• 沒有找到結果。

Keh-Ming Shyue

N/A
N/A
Protected

Academic year: 2022

Share "Keh-Ming Shyue"

Copied!
165
0
0

加載中.... (立即查看全文)

全文

(1)

Towards

a Unified Coordinate Method for

Compressible Multifluid Flows

Keh-Ming Shyue

Department of Mathematics National Taiwan University

Taiwan

(2)

Outline

Motivation

Inviscid compressible flow model

Generalized coordinates Euler equations Grid movement conditions

Equations of state

Transport eqs. for multifluid problems Finite volume numerical method

Godunov-type f -wave formulation of LeVeque et al.

Numerical examples

Future direction

(3)

Motivation

Some basic facts

Lagrangian method resolve material or slip lines sharply if no grid tangling

Generalized curvilinear grid is often superior to

Cartesian when employed in numerical methods for

complex fixed or moving geometries

(4)

Motivation

Some basic facts

Lagrangian method resolve material or slip lines sharply if no grid tangling

Generalized curvilinear grid is often superior to

Cartesian when employed in numerical methods for complex fixed or moving geometries

Some examples done by Cartesian-based method Falling liquid drop problem

Shock-bubble interaction

Flying Aluminum-plate problem

Falling rigid object in water tank

(5)

Motivation

Some basic facts

Lagrangian method resolve material or slip lines sharply if no grid tangling

Generalized curvilinear grid is often superior to

Cartesian when employed in numerical methods for complex fixed or moving geometries

Some examples done by Cartesian-based method Falling liquid drop problem

Shock-bubble interaction

Flying Aluminum-plate problem

Falling rigid object in water tank

(6)

Falling Liquid Drop Problem

Interface capturing with gravity

100 200 300 400 500 600 700 800 900 1000

air

t = 0

(7)

Falling Liquid Drop Problem

100 200 300 400 500 600 700 800 900 1000

air

t = 0.2s

(8)

Falling Liquid Drop Problem

Interface diffused badily

100 200 300 400 500 600 700 800 900

air

t = 0.4s

(9)

Falling Liquid Drop Problem

100 200 300 400 500 600 700 800 900

air

t = 0.6s

(10)

Falling Liquid Drop Problem

100 200 300 400 500 600 700 800 900

air

t = 0.8s

(11)

Falling Liquid Drop Problem

100 200 300 400 500 600 700 800 900

air

t = 1s

(12)

Shock-Bubble Interaction

Volume tracking for material interface

(13)

Shock-Bubble Interaction

(14)

Shock-Bubble Interaction

(15)

Shock-Bubble Interaction

(16)

Shock-Bubble Interaction

(17)

Shock-Bubble Interaction

(18)

Shock-Bubble Interaction

(19)

Shock-Bubble Interaction

(20)

Shock-Bubble Interaction

(21)

Shock-Bubble Interaction

Small moving irregular cells: stability & accuracy

(22)

Flying Aluminum-plate problem

Vacuum-Al interface tracking

0 1 2 3

−2

−1 0 1 2

Density

Al target Al flyer

vacuum

0 1 2 3

−2

−1 0 1 2

Pressure

0 1 2 3

−2

−1 0 1 2

Volume fraction

t = 0µs

(23)

Flying Aluminum-plate problem

0 1 2 3

−2

−1 0 1 2

Density

Al target Al flyer

vacuum

0 1 2 3

−2

−1 0 1 2

Pressure

0 1 2 3

−2

−1 0 1 2

Volume fraction

t = 0.5µs

(24)

Flying Aluminum-plate problem

0 1 2 3

−2

−1 0 1 2

Density

Al target Al flyer

vacuum

0 1 2 3

−2

−1 0 1 2

Pressure

0 1 2 3

−2

−1 0 1 2

Volume fraction

t = 1µs

(25)

Flying Aluminum-plate problem

0 1 2 3

−2

−1 0 1 2

Density

Al target Al flyer

vacuum

0 1 2 3

−2

−1 0 1 2

Pressure

0 1 2 3

−2

−1 0 1 2

Volume fraction

t = 2µs

(26)

Flying Aluminum-plate problem

Small moving irregular cells: stability & accuracy

0 1 2 3

−2

−1 0 1 2

Density

Al target Al flyer

vacuum

0 1 2 3

−2

−1 0 1 2

Pressure

0 1 2 3

−2

−1 0 1 2

Volume fraction

t = 4µs

(27)

Falling Rigid Object in Water Tank

Moving boundary tracking & interface capturing

−2 0 2

−3

−2

−1 0 1 2 3

−2 0 2

−3

−2

−1 0 1 2 3

−2 0 2

−3

−2

−1 0 1 2 3

Density Pressure Volume fraction

air

water

t = 0ms

(28)

Falling Rigid Object in Water Tank

−2 0 2

−3

−2

−1 0 1 2 3

−2 0 2

−3

−2

−1 0 1 2 3

−2 0 2

−3

−2

−1 0 1 2 3

Density Pressure Volume fraction

air

water

t = 1ms

(29)

