• 沒有找到結果。

行政院國家科學委員會專題研究計畫 成果報告

N/A
N/A
Protected

Academic year: 2022

Share "行政院國家科學委員會專題研究計畫 成果報告"

Copied!
25
0
0

加載中.... (立即查看全文)

全文

(1)

行政院國家科學委員會專題研究計畫 成果報告

在現有 LED 架構下製備具高反射率及高散熱率之薄膜鍍層 之研究

研究成果報告(精簡版)

計 畫 類 別 : 個別型

計 畫 編 號 : NSC 98-2221-E-216-008-

執 行 期 間 : 98 年 08 月 01 日至 99 年 07 月 31 日 執 行 單 位 : 中華大學機械工程學系

計 畫 主 持 人 : 林育立

計畫參與人員: 碩士班研究生-兼任助理人員:李凰齊 碩士班研究生-兼任助理人員:江禹德 碩士班研究生-兼任助理人員:潘威仁 博士班研究生-兼任助理人員:許政義 博士班研究生-兼任助理人員:黃厚升

報 告 附 件 : 出席國際會議研究心得報告及發表論文

處 理 方 式 : 本計畫可公開查詢

中 華 民 國 99 年 09 月 15 日

(2)

行政院國家科學委員會補助專題研究計畫 ■ 成 果 報 告

□期中進度報告

在現有 LED 架構下製備具高反射率及高散熱率之薄膜鍍層之研究

計畫類別:■個別型計畫 □整合型計畫 計畫編號:

NSC 98-2221-E-216-008

執行期間:

98 年 8 月 1 日至 99 年 7 月 31 日

執行機構及系所:中華大學機械工程學系

計畫主持人:

林育立

共同主持人:

計畫參與人員:

許政義、黃厚升、潘威仁、江禹德、李凰齊

成果報告類型(依經費核定清單規定繳交):

精簡報告 □完整報告

本計畫除繳交成果報告外,另須繳交以下出國心得報告:

□赴國外出差或研習心得報告

□赴大陸地區出差或研習心得報告

■出席國際學術會議心得報告

□國際合作研究計畫國外研究報告

處理方式:除列管計畫及下列情形者外,得立即公開查詢

□涉及專利或其他智慧財產權,□一年□二年後可公開查詢

中 華 民 國 99 年 08 月 31 日

(3)

行政院國家科學委員會補助專題研究計畫成果報告

計畫類別:■ 個別型計畫 □ 整合型計畫 計畫編號:NSC 98-2221-E-216-008

執行期間:98 年 8 月 1 日至 99 年 7 月 31 日

題目: 在現有 LED 架構下製備具高反射率及高散熱率之薄膜鍍層之研究

計畫主持人:林育立

計畫參與人員:許政義、黃厚升、潘威仁、江禹德、李凰齊

中文摘要: 本研究以鍍膜技術來製造高反射率率鍍層之結構,鍍層分為單層及多層兩部份;單層部份 之鍍層材料有:鈦(Ti)、鉻(Cr)、氧化鋁(Al2O3)、銀(Ag)及錫金(AuSn)等;多層部份之鍍層結構則為: 藍 寶石基板/鈦/銀/錫金、藍寶石基板/鉻/銀/錫金、藍寶石基板/氧化鋁/銀/錫金等三種結構鍍層; 接合 強度則利用簡易動態剝離和拉伸實驗測試單層及多層薄膜間之接合強度。實驗結果顯示在反射率方 面,以藍寶石基板/銀鍍層所測得之反射率最佳;多層結構則以藍寶石基板/氧化鋁/銀/錫金可提升之 反射率最多。在接合強度測試方面,單層鍍層結構以藍寶石基板/氧化鋁鍍層之接合強度 74 MPa 為最 好;在多層鍍層結構則以藍寶石基板/鉻/銀/錫金鍍層之接合強度 101 MPa 最好。

關鍵詞: 高反射率及高散熱率鍍層、藍寶石基板、接合強度

英文摘要: High reflectance coatings were produced on LED sapphire substrate to enhance the

reflective efficiency in LED. The coating layers were divided into single layer coating and multilayer coatings. On single layer coating, Ti, Cr, Al

2O3

, AuSn were used. On multilayer coatings, Ti/Ag/AuSn, Cr/Ag/AuSn and Al

2O3

/Ag/AuSn were used. In this study, the adhesion strength between coating layers was also measured by simple lap test and tensile test. Experimental results show that single layer coating using Ag has the best performance in reflectance. While, multi-layer coatings using

Al2O3

/Ag/AuSn structure have the best effect of reflectance improvement. On adhesion strength measurement in single layer coating, the highest adhesion strength can be found on sapphire/Al

2O3

structure which the adhesion strength can be measured to be 74MPa. On the other hand in multi-layer coatings, the highest adhesion strength can be found on sapphire/Cr/Ag/AuSn structure which the adhesion strength can be measured to be 101MPa.

Keywords: High reflectance coating, Sapphire substrate, Adhesion strength

(4)

1.前言

在現今發光二極體(LED)市場中,如何 提高反射率為設計 LED 的主要考量之 一。提高反射率可在 LED 藍寶石基板背面 鍍上金屬鍍層;鍍層材料的選擇是首要關 鍵,另外鍍層與 LED 基板的附著力也是重 要因素。在專業的鍍膜領域中,測量接合 強度是能夠分析鍍層間之附著力的唯一方 式[1]。銀金屬在光譜分析儀的測量上具有 廣大的反射波長,因此常被使用在反射 鏡,在玻璃基板上它也具有極高的反射率 和低穿透率 [2],因此是極佳之材料選 擇。對於分析和量測薄膜鍍層之光學特性 本研究主要是藉由光譜分析儀,因為它結 構簡單和準確性及耐久性很高。一般研究 所使用之反射鏡大部份是鍍上一層厚厚的 銀金屬在玻璃表面上[3-5]。銀金屬之薄膜 鍍層是首選,因為可以藉由良好的半導體 製程開發的技術應用到製造一個微型的 LED 上。而在一般反射鏡之製作會先以鈦 層製備在玻璃基板當作底層材料,而銀薄 膜鍍層在製備在鈦層上。此設計在開發及 製造上是一個合適之結構。文獻中有些報 導 是 可 供 參 考 , 其 中 Among them 和 Lung-Chien Chen 的報告 [6],主要探討在 藍寶石基板上提供解決反射率方案。他們 採用多層介電質之材料,使具有布拉格反 射率,並有高反射率和達到長期的耐用性 之特質。但是,其所使用之結構為介質層 二氧化矽 /二氧化鈦層之布拉格反射率,

所以波長只限制在 400nm 到 700nm 的範 圍下才具有高反射率。

在附著性方面,雖然在藍寶石基板 上,以銀金屬為最好的反射鏡材料,但銀 鍍層和藍寶石基板接合性差,鍍層容易脫 落。因此,在銀層和藍寶石基板之間,需 增加緩衝層和保護層。緩衝層的作用在於 它能夠增加藍寶石基板與銀層之間之接合

