• 沒有找到結果。

Section 13.3 Arc Length and Curvature

N/A
N/A
Protected

Academic year: 2022

Share "Section 13.3 Arc Length and Curvature"

Copied!
4
0
0

加載中.... (立即查看全文)

全文

(1)

Section 13.3 Arc Length and Curvature

SECTION 13.3 ARC LENGTH AND CURVATURE ¤ 335

13.3 Arc Length and Curvature

1.r() = h 3 cos  3 sin i ⇒ r0() = h1 −3 sin  3 cos i ⇒

|r0()| =

12+ (−3 sin )2+ (3 cos )2=

1 + 9(sin2 + cos2) =√10.

Then using Formula 3, we have  =5

−5|r0()|  =5

−5

√10  = √ 10 5

−5= 10√

10.

2.r() =

2 2133

⇒ r0() = 2 2 2

|r0()| =

22+ (2)2+ (2)2 =√

4 + 42+ 4 =

(2 + 2)2= 2 + 2for 0 ≤  ≤ 1. Then using Formula 3, we have

 =1

0 |r0()|  =1

0(2 + 2)  = 2 +1331 0=73. 3.r() =√

2  i + j+ −k ⇒ r0() =√

2 i + j− −k ⇒

|r0()| =√

22

+ ()2+ (−−)2=√

2 + 2+ −2=

(+ −)2= + − [since + − 0].

Then  =1

0 |r0()|  =1

0(+ −)  =

− −1

0=  − −1. 4.r() = cos  i + sin  j + ln cos  k ⇒ r0() = − sin  i + cos  j +− sin 

cos  k= − sin  i + cos  j − tan  k,

|r0()| =

(− sin )2+ cos2 + (− tan )2=√

1 + tan2 =√

sec2 = |sec |. Since sec   0 for 0 ≤  ≤ 4, here we can say |r0()| = sec . Then

 =4

0 sec   =

ln |sec  + tan |4

0 = lnsec4 + tan4

 − ln |sec 0 + tan 0|

= ln√2 + 1

 − ln |1 + 0| = ln(√ 2 + 1)

5.r() = i + 2j+ 3k ⇒ r0() = 2 j + 32k ⇒ |r0()| =√

42+ 94= √

4 + 92 [since  ≥ 0].

Then  =1

0 |r0()|  =1 0 √

4 + 92 = 181 ·23(4 + 92)321

0= 271(1332− 432) = 271(1332− 8).

6.r() = 2i+ 9 j + 432k ⇒ r0() = 2 i + 9 j + 6√

 k ⇒

|r0()| =√

42+ 81 + 36 =

(2 + 9)2= |2 + 9| = 2 + 9 [since 2 + 9 ≥ 0 for 1 ≤  ≤ 4]. Then

 =4

1 |r0()|  =4

1(2 + 9)  =

2+ 94

1= 52 − 10 = 42.

7.r() =

2 3 4

⇒ r0() =

2 32 43

⇒ |r0()| =

(2)2+ (32)2+ (43)2 =√

42+ 94+ 166, so

 =2

0 |r0()|  =2 0

√42+ 94+ 166 ≈ 186833.

8.r() =

 − −

⇒ r0() =

1 −− (1 − )−

|r0()| =

12+ (−−)2+ [(1 − )−]2 =

1 + −2+ (1 − )2−2=

1 + (2 − 2 + 2)−2, so

 =3

1 |r0()|  =3 1

1 + (2 + 2 + 2)−2 ≈ 20454.

° 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.c

336 ¤ CHAPTER 13 VECTOR FUNCTIONS

9. r() = hcos  2 sin 2i ⇒ r0() = h− sin  2 2 cos 2i ⇒ |r0()| =

2sin2 + 4 + 42cos22.

The point (1 0 0) corresponds to  = 0 and (1 4 0) corresponds to  = 2, so the length is

 =2

0 |r0()|  =2 0

2sin2 + 4 + 42cos22  ≈ 103311.

