MIPS instruction set reference:
JAL
000011 instr_index
Instruction index is a word address
000011 00 0000 0000 0001 0100 0000 0101
Assembler Pseudoinstructions
Branch always b label → beq $0, $0, label Branch if equal
zero
beqz s, label → beq s, $0, label
Branch greater or equal
bge s, t, label →slt $1, s, t beq $1, $0, label Branch greater or
equal unsigned
bgeu s, t, label→sltu $1, s, t beq $1, $0, label Branch greater
than
bgt s, t, label →slt $1, t, s bne $1, $0, label Branch greater
than unsigned
bgtu s, t, label→sltu $1, t, s bne $1, $0, label Branch less than blt s, t, label →slt $1, s, t
bne $1, $0, label Branch less than
unsigned
bltu s, t, label→sltu $1, s, t bne $1, $0, label
Assembler Pseudoinstructions
Load immediate 0≤ j ≤ 65535
li d, j → ori d, $0, j Load immediate
−32768 ≤ j < 0
li d, j → addiu d, $0, j
Load immediate li d, j →liu d, hi16(j) ori d, d, lo16(j)
Move move d, s → or d, s, $0
Multiply mul d, s, t →mult s, t mflo d Negate unsigned negu d, s → subu d, $0, s Set if equal seq d, s, t →xor d, s, t
sltiu d, d, 1 Set if greater or
equal
sge d, s, t →slt d, s, t xori d, d, 1 Set if greater or
equal unsigned
sgeu d, s, t→sltu d, s, t xori d, d, 1 Set if greater than sgt d, s, t → slt d, t, s
Expressions
Initial expression:
x + y + z * (w + 3)
Reordered to minimize intermediate results; fully parenthesized to make order of operation clear.
(((w + 3) * z) + y) + x addiu $t0, $a0, 3 # w: $a0 mul $t0, $t0, $a3 # x: $a1 addu $t0, $t0, $a2 # y: $a2 addu $t0, $t0, $a1 # z: $a3 Consider an alternative:
(x + y) + ((w + 3) * z) addu $t0, $a1, $a2
addiu $t1, $a0, 3 # Need a second temporary mul $t1, $t1, $a3
addu $t0, $t0, $t1
Conditionals
if ((x + y) < 3) x = x + 5;
else
y = y + 4;
addu $t0, $a0, $a1 # x + y slti $t0, $t0, 3 # (x+y)<3 beq $t0, $0, ELSE
addiu $a0, $a0, 5 # x += 5
b DONE
ELSE:
addiu $a1, $a1, 4 # y += 4 DONE:
Do-While Loops
Post-test loop: body always executes once a = 0;
b = 0;
do {
a = a + b;
b = b + 1;
} while (b != 10);
move $a0, $0 # a = 0 move $a1, $0 # b = 0
li $t0, 10 # load constant TOP:
addu $a0, $a0, $a1 # a = a + b addiu $a1, $a1, 1
# b = b + 1
bne $a1, $t0, TOP # b != 10?
While Loops
Pre-test loop: body may never execute
a = 0;
b = 0;
while (b != 10) { a = a + b;
b = b + 1;
}
move $a0, $0 # a = 0 move $a1, $0 # b = 0 li $t0, 10
b TEST # test first BODY:
addu $a0, $a0, $a1 # a = a + b addiu $a1, $a1, 1 # b = b + 1 TEST:
bne $a1, $t0, BODY # b != 10?
For Loops
“Syntactic sugar” for a while loop
for (a = b = 0 ; b != 10 ; b++) a += b;
is equivalent to a = b = 0;
while (b != 10) { a = a + b;
b = b + 1;
}
move $a1, $0 # b = 0 move $a0, $a1 # a = b li $t0, 10
b TEST # test first BODY:
addu $a0, $a0, $a1 # a = a + b addiu $a1, $a1, 1 # b = b + 1 TEST:
bne $a1, $t0, BODY # b != 10?
Arrays
int a[5];
void main() {
a[4] = a[3] = a[2] = a[1] = a[0] = 3;
a[1] = a[2] * 4;
a[3] = a[4] * 2;
}
.. . 0x10010010: a[4]
0x1001000C: a[3]
0x10010008: a[2]
0x10010004: a[1]
0x10010000: a[0]
.. .