性,但此緩衝層不能減少整體反射率。如 果銀鍍層裸露在大氣中,易受到大氣之溫 度和濕度之影響,造成容易產生化學反應 以致反射率下降,因此在銀鍍層之上再增 加保護層是必要的。因此,本研究主要探 討 如 何 運 用 鈦 (Ti) 、 鉻 (Cr) 、 氧 化 鋁 (Al2O3)、銀(Ag)及錫金(AuSn)等材料作為 鍍膜層,以增強現有之 LED 反射率。鍍層 設計除單層鍍膜外,並設計 3 層薄膜結 構:(a)藍寶石基板/鈦 /銀 /錫金,(b)

藍寶石基板/鉻/銀/錫金和(c)藍寶石基板 /氧化鋁/銀/錫金結構,本研究以探討鍍層 的最佳接合強度和最佳光學特性為主要項 目[7~8]。

2.實驗步驟

本實驗所選用的反射率材料為銀金 屬,銀不只穩定,且具有廣大的光譜範圍 和非常高的反射率及散熱性。在本研究 中,我們設計了兩種鍍層結構:單層與多層 結 構 ; 單 層 所 使 用 之 材 料 有 鈦 (Ti) 、 鉻 (Cr) 、 氧 化 鋁 (Al2O3) 、 銀 (Ag) 及 錫 金 (AuSn),多層結構則主要是藍寶石基板/

鈦/銀/錫金,藍寶石基板/鉻/銀/錫金,和藍 寶石基板/氧化鋁/銀/錫金。多層結構之第 一層鍍層作為緩衝層,使用材料為鈦,鉻 和氧化鋁等材料,並運用物理蒸鍍法之電 子 槍 方 式 來 沉 積 。 沉 積 速 率 約 為 0.2nm/sec,設定 150 秒和 300 秒來製備不 同厚度之鍍層。第二層鍍層作為反射鏡 層,使用材料為銀金屬。沉積速率約為 0.5nm/sec,設定 1000 秒和 2000 秒來製備 不同厚度之鍍層。第三層鍍層作為保護 層,使用的材料為錫金。沉積速率約為 0.5nm/sec,設定 6000 秒來製備鍍層。

本 研 究 之 檢 測 方 式 可 分 為 兩 個 層 面,其一為鍍層的特性與結構分析;其二 是光學特性分析。鍍層的特性與結構分析

(5)

部分主要為利用掃瞄式電子顯微鏡(SEM) 觀察,接合強度測試則利用簡單膠帶剝離 法及 Lap-Shear 測試法來測試本此實驗鍍 層結構之接合強度,如圖一所示為剝離及 Lap-Shear 測試法架構之示意圖。而光學特 性分析部分則用日立的 U- 4100 光譜分析 儀來探討及量測反射率和穿透率等光學 性質。

3.實驗結果與討論

3.1 鍍層微觀結構和接合強度測試

圖二為藍寶石基板/鈦/銀 /錫金,藍寶 石基板/鉻/銀/錫金和藍寶石基板/氧化鋁/

銀/錫金之微觀結構。由於第一層緩衝層的 厚度非常薄,在微觀下其介面不容易觀 察。第二層是銀鍍層反射鏡層,厚度約為 0.3μm,0.6μm 和 1μm,分別運用在藍 寶石基板/鈦/銀/錫金,藍寶石基板/鉻/銀/

錫金,和藍寶石基板/氧化鋁/銀/錫金等鍍 層結構。第三層錫金層為保護層,其厚度 約為 3μm。在接合強度試驗方面,表一 為使用簡單膠帶剝離法測試各種鍍層材 料和鍍層厚度下,各種鍍層結構之附著 性。結果顯示除了銀鍍層外其於皆通過測 試,即膠帶無法將鍍層撕下。此方法雖然 簡易,但實質效益有限,且無量化數據可 供比較。因此本研究再利用 Lap-Shear 測 試法測試各種鍍層材料和鍍層厚度下,各 種鍍層結構之附著性。結果發現多層結構 以藍寶石基板/鉻/銀/錫金之結構有最高之 接合強度。測試後之最高接合強度可達到 約 101MPa。而相對地在藍寶石基板/氧化 鋁/銀/錫金結構下,其接合強度可測得約 只達 1MPa。表二為本次實驗單層和多層 鍍層結構與各種鍍層材料和鍍層厚度及 接合強度測量值。圖三為經接合強度測試

後之斷裂界面觀察:(a)顯示在藍寶石基 板/鈦 30nm/銀 1000nm /錫金 3000nm 結 構下,觀察到鈦鍍層約有 95%的面積斷裂 於藍寶石基板與鈦鍍層之間的界面層。然 而,另外 5%的區域則為銀和鈦鍍層間之 斷 裂 。 此 試 片 所 測 量 之 接 合 強 度 為 23MPa。圖三(b)顯示在藍寶石 /鉻 60nm/

銀 1000nm /錫金 3000nm 結構下之斷裂 表面。由斷裂界面觀察可知,約 70%面積 斷裂於鉻和銀鍍層界面之間。然而,30%

的 面 積 被 發 現 斷 裂 於 銀 和 錫 金 鍍 層 之 間。此試片所測量之接合強度為 30MPa。

圖三(c)顯示在藍寶石 /氧化鋁 30nm/

銀 1000nm /錫金 3000nm 結構下之斷裂 面。約 95%面積斷裂於銀鍍層和氧化鋁層 之間界面。然而,5%的區域被發現斷裂 於銀和錫金鍍層之間的裂縫。此試片所測 量之接合強度為 11MPa。

3.2 高反射率之光學特性的結構最佳設計 在藍寶石基板/鈦/銀/錫金,藍寶石基 板/鉻/銀/錫金,藍寶石基板/氧化鋁/銀/錫 金結構下,反射率和穿透率測量結果如表 二所示。量測先進行標準片鋁鏡校正反射 率後,再進行本實驗所有結構之反射率數 據。在另一方面以相同機台量測穿透率部 份,此部份先進行標準為空氣校正穿透率 後,再進行本實驗所有結構之穿透率數 據。結果顯示,單層之鈦,鉻鍍層在藍寶 石基板上,反射率和低穿透率甚低。在波 長 460nm 測量反射率值約為 14%至 25

%。單層之氧化鋁鍍層在藍寶石基板上,

在波長 460nm 反射率值約為 10%。雖然 單層銀鍍層在藍寶石基板上具有甚非常 佳的反射率,在波長 460nm 其測量之反射 率值約為 47%至 52%,但因銀鍍層容易

(6)

從藍寶石基板上脫落,從接合強度得知銀 和藍寶石基板有很差之附著性。

多層結構測量方面,第一種為藍寶石 基板/鈦/銀/錫金結構,結果顯示此種結構 在各種不同厚度的鍍層,其反射率和穿透 率皆低,在波長 460nm 所測量之反射率值 約為 18%至 22%,另外在波長 300 到 1600nm 所測量之穿透率值為 0%。第二 種為藍寶石基板/鉻/銀/錫金結構,結果顯 示 此 種 結 構 在 各 種 不 同 厚 度 的 鍍 層 材 料,其反射率和穿透率皆低,在波長 460nm 所測量之反射率值約為 20%至 27%,另 外在波長 300 到 1600nm 所測量之穿透率 值為 0%。第三種為 藍寶石基板/氧化鋁/