Falling Rigid Object in Water Tank

−2 0 2

−3

−2

−1 0 1 2 3

−2 0 2

−3

−2

−1 0 1 2 3

−2 0 2

−3

−2

−1 0 1 2 3

Density Pressure Volume fraction

air

water

t = 2ms

(30)

Falling Rigid Object in Water Tank

Small moving irregular cells: stability & accuracy

−2 0 2

−3

−2

−1 0 1 2 3

−2 0 2

−3

−2

−1 0 1 2 3

−2 0 2

−3

−2

−1 0 1 2 3

Density Pressure Volume fraction

air

water

t = 3ms

(31)

Euler Eqs. in Generalized Coord.

With gravity effect included, for example, 2 D compressible Euler eqs. in Cartesian coordinates take

∂q

∂t + ∂f (q)

∂x + ∂g(q)

∂y = ψ(q)

where

q =

 ρ ρu ρv E

, f (q) =

ρu ρu 2 + p

ρuv Eu + pu

, g(q) =

ρv ρuv ρv 2 + p Ev + pv

, ψ =

 0 0 ρg ρgv

ρ : density , (u, v) : vector of particle velocity

2 2

(32)

Euler in General. Coord. (Cont.)

Introduce transformation (t, x, y) ↔ (τ, ξ, η) via

 dt dx dy

=

1 0 0

x τ x ξ x η y τ y ξ y η

 dτ dξ dη

or

 dτ dξ dη

=

1 0 0 ξ t ξ x ξ y η t η x η y

 dt dx dy

Basic grid-metric relations:

1 0 0 ξ t ξ x ξ y η t η x η y

=

1 0 0

x τ x ξ x η y τ y ξ y η

−1

= 1 J

x ξ y η − x η y ξ 0 0

−x τ y η + y τ x η y η −y ξ x τ y ξ − y τ x ξ −x η x ξ

J = x ξ y η − x η y ξ : grid Jacobian

(33)

Euler in General. Coord. (Cont.)

With these notations, Euler eqs. in generalized coord. are

∂ ˜ q

∂τ + ∂ ˜ f

∂ξ + ∂˜ g

∂η = ˜ ψ

where

˜

q = J

 ρ ρu ρv E

, ˜ f = J

ρU

ρuU + ξ x p ρvU + ξ y p EU + pU − ξ t p

, ˜ g = J

ρV

ρuV + η x p ρvV + η y p E V + pV − η t p

, ˜ ψ = J

 0 0 ρg ρgv

with contravariant velocities U & V defined by

(34)

Euler in General. Coord. (Cont.)

Model system in quasi-linear form

∂ ˜ q

∂τ + A ∂ ˜ q

∂ξ + B ∂ ˜ q

∂η = ˜ ψ

A = ∂ ˜ f

∂ ˜ q =

ξ t ξ x ξ y 0

ξ x p ρ − uU ξ x u(1 − p E ) + U ξ y u − ξ x vp E ξ x p E ξ y p ρ − vU ξ x v − ξ y up E ξ y v(1 − p E ) + U ξ y p E (p ρ − H)U ξ x H − uU p E ξ y H − vU p E U + p E U

B = ∂˜ g

∂ ˜ q =

η t η x η y 0

η x p ρ − uV η x u(1 − p E ) + V η y u − η x vp E η x p E η y p ρ − vV η x v − η y up E η y v(1 − p E ) + V η y p E (p ρ − H)V η x H − uV p E η y H − vV p E V + p E V

with H = (E + p)/ρ, U = U − ξ t = ξ x u + ξ y v, V = V − η t = η x u + η y v

(35)

Euler in General. Coord. (Cont.)

Eigen-structure of matrix A is

Λ A = diag 

U − c q

ξ x 2 + ξ y 2 , U, U, U + c q

ξ x 2 + ξ y 2 

R A =

1 1 0 1

u − α 1 c u α 2 u + α 1 c v − α 2 c v −α 1 v + α 2 c H − U 1 c H − c 2 /p E −U 2 H + U 1 c

L A =

(p ρ + cU 1 )/2c 2 −(α 1 c + up E )/2c 2 −(α 2 c + vp E )/2c 2 p E /2c 2 1 − p ρ /c 2 up E /c 2 vp E /c 2 −p E /c 2

U 2 α 2 −α 1 0

(p ρ − cU 1 )/2c 21 c − up E )/2c 22 c − vp E )/2c 2 p E /2c 2

(36)

Euler in General. Coord. (Cont.)