10. We plot two different views of the curve with parametric equations  = sin ,  = sin 2,  = sin 3. To help visualize the curve, we also include a plot showing a tube of radius 007 around the curve.

The complete curve is given by the parameter interval [0 2] and we have r0() = hcos  2 cos 2 3 cos 3i ⇒

|r0()| =√

cos2 + 4 cos22 + 9 cos23, so  =2

0 |r0()|  =2

0

√cos2 + 4 cos22 + 9 cos23  ≈ 160264.

11. The projection of the curve  onto the -plane is the curve 2= 2or  =122,  = 0. Then we can choose the parameter

 =  ⇒  = 122. Since  also lies on the surface 3 = , we have  =13 =13()(122) = 163. Then parametric equations for  are  = ,  =122,  =163and the corresponding vector equation is r() =

122163. The origin corresponds to  = 0 and the point (6 18 36) corresponds to  = 6, so

 =6

0 |r0()|  =6 0

1 122 =6 0

12+ 2+1

222

 =6 0

1 + 2+144

=6 0

(1 +122)2 =6

0(1 +122)  =

 +1636

0= 6 + 36 = 42

12. Let  be the curve of intersection. The projection of  onto the -plane is the ellipse 42+ 2= 4or 2+ 24 = 1,

 = 0. Then we can write  = cos ,  = 2 sin , 0 ≤  ≤ 2. Since  also lies on the plane  +  +  = 2, we have

 = 2 −  −  = 2 − cos  − 2 sin . Then parametric equations for  are  = cos ,  = 2 sin ,  = 2 − cos  − 2 sin , 0 ≤  ≤ 2, and the corresponding vector equation is r() = hcos  2 sin  2 − cos  − 2 sin i. Differentiating gives r0() = h− sin  2 cos  sin  − 2 cos i ⇒

|r0()| =

(− sin )2+ (2 cos )2+ (sin  − 2 cos )2=

2 sin2 + 8 cos2 − 4 sin  cos . The length of  is

 =2

0 |r0()|  =2

0

2 sin2 + 8 cos2 − 4 sin  cos   ≈ 135191.

13. (a) r() = (5 − ) i + (4 − 3) j + 3 k ⇒ r0() = −i + 4 j + 3 k and = |r0()| =√

1 + 16 + 9 =√

26. The point

 (4 1 3)corresponds to  = 1, so the arc length function from  is

° 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.c

SECTION 13.3 ARC LENGTH AND CURVATURE ¤ 337

() =

1 |r0()|  = 1

√26  = √ 26 

1=√

26 ( − 1). Since  =√

26 ( − 1), we have  = 

√26+ 1.

Substituting for  in the original equation, the reparametrization of the curve with respect to arc length is

r(()) =

 5 −

 

√26+ 1



i+

 4

 

√26+ 1

− 3

 j+ 3

 

√26+ 1

 k

=

 4 − 

√26

 i+

 4

√26+ 1

 j+

 3

√26+ 3

 k

(b) The point 4 units along the curve from  has position vector

r((4)) =

 4 − 4

√26

 i+

4(4)

√26+ 1

 j+

3(4)

√26+ 3

k, so the point is

 4 − 4

√26 16

√26+ 1 12

√26+ 3

 .

14. (a) r() = sin  i + cos  j +√

2 k ⇒ r0() = (cos  + sin ) i + (cos  − sin ) j +√

2 kand



 = |r0()| =

2(cos  + sin )2+ 2(cos  − sin )2+ 22

=

2

2(cos2 + sin2) + 2 cos  sin  − 2 cos  sin  + 2

=√

42= 2 The point 

0 1√

2corresponds to  = 0, so the arc length function from  is

() =

0 |r0()|  =

0 2 = 2|0 = 2(− 1). Since  = 2(− 1), we have = 

2+ 1 ⇔

 = ln1

2 + 1. Substituting for  in the original equation, the reparametrization of the curve with respect to arc length is r(()) =1

2 + 1 sin

ln1

2 + 1

i+1

2 + 1 cos

ln1

2 + 1

j+ 2 2  +√

2 k.