銀/錫金結構,在波長 460nm 所測量之反 射率值約 41%至 48%,另外在波長 300 到 1600nm 所測量之穿透率值為 0%。在 這些結構,我們發現第三種結構具有最佳 的反射特性。在設計有氧化鋁當緩衝層的 反射鏡結構中,其反射率與鈦和鉻作為緩 衝層相比,可有 200%的提昇。圖四顯示 本次實驗所有結構之反射率和穿透率的 結果。

4.結論

1 單層結構以銀金屬有最好的反射率,而 銀鍍層厚度增加則其反射率也隨之增 加,但單層銀鍍層之附著性差,容易從 藍寶石基板上脫落。

2 單層結構以藍寶石基板/氧化鋁結構有 最佳之接合強度。

3 多層結構以藍寶石基板/氧化鋁/銀/錫金 結構具有最佳的反射率。

4 多層結構以藍寶石基板/鉻/銀/錫金結構 有最佳之接合強度。。

5.參考文獻

1. Yuli Lin and G.-H Lee, 2001 Conference

of Coating Technology, Lu-Gang, Taiwan, 2001.

2. Hass G., (1965), Applied Optics and

Optical Engineering, Vol. III (R.Kingslake , ed.), Academic, New York, chap.8,

309-330.

3. Lung-Chien Chen and Hui-Ching Feng, R phys. stat. sol. (a) 202, No.14, 2836–2839 (2005)/ DOI 10.1002/pssa.200520091.

4. Y. Xi and X. Li, J. K. Kim, F. Mont, and Th. Gessmann, H. Luo, and E. F. Schubert, J. Vac. Sci. Technol. A, Vol. 24, No. 4, 1627 Jul/Aug (2006).

5. Ive Tommy , Brandt Oliver , Kostial Helmar, Hesjedal Thorsten, Ramsteiner Manfred , and Ploog Klaus H, Appl. Phys.

Lett.,Vol.85,No.11,pp.1970-1972 ,13 September 2004.

6. H.R. Kim, Y.D. Kim, K.I. Kim, J.H. Shim, H. Nam, B.K. Kang, Sensors and

Actuators B 97(2), pp. 348–354 , (2004) 7. 許政義,運用在 LED 藍寶石基板上之高

反射率金屬鍍膜光學性質量測之研究,

中華大學機械與航太工程研究所 97 年碩 士論文.

8. 林美鈴,運用在 LED 藍寶石基板上之高 反射率金屬鍍膜之結構及接合強度之研 究,中華大學機械與航太工程研究所 97 年碩士論文.

6.自評

本計畫原為三年期計畫,計畫核定後為一 年計畫。因此原計畫規畫執行之散熱研 究,本年度雖有進度但無完整之結果,本 年度計畫按照計畫書之進度執行,執行成 果豐碩,不僅達成原有之目標且有超前,

本計畫之成果也已投稿國內研討會論文一 篇及國外研討會一篇供二篇論文。

(7)

(a)

(b)

(c)

(d)

圖一反射鏡鍍層結構和接合強度試驗之示 意圖:(a)鍍在藍寶石基板背面之多層結 構,(b)以 3M 膠帶簡單剝離測試,(c)

單層鍍層接合強度試驗結構示意圖和(d)

多層鍍層接合強度試驗結構示意圖

圖二 以 SEM 觀察結構之鍍層之顯微結 構:(a)藍寶石基板/鈦/銀/錫金,(b)藍 寶石基板/鉻/銀/錫金,以及(c)藍寶石 基板/氧化鋁/銀/錫金結構

(8)

圖三 為接合強度試驗後之斷裂界面觀察:

(a)藍寶石基板/鈦/銀/錫金,(b)藍寶石 基板/鉻/銀/錫金,以及(c)藍寶石基板/

氧化鋁/銀/錫金結構

0 10 20 30 40 50 60 70 80 90 100 110

300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600

Wavelength (nm)

Reflectance (%)

Cal. Sub. A1 A2

A3 A4 A5 A6

(a)

0 10 20 30 40 50 60 70 80 90 100 110

300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600

Wavelength (nm)

Reflectance (%)

Cal. Sub. B1 B2

B3 B4 B5 B6

(b)

0 10 20 30 40 50 60 70 80 90 100 110

300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 Wavelength (nm)

Reflectance (%)

Cal. Sub. C1 C2

C3 C4 C5 C6

(c)

圖四 反射率和穿透率的測試結果:(a)藍 寶石基板/鈦/銀/錫金,(b)藍寶石基板/鉻/

銀/錫金,以及(c)藍寶石基板/氧化鋁/銀 /錫金結構。

(9)

表一 各種鍍層材料和鍍層厚度條件下,以 膠帶做簡易之剝離之測試結果

Simple peeling test for Single-layer structure

OK Fail

sapphire/Ti 30nm V

sapphire/Ti 60nm V

sapphire/Cr 30nm V

sapphire/Cr 60nm V

sapphire/ Al2O3 30nm V sapphire/ Al2O3 60nm V

sapphire/Ag

(100nm or 500nm or 1000nm)

V

All multi layer structures V

表二單層和多層鍍層結構在各種不同鍍層 厚度之條件下之接合強度測量值

Single layer coating and Multi layer coating structure for lap shear test

Adhesion Strength (MPa)

sapphire/Ti 30nm 33.7

sapphire/Ti 60nm 25.5

sapphire/Cr 30nm 46.3

sapphire/Cr 60nm 56.4

sapphire/ Al2O3 30nm 43.3 sapphire/ Al2O3 60nm 74.1

sapphire/Ag100nm 3.7

sapphire/Ag500nm 0.5

sapphire/Ag1000nm 3.0

sapphire/AuSn 3000nm 1.6 sapphire/Ti 30nm/Ag 100nm

/AuSn 3000nm 15.2

sapphire/Ti 30nm/Ag 500nm

/AuSn 3000nm 15.2

sapphire/Ti 30nm/Ag 1000nm 23.0

/AuSn 3000nm

sapphire/Ti 60nm/Ag 100nm

/AuSn 3000nm 35.8

sapphire/Ti 60nm/Ag 500nm/AuSn

3000nm 54.2

sapphire/Ti 60nm/Ag

1000nmÅ/AuSn 3000nm 35.9 sapphire/Cr 30nm/Ag 100nm/

AuSn 3000nm 51.4

sapphire/Cr 30nm/Ag 500nm/

AuSn 3000nm 12.4

sapphire/Cr 30nm/Ag 1000nm/

AuSn 3000nm 11.7

sapphire/Cr 60nm/Ag 100nm/

AuSn 3000nm 39.3

sapphire/Cr 60nm/Ag 500nm/

AuSn 3000nm 101.0

sapphire/Cr 60nm/Ag 1000nm/

AuSn 3000nm 30.9

sapphire/ Al2O3 30nm/Ag 100nm/

AuSn 3000nm 4.1

sapphire/ Al2O3 30nm/Ag 500nm/

AuSn 3000nm 2.9

sapphire/ Al2O3 30nm/Ag 1000nm/

AuSn 3000nm 11.2

sapphire/ Al2O3 60nm/Ag 100nm/

AuSn 3000nm 1.8

sapphire/ Al2O3 60nm/Ag 500nm/

AuSn 3000nm 5.0

sapphire/ Al2O3 60nm/Ag 1000nm/

AuSn 3000nm 11.9

(10)