.comm a, 20 # Allocate 20 .text # Program next main:
la $t0, a # Address of a li $t1, 3
sw $t1, 0($t0) # a[0]
sw $t1, 4($t0) # a[1]
sw $t1, 8($t0) # a[2]
sw $t1, 12($t0) # a[3]
sw $t1, 16($t0) # a[4]
lw $t1, 8($t0) # a[2]
sll $t1, $t1, 2 # * 4 sw $t1, 4($t0) # a[1]
lw $t1, 16($t0) # a[4]
sll $t1, $t1, 1 # * 2 sw $t1, 12($t0) # a[3]
jr $ra
Summing the contents of an array
int i, s, a[10];
for (s = i = 0 ; i < 10 ; i++) s = s + a[i];
move $a1, $0 # i = 0 move $a0, $a1 # s = 0 li $t0, 10
la $t1, a # base address of array
b TEST
BODY:
sll $t3, $a1, 2 # i * 4 addu $t3, $t1, $t3 # &a[i]
lw $t3, 0($t3) # fetch a[i]
addu $a0, $a0, $t3 # s += a[i]
addiu $a1, $a1, 1 TEST:
sltu $t2, $a1, $t0 # i < 10?
bne $t2, $0, BODY
Summing the contents of an array
int s, *i, a[10];
for (s=0, i = a+9 ; i >= a ; i--) s += *i;
move $a0, $0 # s = 0 la $t0, a # &a[0]
addiu $t1, $t0, 36 # i = a + 9
b TEST
BODY:
lw $t2, 0($t1) # *i addu $a0, $a0, $t2 # s += *i addiu $t1, $t1, -4 # i-- TEST:
sltu $t2, $t1, $t0 # i < a beq $t2, $0, BODY
Strings: Hello World in SPIM
# For SPIM: "Enable Mapped I/O" must be set
# under Simulator/Settings/MIPS .data
hello:
.asciiz "Hello World!\n"
.text main:
la $t1, 0xffff0000 # I/O base address la $t0, hello
wait:
lw $t2, 8($t1) # Read Transmitter control andi $t2, $t2, 0x1 # Test ready bit
beq $t2, $0, wait
lbu $t2, 0($t0) # Read the byte
beq $t2, $0, done # Check for terminating 0 sw $t2, 12($t1) # Write transmit data addiu $t0, $t0, 1 # Advance to next character
b wait
done:
jr $ra
Hello World in SPIM: Memory contents
[00400024] 3c09ffff lui $9, -1
[00400028] 3c081001 lui $8, 4097 [hello]
[0040002c] 8d2a0008 lw $10, 8($9) [00400030] 314a0001 andi $10, $10, 1
[00400034] 1140fffe beq $10, $0, -8 [wait]
[00400038] 910a0000 lbu $10, 0($8)
[0040003c] 11400004 beq $10, $0, 16 [done]
[00400040] ad2a000c sw $10, 12($9) [00400044] 25080001 addiu $8, $8, 1 [00400048] 0401fff9 bgez $0 -28 [wait]
[0040004c] 03e00008 jr $31
[10010000] 6c6c6548 6f57206f H e l l o W o [10010008] 21646c72 0000000a r l d ! . . . .
ASCII
0 1 2 3 4 5 6 7
0: NUL ’\0’ DLE 0 @ P ‘ p
1: SOH DC1 ! 1 A Q a q
2: STX DC2 " 2 B R b r
3: ETX DC3 # 3 C S c s
4: EOT DC4 $ 4 D T d t
5: ENQ NAK % 5 E U e u
6: ACK SYN & 6 F V f v
7: BEL ’\a’ ETB ’ 7 G W g w
8: BS ’\b’ CAN ( 8 H X h x
9: HT ’\t’ EM ) 9 I Y i y
A: LF ’\n’ SUB * : J Z j z
B: VT ’\v’ ESC + ; K [ k {
C: FF ’\f’ FS , < L \ l |
D: CR ’\r’ GS - = M ] m }
E: SO RS . > N ^ n ~
F: SI US / ? O _ o DEL
Subroutines
a.k.a. procedures, functions, methods, et al.