(b) The point 4 units along the curve from  has position vector r((4)) =1

2(4) + 1 sin

ln1

2(4) + 1

i+1

2(4) + 1 cos

ln1

2(4) + 1

j+ 2 2 (4) +√

2

k, so the point is

3 sin(ln 3) 3 cos(ln 3) 3√ 2.

15. Here r() = h3 sin  4 3 cos i, so r0() = h3 cos  4 −3 sin i and |r0()| =

9 cos2 + 16 + 9 sin2 =√25 = 5.

The point (0 0 3) corresponds to  = 0, so the arc length function beginning at (0 0 3) and measuring in the positive direction is given by () =

0|r0()|  =

05  = 5. () = 5 ⇒ 5 = 5 ⇒  = 1, thus your location after moving 5 units along the curve is (3 sin 1 4 3 cos 1).

16. r() =

 2

2+ 1− 1

 i+ 2

2+ 1j ⇒ r0() = −4

(2+ 1)2 i+ −22+ 2 (2+ 1)2 j,



 = |r0()| =

 −4

(2+ 1)2

2

+

−22+ 2 (2+ 1)2

2

=

44+ 82+ 4 (2+ 1)4 =

4(2+ 1)2 (2+ 1)4 =

 4

(2+ 1)2 = 2

2+ 1. Since the initial point (1 0) corresponds to  = 0, the arc length function is

() =

0

r0()  = 0

2

2+ 1 = 2 arctan . Then arctan  = 12 ⇒  = tan12. Substituting, we have

° 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.c

338 ¤ CHAPTER 13 VECTOR FUNCTIONS

r(()) =

 2

tan21

2 + 1− 1

i+ 2 tan1 2 tan21

2

+ 1j=1 − tan21 2 1 + tan21

2 i +2 tan1 2 sec21

2 j

=1 − tan21

2 sec21

2 i+ 2 tan1

2 cos21

2 j=

cos21

2

− sin21

2

i+ 2 sin1

2 cos1

2

j= cos  i + sin  j With this parametrization, we recognize the function as representing the unit circle. Note here that the curve approaches, but does not include, the point (−1 0), since cos  = −1 for  =  + 2 ( an integer) but then  = tan1

2is undefined.

17. (a) r() = h 3 cos  3 sin i ⇒ r0() = h1 −3 sin  3 cos i ⇒ |r0()| =

1 + 9 sin2 + 9 cos2 =√ 10.

Then T() = r0()

|r0()| = 110h1 −3 sin  3 cos i or

1

10 −310sin 310cos  .

T0() = 1

10h0 −3 cos  −3 sin i ⇒ |T0()| = 110

0 + 9 cos2 + 9 sin2 = 3 10. Thus N() = T0()

|T0()| =1√ 10 3√

10h0 −3 cos  −3 sin i = h0 − cos  − sin i.

(b) () = |T0()|

|r0()| = 3√

√ 10 10 = 3

10 18. (a) r() =

2 sin  −  cos  cos  +  sin 

r0() = h2 cos  +  sin  − cos , −sin  +  cos  + sin i = h2  sin   cos i ⇒

|r0()| =

42+ 2sin2 + 2cos2 =

42+ 2(cos2 + sin2) =√ 52=√

5  [since   0]. Then T() = r0()

|r0()| = 1

√5 h2  sin   cos i = 15h2 sin  cos i. T0() = 1

5h0 cos  − sin i ⇒

|T0()| = 15

0 + cos2 + sin2 = 1

5. Thus N() = T0()

|T0()|= 1√ 5 1√

5 h0 cos  − sin i = h0 cos  − sin i.