Eigen-structure of matrix B is

Λ B = diag 

V − c q

η x 2 + η y 2 , V, V, V + c q

η x 2 + η y 2 

R B =

1 1 0 1

u − β 1 c u β 2 u + β 1 c v − β 2 c v −β 1 v + β 2 c H − V 1 c H − c 2 /p E −V 2 H + V 1 c

L B =

(p ρ + cV 1 )/2c 2 −(β 1 c + up E )/2c 2 −(β 2 c + vp E )/2c 2 p E /2c 2 1 − p ρ /c 2 up E /c 2 vp E /c 2 −p E /c 2

V 2 β 2 −β 1 0

(p ρ − cV 1 )/2c 21 c − up E )/2c 22 c − vp E )/2c 2 p E /2c 2

with (β 1 , β 2 ) = (η x , η y )/ q

η x 2 + η y 2 , V 1 = β 1 u + β 2 v, V 2 = −β 2 u + β 1 v

(37)

Grid Movement Conditions

Continuity on mixed derivatives of grid coordinates gives geometrical conservation laws

∂τ

 x ξ

y ξ x η y η

+ ∂

∂ξ

−x τ

−y τ 0 0

+ ∂

∂η

 0 0

−x τ

−y τ

= 0

with (x τ , y τ ) to be specified as, for example, Eulerian case: (x τ , y τ ) = ~0

Lagrangian case: (x τ , y τ ) = (u, v)

(38)

Grid Movement (Cont.)

General 1 -parameter case: (x τ , y τ ) = h(u, v) , h ∈ [0, 1]

At given time instance, h can be chosen based on

Grid-angle preserving condition (Hui et al. JCP 1999)

∂τ cos −1  ∇ξ

|∇ξ| · ∇η

|∇η|



= ∂

∂τ cos −1

−y η x η − y ξ x ξ q y ξ 2 + y η 2 q

x 2 ξ + x 2 η

= · · ·

= Ah ξ + Bh η + Ch = 0 (1st order PDE )

with

A = q

x 2 η + y η 2 (vx ξ − uy ξ ) , B = q

x 2 ξ + y ξ 2 (uy η − vx η ) C = q

x 2 ξ + y ξ 2 (u η y η − v η x η ) − q

x 2 η + y η 2 (u ξ y ξ − v ξ x ξ )

(39)

Grid Movement (Cont.)

General 1 -parameter case: (x τ , y τ ) = h(u, v) , h ∈ [0, 1]

Or alternatively, based on

Mesh-area preserving condition

∂J

∂τ = ∂

∂τ (x ξ y η − x η y ξ )

= x ξτ y η + x ξ y ητ − x ητ y ξ − x η y ξτ

= · · ·

= Ah ξ + Bh η + Ch = 0 (1st order PDE )

with

(40)

Grid Movement (Cont.)

To ensure h ∈ [0, 1] , transformed variable ˜h = κ(h) is used,

e.g. , Hui et al. employed κ = ln (εh|~u|) , ε normalized constant, yielding

A˜ ˜ h ξ + ˜ B˜ h η + ˜ C = 0

Grid-angle preserving case

A = ˜ q

x 2 η + y η 2 (x ξ sin θ − y ξ cos θ) , B = ˜ q

x 2 ξ + y ξ 2 (y η cos θ − x η sin θ) C = ˜ q

x 2 ξ + y ξ 2 [y η (cos θ) η − x η (sin θ) η ] − q

x 2 η + y η 2 [y ξ (cos θ) ξ − x ξ (sin θ) ξ ]

Mesh-area preserving case

A = y ˜ η cos θ − x η sin θ, B = x ˜ ξ sin θ − y ξ cos θ

C = y ˜ η (cos θ) ξ − x η (sin θ) ξ + x ξ (sin θ) η − y ξ (cos θ) η

where ~u = (u, v) = |~u|(cos θ, sin θ)

(41)

Grid Movement: Remarks

Numerics: h - or ˜h -equation constraint geometrical laws

∂τ

 x ξ y ξ x η y η

− ∂

∂ξ

 hu hv 0 0

− ∂

∂η

 0 0 hu hv

= 0

Usability: Mesh-area evolution equation

∂J

∂τ − ∂

∂ξ [h (uy η − vx η )] − ∂

∂η [h (vx ξ − uy ξ )] = 0

Initial & boundary conditions for h - or ˜h -equation ?

(42)

Grid Movement: 2 Free Degrees

2 -parameter case of Hui et al. (2005): (x τ , y τ ) = (U g , V g ) Imposed conditions

1. Grid-angle preserving

2. Specialized grid-material line matching (see next)

(43)

Grid Movement: 2 Free Degrees

2 -parameter case of Hui et al. (2005): (x τ , y τ ) = (U g , V g ) Imposed conditions

1. Grid-angle preserving

2. Specialized grid-material line matching (see next)

Good results are shown for steady-state problems

(44)

Grid Movement: 2 Free Degrees

2 -parameter case of Hui et al. (2005): (x τ , y τ ) = (U g , V g ) Imposed conditions

1. Grid-angle preserving

2. Specialized grid-material line matching (see next)

Good results are shown for steady-state problems

Little results for time-dependent problems with rapid

transient solution structures

(45)

Grid Movement: 2 Free Degrees

2 -parameter case of Hui et al. (2005): (x τ , y τ ) = (U g , V g ) Imposed conditions

1. Grid-angle preserving

2. Specialized grid-material line matching (see next) Good results are shown for steady-state problems Little results for time-dependent problems with rapid transient solution structures

Other 2 -parameter case: (x τ , y τ ) = (hu, k v)

Novel imposed conditions for h ∈ [0, 1] & k ∈ [0, 1] ?