表三 在單層和多層鍍層的結構搭配各種 鍍層厚度之反射率和穿透率的測量結果

Hitachi U-4100

Symbol Wavelength @ 460 (nm)

Reflect- ance(%)

Transmi- ttance(%

)

Cal. Calibration using

Al mirror 99.9 ---

Cal. Calibration in air --- 99.9 sapphire substrate 13.1 91.3 sapphire/Ti 30nm 14.2 21.9 sapphire/Ti 60nm 22.1 9.4 sapphire/Cr 30nm 20.7 7.1 sapphire/Cr 60nm 24.9 1.5

sapphire/ Al2O3

30nm 10.9 86.8

sapphire/ Al2O3

60nm 10.3 87.9

sapphire/Ag100nm 47 0

sapphire/Ag500nm 48.1 0

sapphire/Ag

1000nm 51.6 0

sapphire/AuSn

3000nm 30.1 0

A1

sapphire/Ti 30nm/Ag 100nm /AuSn 3000nm

18.9 0

A2

sapphire/Ti 30nm/Ag 500nm /AuSn 3000nm

18.8 0

A3

sapphire/Ti 30nm/Ag 1000nm /AuSn 3000nm

18.8 0

A4

sapphire/Ti 60nm/Ag 100nm /AuSn 3000nm

21 0

A5 sapphire/Ti 21 0

60nm/Ag 500nm/AuSn 3000nm

A6

sapphire/Ti 60nm/Ag 1000nmÅ/AuSn 3000nm

22.4 0

B1

sapphire/Cr 30nm/Ag 100nm/

AuSn 3000nm

26.2 0

B2

sapphire/Cr 30nm/Ag 500nm/

AuSn 3000nm

20.3 0

B3

sapphire/Cr 30nm/Ag 1000nm/

AuSn 3000nm

23.6 0

B4

sapphire/Cr 60nm/Ag 100nm/

AuSn 3000nm

23.7 0

B5

sapphire/Cr 60nm/Ag 500nm/

AuSn 3000nm

27.1 0

B6

sapphire/Cr 60nm/Ag 1000nm/

AuSn 3000nm

23.6 0

C1

sapphire/ Al2O3

30nm/Ag 100nm/

AuSn 3000nm

41.5 0

C2

sapphire/ Al2O3

30nm/Ag 500nm/

AuSn 3000nm

45.3 0

C3

sapphire/ Al2O3

30nm/Ag 1000nm/

AuSn 3000nm

44.6 0

C4

sapphire/ Al2O3

60nm/Ag 100nm/

AuSn 3000nm

45.9 0

C5 sapphire/ Al2O3 46.7 0

(11)

60nm/Ag 500nm/

AuSn 3000nm

C6

sapphire/ Al2O3

60nm/Ag 1000nm/

AuSn 3000nm

48.4 0

(12)

國科會補助專題研究計畫項下出席國際學術會議心得報告

日期: 99 年 1 月 15 日

計畫編號 NSC 98-2221-E-216-008

計畫名稱 在現有 LED 架構下製備具高反射率及高散熱率之薄膜鍍層之研究

出國人員姓名 服務機關及職稱

林育立

中華大學機械工程學系教授

會議時間地點 自 99 年 1 月 3 日至 99 年 1 月 8 日香港 會議名稱 IEEE國際奈米電子研討會

IEEE International NanoElectronics Conference (INEC)

發表論文題目

1.Atomic Structure of Hydrous Ruthenium Oxide Coating on Carbon-Nanotube for Supercapacitor

2.Junction Temperature for High-Power LED Packages with Diamond film

一、參加會議經過

本次會議(IEEE國際奈米電子研討會)於九十九年一月三日至一月八日共計六日,於香港城 市大學舉行,筆者與博士生許政義於一月三日搭乘長榮航空班機於下午二時許抵達香港 赤臘角國際機場,隨即搭車至市中心帝樂文娜公館(本次會議筆者下榻之旅館),稍作休 息後即搭乘地下鐵赴本次會議之場所:香港城市大學,辦理報到手續;今天因尚無演講活 動因此辦完一切手續後就返回飯店。本次會議空前浩大,有來自全世界超過三十個國家 共發表超過七百篇之論文,其中有兩百多篇為口頭講演及四百多篇之論文展示。此次會 議也與另一研討會"NanoMan: The 1st International Conference on Nanomanufacturing"

共同舉辦,垓研討會共有接近兩百篇論文。筆者此次共發表兩篇文章,其中一篇為口頭 報告另外一篇則為論文海報展示。第二天一大早就到會場,因昨晚事先已擬妥今天要聽 的場次,因此早上就聽了幾場有興趣的研究報告,尤其是會議一開始網網邀請重量級之 演講者,這種演講更是筆者一定不會放過的。另外早上十點十五分在口頭報告的中場休 息時間也穿插論文海報展示的活動。與一般上台口頭報告不同,海報可以放的東西比較 多且展示時間也較長,加上作者可以在旁即時解釋及討論論文內容,而且同一時間有幾 十甚至上百篇論文同時展示,因此其重要性並不輸於比口頭報告。筆者對於材料方面尤 其是鍍層方面較有興趣,因此選擇的聽講題目大都在這個領域,筆者也發現雖然此次會 議奈米材料的題材還是受到重視,不過奈米材料的發展好像也達到一定的瓶頸,最近此 領域熱門的程度有下降的趨勢,隨著全球能源的愈來愈缺乏,最近對於能源材料方面的 研究有漸趨熱絡的趨勢,這也可給我們作為未來研究的參考。筆者的論文為星期一上午 一點十五分的海報發表,及星期下午三點五十分之口頭報告,因筆者所研究不僅利用顯 微鏡觀察材料之性質更結合奈米材料及能源方面的應用,因此吸引不少來自世界各國研 究者的目光與興趣,會議最後在十六日下午六點是四十五分最後一場報告後劃下句點。

因本次會議結束時間時間較晚因此只能搭乘十七日之班機回國。

(13)

二、與會心得

此次會議有超過來自全世界三十多個國家一千多名學者專家與會,從會議的流程可發現 主辦單位在各項安排都十分注重,可謂是成功的一次大型國際研討會。本次會議也有一 些小缺點,會議之宣導並不是十分理想,因此在會議中心外之街道並無會議舉行之資 訊,也有可能是新加坡政府規定。另外會議安排之地點也不太理想,並不是大型之會展 中心,只利用管理大學之行政大樓來作為會議中心,這與號稱有八百餘篇參予之研討會 好像不太符合。再研究主題方面雖然此次會議奈米材料的題材還是受到重視,不過奈米 材料的發展好像也達到一定的瓶頸,最近此領域熱門的程度有下降的趨勢,隨著全球能 源的愈來愈缺乏,最近對於能源材料方面的研究有漸趨熱絡的趨勢,這也可給我們作為 未來研究的參考。