(b) () = |T0()|

|r0()| = 1√

√ 5 5  = 1

5

19. (a) r() =√

2   −

⇒ r0() =√

2  −−

⇒ |r0()| =√

2 + 2+ −2=

(+ −)2= + −. Then

T() = r0()

|r0()|= 1

+ −

√2  −−

= 1

2+ 1

√2  2 −1 

after multiplying by

 and

T0() = 1

2+ 1

√2  22 0

− 22

(2+ 1)2

√2  2 −1

= 1

(2+ 1)2

(2+ 1)√

2  22 0

− 22√

2  2 −1

= 1

(2+ 1)2

√2  1 − 2

 22 22 Then

|T0()| = 1 (2+ 1)2

22(1 − 22+ 4) + 44+ 44= 1 (2+ 1)2

22(1 + 22+ 4)

= 1

(2+ 1)2

22(1 + 2)2=

√2 (1 + 2) (2+ 1)2 =

√2 

2+ 1

° 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.c

1

(2)

338 ¤ CHAPTER 13 VECTOR FUNCTIONS

r(()) =

 2

tan21

2 + 1− 1

i+ 2 tan1

2 tan21

2

+ 1j=1 − tan21

2 1 + tan21

2 i +2 tan1

2 sec21

2 j

=1 − tan21

2 sec21

2 i+ 2 tan1

2 cos21

2 j=

cos21

2

− sin21

2

i+ 2 sin1

2 cos1

2

j= cos  i + sin  j With this parametrization, we recognize the function as representing the unit circle. Note here that the curve approaches, but does not include, the point (−1 0), since cos  = −1 for  =  + 2 ( an integer) but then  = tan1

2is undefined.

17. (a) r() = h 3 cos  3 sin i ⇒ r0() = h1 −3 sin  3 cos i ⇒ |r0()| =

1 + 9 sin2 + 9 cos2 =√ 10.

Then T() = r0()

|r0()| = 110h1 −3 sin  3 cos i or

1

10 −310sin 310cos  .

T0() = 1

10h0 −3 cos  −3 sin i ⇒ |T0()| = 110

0 + 9 cos2 + 9 sin2 = 3 10. Thus N() = T0()

|T0()| =1√ 10 3√

10h0 −3 cos  −3 sin i = h0 − cos  − sin i.

(b) () = |T0()|

|r0()| = 3√

√ 10 10 = 3

10 18. (a) r() =

2 sin  −  cos  cos  +  sin 

r0() = h2 cos  +  sin  − cos , −sin  +  cos  + sin i = h2  sin   cos i ⇒

|r0()| =

42+ 2sin2 + 2cos2 =

42+ 2(cos2 + sin2) =√ 52=√

5  [since   0]. Then T() = r0()

|r0()| = 1

√5 h2  sin   cos i = 15h2 sin  cos i. T0() = 1

5h0 cos  − sin i ⇒

|T0()| = 15

0 + cos2 + sin2 = 1

5. Thus N() = T0()

|T0()|= 1√ 5 1√

5 h0 cos  − sin i = h0 cos  − sin i.

(b) () = |T0()|

|r0()| = 1√

√ 5 5  = 1

5

19. (a) r() =√

2   −

⇒ r0() =√

2  −−

⇒ |r0()| =√

2 + 2+ −2=

(+ −)2= + −. Then

T() = r0()

|r0()|= 1

+ −

√2  −−

= 1

2+ 1

√2  2 −1 

after multiplying by

 and

T0() = 1

2+ 1

√2  22 0

− 22

(2+ 1)2

√2  2 −1

= 1

(2+ 1)2

(2+ 1)√

2  22 0

− 22√

2  2 −1

= 1

(2+ 1)2

√2  1 − 2

 22 22 Then

|T0()| = 1 (2+ 1)2

22(1 − 22+ 4) + 44+ 44= 1 (2+ 1)2

22(1 + 22+ 4)

= 1

(2+ 1)2

22(1 + 2)2=

√2 (1 + 2) (2+ 1)2 =

√2 

2+ 1

° 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.c

SECTION 13.3 ARC LENGTH AND CURVATURE ¤ 339

Therefore

N() = T0()

|T0()|=2+ 1

√2  1 (2+ 1)2

√2 (1 − 2) 22 22

= 1

√2 (2+ 1)