(46)

Grid Movement: 2 Free Degrees

2 -parameter case of Hui et al. (2005): (x τ , y τ ) = (U g , V g ) Imposed conditions

1. Grid-angle preserving

2. Specialized grid-material line matching (see next) Good results are shown for steady-state problems Little results for time-dependent problems with rapid transient solution structures

Other 2 -parameter case: (x τ , y τ ) = (hu, k v)

Novel imposed conditions for h ∈ [0, 1] & k ∈ [0, 1] ? Roadmap of current work:

(x τ , y τ ) = h 0 (u, v) → (x τ , y τ ) = h(u, v) → · · ·

(47)

Novel Conditions for h & k

Mesh-area preserving case

∂J

∂τ = ∂

∂τ (x ξ y η − x η y ξ )

= x ξτ y η + x ξ y ητ − x ητ y ξ − x η y ξτ

= · · ·

= (A 1 h ξ + B 1 h η + C 1 h) + (A 2 k ξ + B 2 k η + C 2 k) = 0, yielding, for example,

A 1 h ξ + B 1 h η + C 1 h = 0 A 2 k ξ + B 2 k η + C 2 k = 0 with

A = uy , B = uy , C = u y − u y

(48)

Single-Fluid Model

With (x τ , y τ ) = h 0 (u, v) , our model system for single-phase flow reads

∂τ

 Jρ Jρu Jρv JE

x ξ y ξ x η y η

+ ∂

∂ξ

JρU

JρuU + y η p JρvU − x η p

JE U + (y η u − x η v)p

−h 0 u

−h 0 v 0 0

+ ∂

∂η

JρV

JρuV − y ξ p Jρv V + x ξ p

JEV + (x ξ v − y ξ u)p 0

0

−h 0 u

−h 0 v

= ˜ ψ

where U = (1 − h 0 )(y η u − x η v) & V = (1 − h 0 )(x ξ v − y ξ u)

(49)

Single-Fluid Model: Remarks

Hyperbolicity (under thermodyn. stability cond.)

In Cartesian coordinates, model is hyperbolic

(50)

Single-Fluid Model: Remarks

Hyperbolicity (under thermodyn. stability cond.) In Cartesian coordinates, model is hyperbolic

In generalized-moving coord., model is hyperbolic

when h 0 6= 1 , & is weakly hyperbolic when h 0 = 1

(51)

Single-Fluid Model: Remarks

Hyperbolicity (under thermodyn. stability cond.) In Cartesian coordinates, model is hyperbolic

In generalized-moving coord., model is hyperbolic when h 0 6= 1 , & is weakly hyperbolic when h 0 = 1 Canonical form

In Cartesian coordinates

∂q

∂t + ∂f (q)

∂x + ∂g(q)

∂y = ψ(q) In generalized coordinates

∂q ∂f (q, Ξ) ∂g(q, Ξ)

(52)

Single-Fluid Model: Remarks

Hyperbolicity (under thermodyn. stability cond.) In Cartesian coordinates, model is hyperbolic

In generalized-moving coord., model is hyperbolic when h 0 6= 1 , & is weakly hyperbolic when h 0 = 1 Canonical form

In Cartesian coordinates

∂q

∂t + ∂f (q)

∂x + ∂g(q)

∂y = ψ(q)

In generalized coordinates : spatially varying fluxes

∂q

∂τ + ∂ f (q, Ξ)

∂ξ + ∂ g(q, Ξ)

∂η = ψ(q), Ξ : grid metrics

(53)

Extension to Multifluid

Assume homogeneous ( 1 -pressure & 1 -velocity) flow;

i.e. , across interfaces p ι = p & ~u ι = ~u , ∀ fluid phase ι

gas

gas gas

gas

gas gas

gas

gas gas

gas

liquid

(54)

Extension to Multifluid

Assume homogeneous ( 1 -pressure & 1 -velocity) flow;

i.e. , across interfaces p ι = p & ~u ι = ~u , ∀ fluid phase ι Mathematical model: Fluid-mixture type

Use basic conservation (or balance) laws for single

& multicomponent fluid mixtures

Introduce additional transport equations for

problem-dependent material quantities near

numerically diffused interfaces, yielding direct

computation of pressure from EOS

(55)

Extension to Multifluid

Assume homogeneous ( 1 -pressure & 1 -velocity) flow;

i.e. , across interfaces p ι = p & ~u ι = ~u , ∀ fluid phase ι Mathematical model: Fluid-mixture type

Use basic conservation (or balance) laws for single

& multicomponent fluid mixtures

Introduce additional transport equations for problem-dependent material quantities near numerically diffused interfaces, yielding direct computation of pressure from EOS