三、攜回資料名稱及內容

1. Proceeding of The 4th International Conference on Technological Advances of Thin Films

& Surface Coatings

2. Disk of The 4th International Conference on Technological Advances of Thin Films &

Surface Coatings

(14)

出席國際學術會議心得報告

計畫編號 NSC 98-2221-E-216-008

計畫名稱 在現有LED 架構下製備具高反射率及高散熱率之薄膜鍍層之研究

出國人員姓名 服務機關及職稱

林育立

中華大學機械工程學系教授

會議時間地點 自 99 年 1 月 3 日至 99 年 1 月 8 日香港 會議名稱 IEEE國際奈米電子研討會

IEEE International NanoElectronics Conference (INEC)

發表論文題目

1.Atomic Structure of Hydrous Ruthenium Oxide Coating on Carbon-Nanotube for Supercapacitor

2.Junction Temperature for High-Power LED Packages with Diamond film

一、參加會議經過

本次會議(IEEE國際奈米電子研討會)於九十九年一月三日至一月八日共計六日,於香港城市大 學舉行,筆者與博士生許政義於一月三日搭乘長榮航空班機於下午二時許抵達香港赤臘角國 際機場,隨即搭車至市中心帝樂文娜公館(本次會議筆者下榻之旅館),稍作休息後即搭乘地 鐵赴本次會議之場所「香港城市大學」,辦理報到手續;今天因尚無演講活動因此辦完一切手 續,並參加歡迎參宴後就返回飯店。本次會議空前浩大,有來自全世界超過三十五個國家共 發表九百一十一篇之論文,其中有五百零三篇為口頭講演及四百零八篇之論文展示。此次會 議共有四個主題:(1)奈米製造、(2)奈米電子、(3)奈米光子及(4)奈米生技;本次會議另外增 加一項研討會"Nanosince and Nanotechnology",比較特別的是此項研討會大會邀請來自大 陸中國科學院、中國工程院及台灣中研院的十六位院士,於會議中發表講演,我國科會副主 委陳力俊院士也在邀請之列。筆者此次共發表兩篇文章,二篇都為論文海報展示。第二天一 大早就到會場,因昨晚事先已擬妥今天要聽的場次,因此早上就聽了幾場有興趣的研究報告,

尤其是會議一開始往往邀請重量級之演講者,這種演講更是筆者一定不會放過的。此次會議 的首場演講邀請中國科學院白春禮(Chun-Li Bai)院士,其演講的題目為:Surface Modification of Molecular Self-assembly on Solid Investigated by STM。第二場則邀請 The Florida State University 的 Sir Harold Kroto,其演講的題目為:Mechanisms of NanoScale Self-Assembly,此 位演講者大名鼎鼎為諾貝爾化學獎得主,有機會聆聽大師之演講真是不虛此行。另外早上十 一點十五分開始則分批進行各領域之講演。本次會議的一項特點為邀請重量級大師講演的場 次特別多,第二天原本大會安排二場演講,其中一場由哈彿大學 Charles M Lieber 教授之演講 本來是筆者本次來港想聽的幾場演講之一,可惜的是因為最近幾天美國東部大雪紛飛,天氣 極度不好,因此大會宣布取消他的演講場次。本次筆者參與的部份是論文展示,論文展示與 一般上台口頭報告不同,論文展示可以放的東西比較多且展示時間也較長,加上作者可以在 旁即時解釋及討論論文內容,而且同一時間有幾十甚至上百篇論文同時展示,因此其重要性 並不輸於比口頭報告。筆者的論文是星期二下午進行展示,從論文展示的題目及參與之觀眾 可以約略看出現今較熱門之題目。而筆者因對於材料方面尤其是鍍層方面較有興趣,因此選 擇的聽講題目大都在這個領域,此次會議可以發現奈米材料的應用範圍十分廣泛,尤其大陸 地區作此一題目的學者專家不在少數,其他學者專家的研究題目也可給我們作為未來研究的 參考,另外因為是奈米電子相關的研討會,因此奈米碳管之製造及應用也是這次研討會的重 點。因筆者這次發表的論文,一篇是奈米碳管與能源題材之結合,另外一篇則是 LED 散熱之 研究,因此吸引不少來自世界各國研究者的目光與興趣,會議最後在七日下午六點十五分最 後一場報告後劃下句點,下次會議將由臺灣舉辦。

(15)

二、與會心得

此次會議有超過來自全世界三十多個國家二千多名學者專家與會,從會議的流程可發現主辦 單位在各項安排都十分注重,可謂是成功的一次大型國際研討會。本次會議的場地:香港城市 大學,位於九龍塘地鐵站附近,且旁邊還有一間大型百貨公司,因此地點的安排十分便利,

本次會議也邀請重量級演講者,而且一次就邀請二、三十位之多,可見主辦單位之用心。尤 其是可邀請到諾貝爾得主蒞臨更是一大賣點,而他的演講也是另人印象深刻,從他深入淺出 的演講內容,加上詼諧的口語及豐富的投影片設計,搭配聲效,真是一場非常好的演講。而 他也提出未來奈米科技的挑戰及他對未來奈米科技的發展較憂心的事情,在在都讓人覺得他 不僅是在學術上貢獻一己之力,同時也利用他的聲望,希望可對人類的進步產生正面的影響,

且現在他也在教育下一代方面貢獻自己的力量。筆者有機會私下與他簡短晤談並合影留念,

是此行另一小收穫。本次會議主辦單位除在會議休息片段提供小餐點外,在中午也提供中餐,

這是貼心的安排,不過中餐以桌菜進行則有點不方便,因此很多人都沒有參與午餐,雖然本 次會議有一些小缺點,但仍值得對大會的細致安排給予肯定,也可給國內以後辦理大型研討 會的很好的借鏡。

三、攜回資料名稱及內容

1. Program of IEEE International NanoElectronics Conference 2. Disk of IEEE International NanoElectronics Conference 四、參與會議照片

(16)

Atomic Structure of Hydrous Ruthenium Oxide Coating on Carbon-Nanotube for Supercapacitor

Yuli Lin* and H.-S Huang

Abstract. In this study, hydrous ruthenium oxide with carbon nanotube additives was deposited on Ti substrate by cathodic deposition method. Combination of amorphous and nanocrystalline structure of hydrous ruthenium oxide was investigated by high resolution electron microscopy. It was found that thin hydrous ruthenium oxide coating layer can be deposited on CNT substrate. The thickness of the coating layer was found less than 10nm. The capacitance was found increased when the deposition time was increased. The maximum capacitance of hydrous ruthenium oxide coating was measured to be 718.8F/g.

Background

Nowadays, capacitor has been extensively used for offering the function of equalizing distribution of power. However, the capacitor used today could only provide limited density of power which was not suitable for those electrical appliances needing high-density of power to start. Supercapacitors (Electrochemical Capacitors) have many advantages using in electrical devices for their larger electrical capacity, high power density and long cycle life [1].