Code that can run by itself, then resume whatever invoked it.
Exist for three reasons:
É Code reuse
Recurring computations aside from loops Function libraries
É Isolation/Abstraction Think Vegas:
What happens in a function stays in the function.
É Enabling Recursion
Fundamental to divide-and-conquer algorithms
Calling Conventions
# Call mysub: args in $a0,...,$a3 jal mysub
# Control returns here
# Return value in $v0 & $v1
# $s0,...,$s7, $gp, $sp, $fp, $ra unchanged
# $a0,...,$a3, $t0,...,$t9 possibly clobbered mysub: # Entry point: $ra holds return address
# First four args in $a0, $a1, .., $a3
# ... body of the subroutine ...
# $v0, and possibly $v1, hold the result
# $s0,...,$s7 restored to value on entry
# $gp, $sp, $fp, and $ra also restored jr $ra # Return to the caller
The Stack
...
... 0x7FFFFFFC
0x7FFFFFF8 0x7FFFFFF4 0x7FFFFFF0 0x7FFFFFEC
0xCODEFACE 0xDEADBEEF 0xCAFE0B0E 0x32640128
$sp
Grows down
Towers of Hanoi
void move(int src, int tmp, int dst, int n) {
if (n) {
move(src, dst, tmp, n-1);
printf("%d->%d\n", src, dst);
move(tmp, src, dst, n-1);
} }
hmove:
addiu $sp, $sp, -24 beq $a3, $0, L1 sw $ra, 0($sp) sw $s0, 4($sp) sw $s1, 8($sp) sw $s2, 12($sp) sw $s3, 16($sp)
$a0 $a1 $a2 $a3 src tmp dst n Allocate 24 stack bytes:
multiple of 8 for alignment Check whether n == 0 Save $ra, $s0, . . . , $s3 on the stack
...
... 16($sp)
12($sp) 8($sp) 4($sp)
0($sp) $ra
$s0
$s1
$s2
$s3
$sp
hmove:
addiu $sp, $sp, -24 beq $a3, $0, L1 sw $ra, 0($sp) sw $s0, 4($sp) sw $s1, 8($sp) sw $s2, 12($sp) sw $s3, 16($sp) move $s0, $a0 move $s1, $a1 move $s2, $a2 addiu $s3, $a3, -1
Save src in $s0 Save tmp in $s1 Save dst in $s2 Save n− 1 in $s3
hmove:
addiu $sp, $sp, -24 beq $a3, $0, L1 sw $ra, 0($sp) sw $s0, 4($sp) sw $s1, 8($sp) sw $s2, 12($sp) sw $s3, 16($sp) move $s0, $a0 move $s1, $a1 move $s2, $a2 addiu $s3, $a3, -1 move $a1, $s2 move $a2, $s1 move $a3, $s3 jal hmove
Call
hmove(src, dst, tmp, n−1)
hmove:
addiu $sp, $sp, -24 beq $a3, $0, L1 sw $ra, 0($sp) sw $s0, 4($sp) sw $s1, 8($sp) sw $s2, 12($sp) sw $s3, 16($sp) move $s0, $a0 move $s1, $a1 move $s2, $a2 addiu $s3, $a3, -1 move $a1, $s2 move $a2, $s1 move $a3, $s3 jal hmove
li $v0, 1 # print_int move $a0, $s0
syscall
li $v0, 4 # print_str la $a0, arrow
syscall
li $v0, 1 # print_int move $a0, $s2
syscall
li $v0,4 # print_str la $a0, newline syscall
Print src -> dst
hmove:
addiu $sp, $sp, -24 beq $a3, $0, L1 sw $ra, 0($sp) sw $s0, 4($sp) sw $s1, 8($sp) sw $s2, 12($sp) sw $s3, 16($sp) move $s0, $a0 move $s1, $a1 move $s2, $a2 addiu $s3, $a3, -1 move $a1, $s2 move $a2, $s1 move $a3, $s3 jal hmove
li $v0, 1 # print_int move $a0, $s0
syscall
li $v0, 4 # print_str la $a0, arrow
syscall
li $v0, 1 # print_int move $a0, $s2