√2 (1 − 2) 22 22

= 1

2+ 1

1 − 2√ 2 √

2 

(b) () = |T0()|

|r0()| =

√2 

2+ 1· 1

+ − =

√2 

3+ 2+ − =

√2 2

4+ 22+ 1=

√2 2

(2+ 1)2 20. (a) r() =

122 2

⇒ r0() = h1  2i ⇒ |r0()| =√

1 + 2+ 42 =√

1 + 52. Then

T() = r0()

|r0()|= 1

√1 + 52 h1  2i.

T0() = −5

(1 + 52)32 h1  2i + 1

√1 + 52 h0 1 2i [by Formula 3 of Theorem 13.2.3]

= 1

(1 + 52)32

−5 −52 −102 +

0 1 + 52 2 + 102

= 1

(1 + 52)32 h−5 1 2i

|T0()| = 1 (1 + 52)32

√252+ 1 + 4 = 1 (1 + 52)32

√252+ 5 =

√5√ 52+ 1 (1 + 52)32 =

√5 1 + 52 Thus N() = T0()

|T0()| =1 + 52

√5 · 1

(1 + 52)32 h−5 1 2i = 1

√5 + 252 h−5 1 2i.

(b) () = |T0()|

|r0()| =

√5(1 + 52)

√1 + 52 =

√5 (1 + 52)32

21. r() = 3j+ 2k ⇒ r0() = 32j+ 2 k, r00() = 6 j + 2 k, |r0()| =

02+ (32)2+ (2)2=√

94+ 42,

r0() × r00() = −62i, |r0() × r00()| = 62. Then () = |r0() × r00()|

|r0()|3 = 62

√94+ 423 = 62 (94+ 42)32.

22. r() =  i + 2j+ k ⇒ r0() = i + 2 j + k, r00() = 2 j + k,

|r0()| =

12+ (2)2+ ()2=√

1 + 42+ 2, r0() × r00() = (2 − 2)i− j+ 2 k,

|r0() × r00()| =

[(2 − 2)]2+ (−)2+ 22=

(2 − 2)22+ 2+ 4 =

(42− 8 + 5)2+ 4.

Then () = |r0() × r00()|

|r0()|3 =

(42− 8 + 5)2+ 4

√1 + 42+ 23 =

(42− 8 + 5)2+ 4 (1 + 42+ 2)32 . 23. r() =√

6 2i+ 2 j + 23k ⇒ r0() = 2√

6  i + 2 j + 62k, r00() = 2√6 i + 12 k,

|r0()| =√

242+ 4 + 364=

4(94+ 62+ 1) =

4(32+ 1)2 = 2(32+ 1), r0() × r00() = 24 i − 12√

6 2j− 4√ 6 k,

|r0() × r00()| =√

5762+ 8644+ 96 =

96(94+ 62+ 1) =

96(32+ 1)2= 4√

6 (32+ 1).

Then () = |r0() × r00()|

|r0()|3 =4√

6 (32+ 1) 8(32+ 1)3 =

√6 2(32+ 1)2.

° 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.c

SECTION 13.3 ARC LENGTH AND CURVATURE ¤ 339

Therefore

N() = T0()

|T0()|=2+ 1

√2  1 (2+ 1)2

√2 (1 − 2) 22 22

= 1

√2 (2+ 1)

√2 (1 − 2) 22 22

= 1

2+ 1

1 − 2√ 2 √

2 

(b) () = |T0()|

|r0()| =

√2 

2+ 1· 1

+ − =

√2 

3+ 2+ − =

√2 2

4+ 22+ 1=

√2 2

(2+ 1)2 20. (a) r() =

122 2

⇒ r0() = h1  2i ⇒ |r0()| =√

1 + 2+ 42 =√

1 + 52. Then

T() = r0()

|r0()|= 1

√1 + 52 h1  2i.