Supercapacitor is a kind of storage of electricity between secondary battery and capacitor. Comparing with secondary battery, supercapacitor does not only have higher density of power but also can be recharged many times. It also has larger density of energy, offering higher transient power and higher reliability. In general, supercapacitors can be classified into two categories, namely, pseudo-capacitors [2] and double-layer capacitors [3]. The former stores electrical charges in electrode surface by faradic reaction. While, in the latter, electrical charges are stored at the double-layer formed at electrode/electrolyte interface. Various methods have been utilized to manufacture electrode including cyclic voltammetric method [4], sol-gel method [5], cathodic deposition method [6]

and etc. Hydrous ruthenium oxides were found to be a superior material for supercapacitor, which can offer higher capacity of electric charge than any other materials. Utilizing hydrous ruthenium oxide (RuOx·(OH)y) as a supercapacitor material, the H+ transits easily in itself, and Ru4+ could increase the capacity. Ruthenium not only has several different oxide forms;

but also could go on oxidation reduction itself [7].

All authors are with the Institute of Engineering Science, Chung Hua University, Hsinchu, Taiwan

*Contacting Author: Yuli Lin is with the Institute of Engineering Science and Department of Mechanical Engineering, Chung Hua University, Hsinchu, Taiwan (phone: +886 3-5185494; email:yulilin@chu.edu.tw).

Current Results

Hydrous ruthenium oxide with carbon nanotube additives was deposited on Ti substrate by cathodic deposition method. Ti substrate was first cleaned thoroughly by acetone and followed by chemical etching of 5%HF for 5 minutes and 50%HCl for 15 minutes. The purpose of adding carbon nanotube is to increase the effective area of hydrous ruthenium oxide coatings.

The concentration of carbon nanotube added in the deposition process is 0.05wt%. The time of specimens which were immersed into the deposition bath varied from 5 minutes to 60 minutes. The electrical capacity characteristics of coating were examined by cyclic voltammetry. The microstructure of hydrous ruthenium oxide coating was also observed by high resolution electron microscopy.

Figure 1(a), (b) show the atomic structure of hydrous ruthenium oxide coating on CNT substrate with 5 minutes of deposition period. Combination of amorphous and nanocrystalline structure of hydrous ruthenium oxide can be investigated. Nanosized particles (about 2 nm) which can be identified as RuO2 and Ru were observed on this specimen.

The capacitance of this specimen was measured to be 213.8F/g.

Figure 2(a), (b) demonstrate the atomic structure of hydrous ruthenium oxide coating on CNT substrate with 10 minutes of deposition period. Nanoparticles embedded in amorphous phase can be observed on this specimen. The capacitance of this specimen was measured to be 411.3F/g. Combination of RuO2 and Ru particles can also be observed. Figure 3(a), (b) reveal the atomic structure of hydrous ruthenium oxide coating on CNT substrate with 15 minutes of deposition period.

Combination of amorphous and nanocrystalline structure of hydrous ruthenium oxide was also investigated. RuO2 particles were found at this specimen.

(b)

Figure 4(a), (b) show the atomic structure of hydrous ruthenium oxide coating on CNT substrate with 30 minutes of deposition period. The capacitance of this specimen was measured to be 713.7F/g. Addition to amorphous structure, RuO2 nanosized particles (about 2 nm) was the only particles to be observed on this specimen. Figure 5(a), (b) reveal the atomic structure of hydrous ruthenium oxide coating on CNT substrate with 60 minutes of deposition period. The capacitance of this specimen was measured to be 718.8F/g. It was found that more uniform hydrous ruthenium oxide layer was coated on CNT substrate. The thickness of the coated layer was found less than 10nm. Combination of amorphous and nanocrystalline structure of hydrous ruthenium oxide was also investigated. Nanosized particles (about 2 nm) which can be identified as RuO2 were observed on this specimen.

(17)

Figure 6 illustrates the distribution of measured capacitance with various deposition periods. The measured capacitance of hydrous ruthenium oxide on CNT substrate was 213.8F/g for specimen with 5 minutes of deposition period. However, the capacitance was increased to 718.8F/g when the deposition period was increased to 60 minutes.

References

1. P.Baker, Power Engineering Society Summer Meeting, 2002 IEEE, 1, 21-25, 316-320 (2002).

2. M. F. Rose and S. A. Merryman, Energy Conversion Engineering Conference, 1996. IECEC 96. Proceedings of the 31st Intersociety, 1, 11-16 , 245 -250 (1996 IEEE).

3. C.Arbizzani, M. Mastragostino, F.soavi, Journal of Power Sources 110, 164-170(2001).

4. C-C. Hu, Y-H. Huang, Electrochimica Acta 46, 3431-3444

(2001).

5. V. Horvat-Radošević, K. Kvastek, M. Vuković, D. Čukman, Journal of Electrochemical Chemistry 482, 188-201

(2000).

6. H.-S. Hwang and Yuli Lin, Microscopy and Microanalysis, 14, Supp. 2, 332-333 (2008).

7. B. Park, C.D. Lokhande, H.-S. Park, K.-D. Jung, O.-S. Joo, Journal of Power Source, 134, 148 (2004).

Figure 1. Atomic structure of hydrous ruthenium oxide coating on CNT substrate with 5 minutes of deposition period, (a) HRTEM image of specimen and (b) higher magnification of HRTEM image form (a).

Figure 2. Atomic structure of hydrous ruthenium oxide coating on CNT substrate with 10 minutes of deposition period, (a) HRTEM image of specimen and (b) higher magnification of HRTEM image form (a).

Figure 3. Atomic structure of hydrous ruthenium oxide coating on CNT substrate with 15 minutes of deposition period, (a) HRTEM image of specimen and (b) higher magnification of HRTEM image form (a).

Figure 4. Atomic structure of hydrous ruthenium oxide coating on CNT substrate with 30 minutes of deposition period, (a) HRTEM image of specimen and (b) higher magnification of HRTEM image form (a).

Figure 5. Atomic structure of hydrous ruthenium oxide coating on CNT substrate with 60 minutes of deposition period, (a) HRTEM image of specimen and (b) higher magnification of HRTEM image form (a).

200 400 600 800

Capatance (F/g)

0 20 40

213.8 406.5 411.3

713.7

718.8

6

10 30 50 0

Dep ositio n Time (Min utes)

Figure 6. The distribution of measured capacitance with various deposition periods.

(18)

Junction Temperature of High-Power LED Packages with Diamond film

Cheng-Yi Hsu1 and Yuli Lin1,*

Abstract. A simple, fast, and reliable characterization of thermal properties method to determine junction temperature (Tj) in high power GaN-based light emitting diodes (LED) was presented in this study. Thermal characteristics of high power Light-emitting-diode have been analyzed by using a three-dimensional thermal conduction model. Maximum operation temperature has also been calculated. The induced thermal behaviours of the best package processes for LED device with diamond film were investigated by finite element analysis (FEA) and by experimental measurement.The large change of forward operation voltage with temperature in light emitting diodes is advantageously used to measure junction temperature. Using this method, junction temperatures (Tj) of a LED under various structures and chip mounting methods were measured. It was found that the junction temperature can be reduced considerably by diamond film substrates. For diamond film substrates LED, as much as two-fold reduction in junction temperature can be achieved compared to other structures. In this study, we will report how we can achieve the junction temperature had to decrease about 10 percent for more than 1.5W- power dissipation for 1mm square die. It was found that the thermal resistance using diamond film structure is measured to be 17℃/W which is the lowest than other structures.