syscall
li $v0,4 # print_str la $a0, newline syscall
move $a0, $s1 move $a1, $s0 move $a2, $s2 move $a3, $s3 jal hmove Call
hmove(tmp, src, dst, n−1)
hmove:
addiu $sp, $sp, -24 beq $a3, $0, L1 sw $ra, 0($sp) sw $s0, 4($sp) sw $s1, 8($sp) sw $s2, 12($sp) sw $s3, 16($sp) move $s0, $a0 move $s1, $a1 move $s2, $a2 addiu $s3, $a3, -1 move $a1, $s2 move $a2, $s1 move $a3, $s3 jal hmove
li $v0, 1 # print_int move $a0, $s0
syscall
li $v0, 4 # print_str la $a0, arrow
syscall
li $v0, 1 # print_int move $a0, $s2
syscall
li $v0,4 # print_str la $a0, newline syscall
move $a0, $s1 move $a1, $s0 move $a2, $s2 move $a3, $s3 jal hmove lw $ra, 0($sp) lw $s0, 4($sp) lw $s1, 8($sp) lw $s2, 12($sp) lw $s3, 16($sp) Restore variables
hmove:
addiu $sp, $sp, -24 beq $a3, $0, L1 sw $ra, 0($sp) sw $s0, 4($sp) sw $s1, 8($sp) sw $s2, 12($sp) sw $s3, 16($sp) move $s0, $a0 move $s1, $a1 move $s2, $a2 addiu $s3, $a3, -1 move $a1, $s2 move $a2, $s1 move $a3, $s3 jal hmove
li $v0, 1 # print_int move $a0, $s0
syscall
li $v0, 4 # print_str la $a0, arrow
syscall
li $v0, 1 # print_int move $a0, $s2
syscall
li $v0,4 # print_str la $a0, newline syscall
move $a0, $s1 move $a1, $s0 move $a2, $s2 move $a3, $s3 jal hmove lw $ra, 0($sp) lw $s0, 4($sp) lw $s1, 8($sp) lw $s2, 12($sp) lw $s3, 16($sp) L1:
addiu $sp, $sp, 24 # free
jr $ra # return
.data
arrow: .asciiz "->"
newline: .asciiz "\n"
Factorial Example
int fact(int n) { if (n < 1) return 1;
else return (n * fact(n - 1));
} fact:
addiu $sp, $sp, -8 # allocate 2 words on stack sw $ra, 4($sp) # save return address sw $a0, 0($sp) # and n
slti $t0, $a0, 1 # n < 1?
beq $t0, $0, ELSE
li $v0, 1 # Yes, return 1
addiu $sp, $sp, 8 # Pop 2 words from stack
jr $ra # return
ELSE:
addiu $a0, $a0, -1 # No: compute n-1
jal fact # recurse (result in $v0) lw $a0, 0($sp) # Restore n and
lw $ra, 4($sp) # return address mul $v0, $a0, $v0 # Compute n * fact(n-1) addiu $sp, $sp, 8 # Pop 2 words from stack
jr $ra # return
Memory Layout
0x7FFF FFFC
0x1000 8000
0x1000 0000
0x0040 0000
0x0000 0000
Stack
Heap Static Data
Program Text
Reserved
$gp
$sp
pc
Grows down
Differences in Other ISAs
More or fewer general-purpose registers (E.g., Itanium:
128; 6502: 3)
Arithmetic instructions affect condition codes (e.g., zero, carry); conditional branches test these flags Registers that are more specialized (E.g., x86) More addressing modes (E.g., x86: 6; VAX: 20)
Arithmetic instructions that also access memory (E.g., x86; VAX)
Arithmetic instructions on other data types (E.g., bytes and halfwords)
Variable-length instructions (E.g., x86; ARM) Predicated instructions (E.g., ARM, VLIW)
Single instructions that do much more (E.g., x86 string move, procedure entry/exit)