Sample examples

Barotropic 2 -phase flow

(56)

Barotropic 2-Phase Flow

Equations of state

Fluid component 1 & 2 : Tait EOS

p(ρ) = (p + B ι )

 ρ ρ

 γ ι

− B ι , ι = 1, 2

(57)

Barotropic 2-Phase Flow

Equations of state

Fluid component 1 & 2 : Tait EOS

p(ρ) = (p + B ι )

 ρ ρ

 γ ι

− B ι , ι = 1, 2

Mixture pressure law (Shyue, JCP 2004)

p(ρ, ρe) =

 

 

 

 

(p + B ι )

 ρ ρ

 γ ι

− B ι if α = 0 or 1 (γ − 1)



ρe + ρB ρ 0



− γB if α ∈ (0, 1)

Here α denotes volume fraction of one chosen fluid component

(58)

Barotropic 2-Phase Flow

Equations of state

Fluid component 1 & 2 : Tait EOS

p(ρ) = (p + B ι )

 ρ ρ

 γ ι

− B ι , ι = 1, 2

Mixture pressure law (Shyue, JCP 2004)

p(ρ, ρe) =

 

 

 

 

(p + B ι )

 ρ ρ

 γ ι

− B ι if α = 0 or 1 (γ − 1)



ρe + ρB ρ 0



− γB if α ∈ (0, 1)

variant form of p(ρ, S) = A(S) (p 0 + B)  ρ ρ 0

 γ

− B

A(S) = e [(S−S 0 )/C V ] , S , C V : specific entropy & heat at constant volume

(59)

Barotropic 2-Phase Flow (Cont.)

Transport equations for material quantities γ , B , & ρ 0

γ -based equations

∂τ

 1 γ − 1



+ U ∂

∂ξ

 1 γ − 1



+ V ∂

∂η

 1 γ − 1



= 0

∂τ

 γB γ − 1



+ U ∂

∂ξ

 γB γ − 1



+ V ∂

∂η

 γB γ − 1



= 0

∂τ

 J B

ρ 0 ρ



+ ∂

∂ξ

 J B

ρ 0 ρU



+ ∂

∂η

 J B

ρ 0 ρV



= 0

(60)

Barotropic 2-Phase Flow (Cont.)

Transport equations for material quantities γ , B , & ρ 0

γ -based equations

∂τ

 1 γ − 1



+ U ∂

∂ξ

 1 γ − 1



+ V ∂

∂η

 1 γ − 1



= 0

∂τ

 γB γ − 1



+ U ∂

∂ξ

 γB γ − 1



+ V ∂

∂η

 γB γ − 1



= 0

∂τ

 J B

ρ 0 ρ



+ ∂

∂ξ

 J B

ρ 0 ρU



+ ∂

∂η

 J B

ρ 0 ρV



= 0

Above equations are derived from energy equation

& make use of homogeneous equilibrium flow

assumption together with mass conservation law

(61)

Barotropic 2-Phase Flow (Cont.)

Transport equations for material quantities γ , B , & ρ 0

γ -based equations

∂τ

 1 γ − 1



+ U ∂

∂ξ

 1 γ − 1



+ V ∂

∂η

 1 γ − 1



= 0

∂τ

 γB γ − 1



+ U ∂

∂ξ

 γB γ − 1



+ V ∂

∂η

 γB γ − 1



= 0

∂τ

 J B

ρ 0 ρ



+ ∂

∂ξ

 J B

ρ 0 ρU



+ ∂

∂η

 J B

ρ 0 ρV



= 0

If we ignore JBρ/ρ 0 term, they are essentially

equations proposed by Saurel & Abgrall (SISC

1999), but are written in generalized coord.

(62)

Barotropic 2-Phase Flow (Cont.)

Transport equations for material quantities γ , B , & ρ 0

γ -based equations

∂τ

 1 γ − 1



+ U ∂

∂ξ

 1 γ − 1



+ V ∂

∂η

 1 γ − 1



= 0

∂τ

 γB γ − 1



+ U ∂

∂ξ

 γB γ − 1



+ V ∂

∂η

 γB γ − 1



= 0

∂τ

 J B

ρ 0 ρ



+ ∂

∂ξ

 J B

ρ 0 ρU



+ ∂

∂η

 J B

ρ 0 ρV



= 0

α -based equations

∂ α

∂τ + U ∂α

∂ξ + V ∂α

∂η = 0, with z =

2

X

ι=1

α ι z ι , z = 1

γ − 1 & γB γ − 1

∂τ

 J B

ρ 0 ρ



+ ∂

∂ξ

 J B

ρ 0 ρU



+ ∂

∂η

 J B

ρ 0 ρV



= 0

(63)

Barotropic 2-Phase Flow (Cont.)