Background

High-power Light Emitting Diode (LED) can be potentially used for general lighting to alleviate the global warming problem. However, the LED associated with high cost, high junction temperature, low luminous efficiency, and low reliability have to be resolved before becoming realized. The increase in the light-output efficiencies of LED is the main cause of such a marked transition. Accordingly, many researchers are developing LED technology with a view to general lighting applications. However, depending on the power conversion efficiency, some of the input energy becomes photons, which are immediately emitted out of the device, while the rest remains in the device as heat, which increases the junction temperature. Since an LED is a semiconductor device, many of its properties strongly depend on thermal temperature [1~11].

As the junction temperature is increased, both the operating voltage and the wavelength changed, and the reliability and output efficiency are degraded. Thus, the problem of heat flow in an LED is inevitable in high-power applications.

All authors are with the Institute of Engineering Science, Chung Hua University, Hsinchu, Taiwan

*Contacting Author: Yuli Lin is with the Institute of Engineering Science and Department of Mechanical Engineering, Chung Hua University, Hsinchu, Taiwan (phone: +886 3-5185494; email:yulilin@chu.edu.tw).

Current Results

In order to evaluate what is the better way for packaging LED device with diamond film. The samples utilized in this work are diamond film on silicon wafer. The thickness of diamond film is 20μum after remove silicon wafer. Figure 1(a) and (b) shows the SEM images of diamond films. In this study, we established three kinds of model structures. Table 1 shows the physical parameters of the model used. In our models, normal GaN /Sapphire blue high power LED was used. The samples utilized in this work are 40 mil blue GaN LED chips which were obtained from an LED manufacturer. Figure 2(a) shows the conventional configuration of GaN LED structure. The thicknesses of the nitride film and sapphire substrate are 5 and 90 μm, respectively. A thin semi-transparent oxidized ITO layer was coated on top of the p-type layer to enhance the spreading of the current structure. Figure 2(b) shows the high power LED chips mounted onto heat sink using silver epoxy without encapsulates. The heat sink used in this study is diamond film which has a high thermal conductivity. The heat sink was then mounted onto Cu substrate using silver epoxy.

The Cu substrate with an area of 10×10 cm2 and a height of 0.2 cm was used. In this study, the LED chip was also considered for evaluation of the influence on thermal conductivity for diamond film during package process. In addition, a sliding boundary condition instead of fixed-end boundary was set on the bottom surface of the package substrate for model the substrate handling on the heating dissipation stage by diamond film.

From the simulation result, it was found that the junction temperature had the reduction of 10.7% using diamond film on top of Cu substrate. The simulation result was confirmed by experiments which shows that a reduction of 11.5% in junction temperature measurement using diamond film on top of Cu substrate. Table 2 demonstrates all the experimental measured in this study for various mode structures. It was found that the thermal resistance using diamond film structure is measured to be 17℃/W which is the lowest than other structures. Figure 3(a)

~ (b) shows the measurement of the junction temperature and thermal resistance vs. different structures under various powers conditions. The LED using diamond film structure not only has the lowest junction temperature but also had the lowest thermal resistance than other structures under various powers. Figure 3(c) shows the comparison of the simulation and experimental results in junction temperature measurement with different structure at 1W. It was found that a good agreement between the experimental result and the simulation data on various structures.

(19)

References

[1] Nie-Chuan CHEN, Chih-Min LIN, Yen-Kai YANG, Chi SHEN, Tong- Wen WANG1, and Meng-Chyi WU1,“Measurement of Junction Temperature in a Nitride Light-Emitting Diode,” Jpn. J. Appl. Phys., Vol.

47, No. 12 (2008)

[2] Qian Cheng,“Thermal Management of High-power,” 1-4244-1392- 3/07/$25.00 (©2007 IEEE

[3] Joseph Bielecki, Ahmad Sameh Jwania, Fadi El Khatib, Thomas Poorman ,“Thermal Considerations for LED Components in an Automotive Lamp,”1-4244-0959-4/07/$25.00 ©2007 IEEE [4] R. Huber , “Thermal Management of SMT LED.” Osram Opto

Semiconductors (8/02).

[5] R. H. Horng,1,a_ C. C. Chiang,2 H. Y. Hsiao,2 X. Zheng,2 D. S.

Wuu,2,b_ and H. I. Lin3, “Improved thermal management of GaN/sapphire light-emitting diodes embedded in reflective heat spreaders,” Appl. Phys. Lett. 93, 111907 _2008_

[6] M. Shatalov and A. Chitnisa P. Yadav, Md. F. Hasan, and J. Khan V.

Adivarahan, H. P. Maruska, W. H. Sun, and M. Asif Khanb, “Thermal analysis of flip-chip packaged 280 nm nitride-based deep ultraviolet light-emitting diodes,” Appl. Phys. Lett. 86, 201109 ~2005!

[7] Schang-jing Hon, Cheng Ta Kuo, T.P. Chen, M.H. Hsieh , “High power GaN LED chip with low thermal resistance ,”Proc. of SPIE Vol. 6894, 689411, (2008)

[8] M. Y. Tsai*, C. H. Chen, and C. S. Kang , “Thermal Analyses and Measurements of Low-Cost COP Package for High-Power LED, “978-1- 4244-2231-9/08/$25.00 ©2008 IEEE

[9] M. Arik, C. Becker, S. Weaver, and J. Petroski, “Thermal Management of LED: Package to System,” Proc. Of SPIE, 2004.

[10] M. W. Shin, “Thermal Design of High-power LED Package and System,” Proc. of SPIE, 2006.

[11] J.P. You, Y. He and F.G. Shi, “Thermal Management of High Power LED: Impact of Die Attach Materials,” IMPACT 2007, Taipei, Taiwan, 2007.

(a)

(a) (b)(b)

Fig. 1. SEM images of Diamond structure :( a) low magnification and (b) higher magnification of (a).