T0() = −5

(1 + 52)32 h1  2i + 1

√1 + 52 h0 1 2i [by Formula 3 of Theorem 13.2.3]

= 1

(1 + 52)32

−5 −52 −102 +

0 1 + 52 2 + 102

= 1

(1 + 52)32 h−5 1 2i

|T0()| = 1 (1 + 52)32

√252+ 1 + 4 = 1 (1 + 52)32

√252+ 5 =

√5√ 52+ 1 (1 + 52)32 =

√5 1 + 52 Thus N() = T0()

|T0()| =1 + 52

√5 · 1

(1 + 52)32 h−5 1 2i = 1

√5 + 252 h−5 1 2i.

(b) () = |T0()|

|r0()| =

√5(1 + 52)

√1 + 52 =

√5 (1 + 52)32

21. r() = 3j+ 2k ⇒ r0() = 32j+ 2 k, r00() = 6 j + 2 k, |r0()| =

02+ (32)2+ (2)2=√

94+ 42,

r0() × r00() = −62i, |r0() × r00()| = 62. Then () = |r0() × r00()|

|r0()|3 = 62

√94+ 423 = 62 (94+ 42)32.

22. r() =  i + 2j+ k ⇒ r0() = i + 2 j + k, r00() = 2 j + k,

|r0()| =

12+ (2)2+ ()2=√

1 + 42+ 2, r0() × r00() = (2 − 2)i− j+ 2 k,

|r0() × r00()| =

[(2 − 2)]2+ (−)2+ 22=

(2 − 2)22+ 2+ 4 =

(42− 8 + 5)2+ 4.

Then () = |r0() × r00()|

|r0()|3 =

(42− 8 + 5)2+ 4

√1 + 42+ 23 =

(42− 8 + 5)2+ 4 (1 + 42+ 2)32 .

23. r() =√

6 2i+ 2 j + 23k ⇒ r0() = 2√

6  i + 2 j + 62k, r00() = 2√

6 i + 12 k,

|r0()| =√

242+ 4 + 364=

4(94+ 62+ 1) =

4(32+ 1)2 = 2(32+ 1), r0() × r00() = 24 i − 12√

6 2j− 4√ 6 k,

|r0() × r00()| =√

5762+ 8644+ 96 =

96(94+ 62+ 1) =

96(32+ 1)2= 4√

6 (32+ 1).

Then () = |r0() × r00()|

|r0()|3 =4√

6 (32+ 1) 8(32+ 1)3 =

√6 2(32+ 1)2.

° 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.c

SECTION 13.3 ARC LENGTH AND CURVATURE ¤ 341

and 0()  0for  1

2, () attains its maximum at  =1

2. Thus, the maximum curvature occurs at

1 2 ln1

2

.

Since lim

→∞

(2+ 1)32 = 0, () approaches 0 as  → ∞.

31. Since 0= 00= , the curvature is () = |00()|

[1 + (0())2]32 = 

(1 + 2)32 = (1 + 2)−32. To find the maximum curvature, we first find the critical numbers of ():

0() = (1 + 2)−32+ 

32

(1 + 2)−52(22) = 1 + 2− 32

(1 + 2)52 =  1 − 22

(1 + 2)52.

0() = 0when 1 − 22= 0, so 2= 12or  = −12ln 2. And since 1 − 22 0for   −12ln 2and 1 − 22 0 for   −12ln 2, the maximum curvature is attained at the point

12ln 2 (− ln 2)2

=

12ln 21 2

.

Since lim

→∞(1 + 2)−32= 0 ()approaches 0 as  → ∞.

32. We can take the parabola as having its vertex at the origin and opening upward, so the equation is () = 2   0. Then by Equation 11, () = |00()|

[1 + (0())2]32 = |2|

[1 + (2)2]32 = 2

(1 + 422)32, thus (0) = 2. We want (0) = 4, so

 = 2and the equation is  = 22.