Transport equations for material quantities γ , B , & ρ 0

γ -based equations

∂τ

 1 γ − 1



+ U ∂

∂ξ

 1 γ − 1



+ V ∂

∂η

 1 γ − 1



= 0

∂τ

 γB γ − 1



+ U ∂

∂ξ

 γB γ − 1



+ V ∂

∂η

 γB γ − 1



= 0

∂τ

 J B

ρ 0 ρ



+ ∂

∂ξ

 J B

ρ 0 ρU



+ ∂

∂η

 J B

ρ 0 ρV



= 0

α -based equations (Allaire et al. , JCP 2002)

∂ α

∂τ + U ∂α

∂ξ + V ∂α

∂η = 0 with z =

2

X α ι z ι , z = 1

γ − 1 & γB

γ − 1

(64)

Barotropic 2-Phase Flow (Cont.)

Transport equations for material quantities γ , B , & ρ 0

γ -based equations

∂τ

 1 γ − 1



+ U ∂

∂ξ

 1 γ − 1



+ V ∂

∂η

 1 γ − 1



= 0

∂τ

 γB γ − 1



+ U ∂

∂ξ

 γB γ − 1



+ V ∂

∂η

 γB γ − 1



= 0

∂τ

 J B

ρ 0 ρ



+ ∂

∂ξ

 J B

ρ 0 ρU



+ ∂

∂η

 J B

ρ 0 ρV



= 0

α -based equations (Kapila et al. , Phys. Fluid 2001)

∂ α

∂τ + U ∂α

∂ξ + V ∂α

∂η = α 1 α 2 ρ 1 c 2 1 − ρ 2 c 2 2 P 2

k=1 α k ρ k c 2 k

!

∇ · ~u

· · · will not be discussed here

(65)

Barotropic & Non-Barotropic Flow

Equations of state

Fluid component 1 : Tait EOS

p(ρ) = (p 0 + B)  ρ ρ 0

 γ

− B

Fluid component 2 : Noble-Abel EOS

p(ρ, ρe) =  γ − 1 1 − bρ



ρe (0 ≤ b ≤ 1/ρ)

(66)

Barotropic & Non-Barotropic Flow

Equations of state

Fluid component 1 : Tait EOS

p(ρ) = (p 0 + B)  ρ ρ 0

 γ

− B

Fluid component 2 : Noble-Abel EOS

p(ρ, ρe) =  γ − 1 1 − bρ



ρe (0 ≤ b ≤ 1/ρ)

Mixture pressure law (Shyue, Shock Waves 2006)

p(ρ, ρe) =

 

 

 

 

(p 0 + B)  ρ ρ 0

 γ

− B if α = 1 (fluid 1)

 γ − 1 1 − bρ



(ρe − B) − B if α 6= 1

(67)

Baro. & Non-Baro. Flow (Cont.)

Equations of state

Fluid component 1 : Tait EOS

p(V ) = A(S 0 ) (p 0 + B)  V 0 V

 γ

− B, V = 1/ρ

Fluid component 2 : Noble-Abel EOS

p(V, S) = A(S)p 0  V 0 − b V − b

 γ

Mixture pressure law

p(V, S) = A(S) (p 0 + B)  V 0 − b V − b

 γ

− B

(68)

Baro. & Non-Baro. Flow (Cont.)

Equations of state

Fluid component 1 : Tait EOS

p(V ) = A(S 0 ) (p 0 + B)  V 0 V

 γ

− B, V = 1/ρ

Fluid component 2 : Noble-Abel EOS

p(V, S) = A(S)p 0  V 0 − b V − b

 γ

Mixture pressure law

p(V, S) = A(S) (p 0 + B)  V 0 − b V − b

 γ

− B variant form of p(ρ, ρe) =  γ − 1

1 − bρ



(ρe − B) − B

(69)

Baro. & Non-Baro. Flow (Cont.)

Transport equations for material quantities γ , b , & B α -based equations

∂ α

∂τ + U ∂α

∂ξ + V ∂α

∂η = 0

∂τ (Jρ 1 α) + ∂

∂ξ (Jρ 1 αU ) + ∂

∂η (Jρ 1 αV ) = 0 with z = P 2

ι=1 α ι z ι , z = γ−1 1 , γ−1 , & γ−bρ γ−1 B

(70)

Baro. & Non-Baro. Flow (Cont.)

Transport equations for material quantities γ , b , & B α -based equations

∂ α

∂τ + U ∂α

∂ξ + V ∂α

∂η = 0

∂τ (Jρ 1 α) + ∂

∂ξ (Jρ 1 αU ) + ∂

∂η (Jρ 1 αV ) = 0 with z = P 2

ι=1 α ι z ι , z = γ−1 1 , γ−1 , & γ−bρ γ−1 B

Note: 1 − bρ

γ − 1 p + γ − bρ

γ − 1 B = ρe =

2

X

ι=1

α ι ρ ι e ι

=

2

X

ι=1

α ι  1 − b ι ρ ι

γ ι − 1 p ι + γ ι − b ι ρ ι γ ι − 1 B ι



(71)

Baro. & Non-Baro. Flow (Cont.)