Table 1 The physical parameters of the model

Material Mode 1 Structure Mode 2 Structure Mode 3 Structure GaN 1mm*1mm* 5

μm

GaN 1mm*1mm* 5 μm

GaN 1mm*1mm*

5 μm LED

Dimensions

L xW x H Sapphire

1mm*1mm*90 μm

Sapphire

1mm*1mm*90 μm

Sapphire 1mm*1mm*90 μ m

Adhesion

Material Silver epoxy 5μm Silver epoxy 5μm Silver epoxy 5μm High thermal

conductivity Material (Heat Sink) Dimensions L xW x H

Diamond Film

1mm*1mm*20μm No Heat Sink Used Graphite Film 1mm*1mm*3mm

Adhesion

Material Silver epoxy 5μm Silver epoxy 5μm Silver epoxy 5μm Board

Material L xW x H

Cu 100mm x 80 mm x3 mm

Cu 100mm x 80 mm x3 mm

Cu 100mm x 80 mm x3 mm

ITO P-electrode P-pad

N-pad P-type nitride

N-type nitride

Sapphire Substrate Active layer

(A)

ITO P-electrode P-pad

N-pad P-type nitride

N-type nitride

Sapphire Substrate Active layer

(A)

(a)

ITO P-electrode P-pad

N-pad P-type nitride

N-type nitride

Sapphire Substrate Active layer

(A)

ITO P-electrode P-pad

N-pad P-type nitride

N-type nitride

Sapphire Substrate Active layer

(A)

(a)

LED chip High thermal conductivity material

MCPCB Au wire

Ag Epoxy LED chip

High thermal conductivity material

MCPCB Au wire

Ag Epoxy

Cu plate LED chip High thermal conductivity material

MCPCB Au wire

Ag Epoxy LED chip

High thermal conductivity material

MCPCB Au wire

Ag Epoxy

Cu plate

(b)

LED chip High thermal conductivity material

MCPCB Au wire

Ag Epoxy LED chip

High thermal conductivity material

MCPCB Au wire

Ag Epoxy

Cu plate LED chip High thermal conductivity material

MCPCB Au wire

Ag Epoxy LED chip

High thermal conductivity material

MCPCB Au wire

Ag Epoxy

Cu plate

(b)

Fig. 2. Configurations of GaN LED structure: (a) conventional structure and (b) mount on high thermal conductivity material (heat sink) adhesion Cu plate.

Table 2 The experimental results for various mode structures

Type Structure Rth(℃/W)

@1W

Tj(℃)

@1W

Rth(℃/W)

@1.5W

Tj(℃)

@1.5W Mode 1 LED on

Diamond Film 19.7 42.3 17.0 45.2

Mode 2 LED 24.2 47.8 20.9 51.1

Mode 3 LED on

Graphite Film 34.0 58.9 33.1 70.7

35 45 55 65 75

LED on Diamond Film LED LED on Graphite Film Structure

Junction Temperature (℃) 1.5W

1W

(a)

10.0 20.0 30.0 40.0

LED on Diamond Film LED LED on Graphite Film Structure

Thermal Resistance (℃/W) 1W

1.5W

(b)

35 45 55 65 75

LED on Diamond Film LED LED on Graphite Film

Structure Junction Temperature () Simulation Temperature (℃) @1W

Measurement Temperature (℃) @1W

(c)

Fig 3. Measurement curves of the (a) junction temperature and (b) thermal resistance vs. different structure under various powers (1W, 1.5W) and (c) junction temperature vs. different structure in the simulation and experiment data under various powers (1W)

(20)

無研發成果推廣資料

(21)

98 年度專題研究計畫研究成果彙整表

計畫主持人:林育立 計畫編號:98-2221-E-216-008- 計畫名稱:在現有 LED 架構下製備具高反射率及高散熱率之薄膜鍍層之研究

量化

成果項目 實際已達成

數(被接受 或已發表)

預期總達成 數(含實際已

達成數)

本計畫實 際貢獻百

分比

單位

備 註 質 化 說 明:如 數 個 計 畫 共 同 成 果、成 果 列 為 該 期 刊 之 封 面 故 事 ...

期刊論文 0 0 100%

研究報告/技術報告 0 0 100%

研討會論文 1 1 100%

論文著作 篇

專書 0 0 100%

申請中件數 0 0 100%

專利 已獲得件數 0 0 100% 件

件數 0 0 100% 件

技術移轉

權利金 0 0 100% 千元

碩士生 3 3 100%

博士生 2 2 100%

博士後研究員 0 0 100%

國內

參與計畫人力

(本國籍)

專任助理 0 0 100%

人次

期刊論文 0 0 100%

研究報告/技術報告 0 0 100%

研討會論文 1 1 100%

論文著作 篇

專書 0 0 100% 章/本 申請中件數 0 0 100%

專利 已獲得件數 0 0 100% 件

件數 0 0 100% 件

技術移轉

權利金 0 0 100% 千元

碩士生 0 0 100%

博士生 0 0 100%

博士後研究員 0 0 100%

國外

參與計畫人力

(外國籍)

專任助理 0 0 100%

人次

(22)

其他成果

(

無法以量化表達之成 果如辦理學術活動、獲 得獎項、重要國際合 作、研究成果國際影響 力及其他協助產業技 術發展之具體效益事 項等,請以文字敘述填 列。)

成果項目 量化 名稱或內容性質簡述

測驗工具(含質性與量性) 0

課程/模組 0

電腦及網路系統或工具 0

教材 0

舉辦之活動/競賽 0

研討會/工作坊 0

電子報、網站 0

目 計畫成果推廣之參與(閱聽)人數 0

(23)
(24)

國科會補助專題研究計畫成果報告自評表

請就研究內容與原計畫相符程度、達成預期目標情況、研究成果之學術或應用價 值(簡要敘述成果所代表之意義、價值、影響或進一步發展之可能性) 、是否適 合在學術期刊發表或申請專利、主要發現或其他有關價值等,作一綜合評估。

1. 請就研究內容與原計畫相符程度、達成預期目標情況作一綜合評估

■達成目標

□未達成目標(請說明,以 100 字為限)

□實驗失敗

□因故實驗中斷

□其他原因 說明:

2. 研究成果在學術期刊發表或申請專利等情形:

論文:■已發表 □未發表之文稿 □撰寫中 □無 專利:□已獲得 □申請中 ■無

技轉:□已技轉 □洽談中 ■無 其他:(以 100 字為限)

3. 請依學術成就、技術創新、社會影響等方面,評估研究成果之學術或應用價 值(簡要敘述成果所代表之意義、價值、影響或進一步發展之可能性)(以 500 字為限)

LED 散熱為研究此領域重要之課題,本計畫不只按照計畫書之內容完成在現有 LED 架構下 製備具高反射率及高散熱率之薄膜鍍層,計畫結果也發表於期刊上,計畫之結果不僅可供 業界參考作為改善之依據,也可作為有興趣研究此領域之學者專家作為後續研究之依據,

本實驗室未來也會繼續在 LED 散熱持續研發,為社會國家貢獻力量。

(25)

參考文獻

相關文件

The major qualitative benefits identified include: (1) increase of the firms intellectual assets—during the process of organizational knowledge creation, all participants

This research is to integrate PID type fuzzy controller with the Dynamic Sliding Mode Control (DSMC) to make the system more robust to the dead-band as well as the hysteresis

This paper integrates the mechatronics such as: a balance with stylus probe, force actuator, LVT, LVDT, load cell, personal computer, as well as XYZ-stages into a contact-

This project integrates class storage, order batching and routing to do the best planning, and try to compare the performance of routing policy of the Particle Swarm

由於本計畫之主要目的在於依據 ITeS 傳遞模式建構 IPTV 之服務品質評估量表,並藉由決

As for current situation and characteristics of coastal area in Hisn-Chu City, the coefficients of every objective function are derived, and the objective functions of

Subsequently, the relationship study about quality management culture, quality consciousness, service behavior and two type performances (subjective performance and relative

Ogus, A.,2001, Regulatory Institutions and Structure, working paper No.4, Centre on Regulation and Competition, Institute for Development Policy and Management, University