33. (a)  appears to be changing direction more quickly at  than , so we would expect the curvature to be greater at  . (b) First we sketch approximate osculating circles at  and . Using the

axes scale as a guide, we measure the radius of the osculating circle at  to be approximately 08 units, thus  =1

 ⇒

 =1

 ≈ 1

08≈ 13. Similarly, we estimate the radius of the osculating circle at  to be 14 units, so  =1

 ≈ 1 14 ≈ 07.

34.  = 4− 22 ⇒ 0= 43− 4, 00= 122− 4, and

() = |00|

1 + (0)232 =

122− 4

1 + (43− 4)232. The graph of the

curvature here is what we would expect. The graph of  = 4− 22 appears to be bending most sharply at the origin and near  = ±1.

35.  = −2 ⇒ 0= −2−3, 00= 6−4, and

() = |00|

1 + (0)232 =

6−4

1 + (−2−3)232 = 6

4(1 + 4−6)32.

The appearance of the two humps in this graph is perhaps a little surprising, but it is explained by the fact that  = −2increases asymptotically at the origin from both directions, and so its graph has very little bend there. [Note that (0) is undefined.]

° 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.c

SECTION 13.3 ARC LENGTH AND CURVATURE ¤ 343

38. Notice that the curve  is highest for the same -values at which curve  is turning more sharply, and  is 0 or near 0 where  is nearly straight. So,  must be the graph of  = (), and  is the graph of  = ().

39. Notice that the curve  has two inflection points at which the graph appears almost straight. We would expect the curvature to be 0 or nearly 0 at these values, but the curve  isn’t near 0 there. Thus,  must be the graph of  = () rather than the graph of curvature, and  is the graph of  = ().

40. (a) The complete curve is given by 0 ≤  ≤ 2. Curvature appears to have a local (or absolute) maximum at 6 points. (Look at points where the curve appears to turn more sharply.)

(b) Using a CAS, we find (after simplifying)

() = 3√ 2

(5 sin  + sin 5)2

(9 cos 6 + 2 cos 4 + 11)32. (To compute cross products in Maple, use the VectorCalculus or LinearAlgebra package and the

CrossProduct(a,b) command; in Mathematica, use Cross[a,b].) The graph shows 6 local (or absolute) maximum points for 0 ≤  ≤ 2, as observed in part (a).

41. Using a CAS, we find (after simplifying)

() = 6√

4 cos2 − 12 cos  + 13

(17 − 12 cos )32 . (To compute cross products in Maple, use the VectorCalculus or

LinearAlgebra package and the CrossProduct(a,b) command; in Mathematica, use Cross[a,b].) Curvature is largest at integer multiples of 2.

42. Here r() = h()  ()i, r0() = h0() 0()i, r00() = h00() 00()i,

|r0()|3=

(0())2+ (0())23

= [(0())2+ (0())2]32= ( ˙2+ ˙2)32, and

|r0() × r00()| = |h0 0 0() 00() − 00() 0()i| =

( ˙¨ − ¨ ˙)212

= | ˙¨ − ˙¨|. Thus () = | ˙¨ − ˙¨|

[ ˙2+ ˙2]32. 43.  = 2 ⇒ ˙ = 2 ⇒ ¨ = 2,  = 3 ⇒  = 3˙ 2 ⇒ ¨ = 6.

Then () = |¨˙ − ˙¨|

[ ˙2+ ˙2]32 =

(2)(6) − (32)(2) [(2)2+ (32)2]32 =

122− 62

(42+ 94)32 = 62 (42+ 94)32.