Transport equations for material quantities γ , b , & B α -based equations

∂ α

∂τ + U ∂α

∂ξ + V ∂α

∂η = 0

∂τ (Jρ 1 α) + ∂

∂ξ (Jρ 1 αU ) + ∂

∂η (Jρ 1 αV ) = 0 with z = P 2

ι=1 α ι z ι , z = γ−1 1 , γ−1 , & γ−bρ γ−1 B

Note: 1 − bρ

γ − 1 p + γ − bρ

γ − 1 B = ρe =

2

X

ι=1

α ι ρ ι e ι

2

X  1 − b ι ρ ι γ ι − b ι ρ ι 

(72)

Multifluid Model

With (x τ , y τ ) = h 0 (u, v) & sample EOS described above, our α -based model for multifluid flow is

∂τ

Jρ Jρu Jρv JE

x ξ y ξ x η y η1 α

+ ∂

∂ξ

JρU

JρuU + y η p JρvU − x η p

JEU + (y η u − x η v)p

−h 0 u

−h 0 v 0 0 Jρ 1 αU

+ ∂

∂η

JρV

JρuV − y ξ p JρvV + x ξ p

JEV + (x ξ v − y ξ u)p 0

0

−h 0 u

−h 0 v Jρ 1 αV

= ˜ ψ

∂ α

∂τ + U ∂α

∂ξ + V ∂α

∂η = 0, plus α-averaged material quantities

(73)

Multifluid Model (Cont.)

For convenience, our multifluid model is written into

∂q

∂τ + f  ∂

∂ξ , q, Ξ



+ g  ∂

∂η , q, Ξ



= ˜ ψ with

q = [Jρ, Jρu, Jρv, JE, x ξ , y ξ , x η , y η , Jρ 1 α, α] T f =  ∂

∂ξ (JρU ), ∂

∂ξ (JρuU + y η p), ∂

∂ξ (JρvU − x η p), ∂

∂ξ (JEU + (y η u − x η v)p),

∂ξ (−h 0 u), ∂

∂ξ (−h 0 v), 0, 0, ∂

∂ξ (Jρ 1 αU ), U ∂α

∂ξ

 T

g =  ∂

∂η (JρV ), ∂

∂η (JρuV − y ξ p), ∂

∂η (JρvV + x ξ p), ∂

∂η (JEV + (x ξ v − y ξ u)p),

(74)

Multifluid model: Remarks

As before, under thermodyn. stability condition, our

multifluid model in generalized coordinates is hyperbolic when h 0 6= 1 , & is weakly hyperbolic when h 0 = 1

Our model system is written in quasi-conservative form with spatially varying fluxes in generalized coordinates Our grid system is a time-varying grid

Extension of the model to general non-barotropic

multifluid flow can be made in an analogous manner

(75)

Multifluid model: Remarks

As before, under thermodyn. stability condition, our

multifluid model in generalized coordinates is hyperbolic when h 0 6= 1 , & is weakly hyperbolic when h 0 = 1

Our model system is written in quasi-conservative form with spatially varying fluxes in generalized coordinates Our grid system is a time-varying grid

Extension of the model to general non-barotropic

multifluid flow can be made in an analogous manner

Numerical approximation ?

(76)

Numerical Approximation

Equations to be solved are

∂q

∂τ + f  ∂

∂ξ , q, Ξ



+ g  ∂

∂η , q, Ξ



= ˜ ψ

A simple dimensional-splitting approach based on f -wave formulation of LeVeque et al. is used

Solve one-dimensional generalized Riemann problem (defined below) at each cell interfaces Use resulting jumps of fluxes (decomposed into

each wave family) of Riemann solution to update cell averages

Introduce limited jumps of fluxes to achieve high

resolution

(77)

Numerical Approximation (Cont.)

Employ finite volume formulation of numerical solution

Q n ij ≈ 1

∆ξ∆η Z

C ij

q(ξ, η, τ n ) dA

that gives approximate value of cell average of solution q over cell C ij = [ξ i , ξ i+1 ] × [η j , η j+1 ] at time τ n

−1

−0.5 0

−1.6

−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

y η

computational grid

physical grid

(78)

Generalized Riemann Problem

Generalized Riemann problem of our multifluid model at cell interface ξ i−1/2 consists of the equation

∂q

∂τ + F i− 1

2 ,j (∂ ξ , q, Ξ) = 0 together with flux function

F i− 1

2 ,j =

f i−1,j (∂ ξ , q, Ξ) for ξ < ξ i−1/2 f ij (∂ ξ , q, Ξ) for ξ > ξ i−1/2 and piecewise constant initial data

q(ξ, 0) =

Q n i−1,j for ξ < ξ i−1/2

Q n ij for ξ > ξ i−1/2

(79)

General. Riemann Problem (Cont.)

Generalized Riemann problem at time τ = 0

ξ τ

Q n i−1,j Q n ij

(80)

General. Riemann Problem (Cont.)

Exact generalized Riemann solution: basic structure

q τ + f i−1,j (∂ ξ , q, Ξ) = 0 q τ + f i,j (∂ ξ , q, Ξ) = 0 ξ τ

Q n i−1,j Q n ij

(81)

General. Riemann Problem (Cont.)

Shock-only approximate Riemann solution: basic structure

ξ τ

Q n i−1,j Q n ij

λ 1 λ 2

λ 3 q mL q mL +

q mR

Z 1 = f L (q mL ) − f L (Q n i−1,j ) Z 2 = f R (q mR ) − f R (q mL + )

Z 3 = f R (Q n ij ) − f R (q mR )

(82)

Numerical Approximation (Cont.)

Basic steps of a dimensional-splitting scheme ξ -sweeps: solve

∂q

∂τ + f  ∂

∂ξ , q, Ξ



= 0

updating Q n ij to Q i,j η -sweeps: solve

∂q

∂τ + g  ∂

∂η , q, Ξ



= 0

updating Q ij to Q n+1 i,j

(83)

Numerical Approximation (Cont.)

That is to say,

ξ -sweeps: we use

Q ij = Q n ij − ∆τ

∆ξ

 F i+ 1

2 ,j − F i− + 1

2 ,j

 − ∆τ

∆ξ  ˜ Z i+ 1

2 ,j − ˜ Z i− 1

2 ,j



with Z ˜ i− 1

2 ,j = 1 2

m w

X

p=1

sign 

λ p i− 1

2 ,j

 

1 − ∆τ

∆ξ λ

p

i− 1 2 ,j



Z ˜ p i− 1

2 ,j

η -sweeps: we use

Q n+1 ij = Q ij − ∆τ

∆η

 G i,j+ 1

2

− G +

i,j− 1 2

 − ∆τ

∆η  ˜ Z i,j+ 1

2 − ˜ Z i,j− 1

2



with Z ˜ i,j− 1 = 1 X m w

sign 

λ p 1  

1 − ∆τ p

1



Z ˜ p 1

(84)

Numerical Approx.: Remarks

Flux-based wave decomposition

f i,j − f i−1,j =

m w

X

p=1

Z i−1/2 p =

m w

X

p=1

λ p i−1/2 W i−1/2 p

Some care should be taken on the limited jump of fluxes W ˜ p , for p = 2 (contact wave), in particular to ensure

correct pressure equilibrium across material interfaces MUSCL-type (slope limited) high resolution extension is not simple as one might think of for multifluid problems Splitting of discontinuous fluxes at cell interfaces:

significance ?

First order or high resolution method for geometric

conservation laws: significance to grid uniformity ?

(85)

Numerical Examples: 2D

2 D Riemann problem Underwater explosion Shock-bubble interaction

Helium bubble case

Refrigerant bubble case

(86)

2 D Riemann Problem

Initial condition for 4 -shock wave pattern

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

 ρ u v p

=

 1.5

0 0 1.5

0.532 1.206

0 0.3

0.138 1.206 1.206 0.029

0.532 0 1.206

0.3

(87)

2 D Riemann problem (Cont.)

Numerical contours for density and pressure

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Density

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Pressure

(88)

2 D Riemann problem (Cont.)

Grid system with h 0 = 0.99

0.2 0.4 0.6 0.8 1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.2 0.4 0.6 0.8 1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

time = 0 1 time = 0.2

(89)

2 D Riemann problem (Cont.)

Eulerian ( h 0 = 0 ) vs. generalized Lagrangian ( h 0 = 0.99 )

0.2 0.4 0.6 0.8 1

0.2 0.4 0.6 0.8

h 0 = 0 1 h = 0.99

(90)

Underwater Explosions

Numerical schlieren images h 0 = 0.9 , 800 × 500 grid

(91)

Underwater Explosions

Numerical schlieren images h 0 = 0.9 , 800 × 500 grid

參考文獻

相關文件

Have shown results in 1 , 2 &amp; 3 D to demonstrate feasibility of method for inviscid compressible flow problems. Department of Applied Mathematics, Ta-Tung University, April 23,

Our model system is written in quasi-conservative form with spatially varying fluxes in generalized coordinates Our grid system is a time-varying grid. Extension of the model to

Lagrangian method resolve material or slip lines sharply if no grid tangling. Generalized curvilinear grid is often

Lagrangian method can resolve material or slip lines sharply if there is not too much grid tangling.. Generalized curvilinear grid is often

GMRES: Generalized Minimal Residual Algorithm for Solving Nonsymmetric Linear Systems..

A diamagnetic material placed in an external magnetic field B ext develops a magnetic dipole moment directed opposite B ext. If the field is nonuniform, the diamagnetic material

A diamagnetic material placed in an external magnetic field B ext develops a magnetic dipole moment directed opposite B ext.. If the field is nonuniform, the diamagnetic material

2 Center for Theoretical Sciences and Center for Quantum Science and Engineering, National Taiwan University, Taipei 10617, Taiwan..