° 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.c

344 ¤ CHAPTER 13 VECTOR FUNCTIONS

44.  =  cos  ⇒ ˙ = − sin  ⇒ ¨ = −2cos ,

 =  sin  ⇒  =  cos ˙ ⇒ ¨ = −2sin . Then

() = | ˙¨ − ˙¨|

[ ˙2+ ˙2]32 =

(− sin )(−2sin ) − ( cos )(−2cos ) [(− sin )2+ ( cos )2]32

=

3sin2 + 3cos2 (22sin2 + 22cos2)32 =

3

(22sin2 + 22cos2)32

45.  = cos  ⇒ ˙ = (cos  − sin ) ⇒ ¨ = (− sin  − cos ) + (cos  − sin ) = −2sin ,

 = sin  ⇒  = ˙ (cos  + sin ) ⇒ ¨ = (− sin  + cos ) + (cos  + sin ) = 2cos . Then

() = | ˙¨ − ˙¨|

[ ˙2+ ˙2]32 =

(cos  − sin )(2cos ) − (cos  + sin )(−2sin ) ([(cos  − sin )]2+ [(cos  + sin )]2)32

=

22(cos2 − sin  cos  + sin  cos  + sin2)

2(cos2 − 2 cos  sin  + sin2 + cos2 + 2 cos  sin  + sin2)32 =

22(1)

[2(1 + 1)]32 = 22

3(2)32 = 1

√2 

46.  () = , 0() = , 00() = 2. Using Formula 11 we have

() = |00()|

[1 + (0())2]32 =

2

[1 + ()2]32 = 2

(1 + 22)32 so the curvature at  = 0 is

(0) = 2

(1 + 2)32. To determine the maximum value for (0), let () = 2

(1 + 2)32. Then

0() = 2 · (1 + 2)32− 2·32(1 + 2)12(2)

[(1 + 2)32]2 =(1 + 2)12

2(1 + 2) − 33 (1 + 2)3 =

2 − 3

(1 + 2)52. We have a critical number when 2 − 3= 0 ⇒ (2 − 2) = 0 ⇒  = 0 or  = ±√2. 0()is positive for   −√2, 0   √ 2 and negative elsewhere, so  achieves its maximum value when  =√

2or −√

2. In either case, (0) = 2

332, so the members of the family with the largest value of (0) are () = 2and () = 2.

47.

123 1corresponds to  = 1. T() = r0()

|r0()|=

2 22 1

√42+ 44+ 1 =

2 22 1

22+ 1 , so T(1) =2

32313. T0() = −4(22+ 1)−2

2 22 1

+ (22+ 1)−1h2 4 0i [by Formula 3 of Theorem 13.2.3]

= (22+ 1)−2

−82+ 42+ 2 −83+ 83+ 4 −4

= 2(22+ 1)−2

1 − 22 2 −2

N() = T0()

|T0()|= 2(22+ 1)−2

1 − 22 2 −2 2(22+ 1)−2

(1 − 22)2+ (2)2+ (−2)2 =

1 − 22 2 −2

√1 − 42+ 44+ 82 =

1 − 22 2 −2 1 + 22 N(1) =

1323 −23

and B(1) = T(1) × N(1) =

4929 −

49+19

49 +29

=

231323.

48. (1 0 0)corresponds to  = 0. r() = hcos  sin  ln cos i, and in Exercise 4 we found that r0() = h− sin  cos  − tan i and |r0()| = |sec |. Here we can assume −2    2 and then sec   0 ⇒ |r0()| = sec .

° 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.c

2

參考文獻

相關文件

[r]

(a)  is the rate at which the percentage of the city’s electrical power produced by solar panels changes with respect to time , measured in percentage points per year..

(b) 0 = IV, since from left to right, the slopes of the tangents to graph (b) start out at a fixed positive quantity, then suddenly become negative, then positive again..

(b)- IV, since from left to right, the slopes of the tangents to graph (b) start out at a fixed positive quantity, then suddenly become negative, then

[r]

Find all critical points of f in D and classify them (as local maximum points, local minimum points, or saddle points)... (12 pts) A pentagon is formed by placing an isosceles

CrossProduct(a,b) command; in Mathematica, use Cross[a,b].) The graph shows 6 local (or absolute) maximum points for 0 ≤  ≤ 2, as observed in part

To find the osculating plane, we first calculate the unit tangent and normal vectors.. In Maple, we use the VectorCalculus package and set