• 沒有找到結果。

Application to compressible multifluid flow

N/A
N/A
Protected

Academic year: 2022

Share "Application to compressible multifluid flow"

Copied!
157
0
0

加載中.... (立即查看全文)

全文

(1)

A generalized Lagrangian scheme for hyperbolic balance laws

Application to compressible multifluid flow

Keh-Ming Shyue

Department of Mathematics National Taiwan University

Taiwan

(2)

Outline

Model scientific problem

Previous work & current work motivation Mathematical formulation

Hyperbolic balance law in generalized coordinate Grid movement conditions

Examples to shallow water/compressible flow model Numerical discretization

Generalized Riemann problem

Godunov-type flux-based wave propagation method

Sample examples

(3)

Model Scientific Problem

Asteroid impact problem (a geophysical example)

(4)

Fundamental Challenges

Mathematical model aspect

Incompressible or compressible flow modelling Equations of motion & constitutive laws

· Gas phase: air

· Liquid phase: ocean water

· Solid phase: asteroid, basalt crust, mantle Interface conditions

Mass transfer, cavitation, fracture, · · · Numerical method aspect

Multiphase, multiscale, Eulerian or Lagrangian solver

Discretization based on structured, unstructured, or

(5)

Previous Work

Fluid-mixture interface-capturing method (JCP 1998, 1999, 2001, 2004, Shock Waves 2006)

Shock over MORB (Mid-Ocean Ridge Basalt) liquid Falling liquid drop problem

Volume-of-fluid interface tracking method (JCP 2006) Shock-bubble interaction

Surface tracking for moving boundaries (Hyp 2006) Falling rigid object in water tank

Moving cylindrical vessel

Unified coordinate method (2006, with Hui & Hu)

Supersonic NACA0012 over heavier gas

(6)

Current Work

Motivated by well-known facts that

Lagrangian method can resolve material or slip lines sharply if there is no grid tangling

Generalized curvilinear grid is often superior to

Cartesian when employed in numerical methods for

complex fixed or moving geometries

(7)

Current Work

Motivated by well-known facts that

Lagrangian method can resolve material or slip lines sharply if there is no grid tangling

Generalized curvilinear grid is often superior to

Cartesian when employed in numerical methods for complex fixed or moving geometries

Aim is to devise Lagrange-like moving grid approach for nonlinear hyperbolic system of balance law

∂t q (~x, t) +

N d

X

j=1

∂x j f j (q, ~x) = ψ (q, ~x)

in general N d ≥ 1 space dimension that is more robust

than aforementioned Eulerian-based method

(8)

Mathematical Formulation

Begin by considering canonical hyperbolic balance law

∂t q (~x, t) +

N d

X

j=1

∂x j f j (q, ~x) = ψ (q, ~x)

in Cartesian coordinate system

Hyperbolic if P N j=1 d α j (∂f j /∂q) is diagonalizable with real eigenvalues, α j ∈ lR

q ∈ lR m : vector of m state quantities

f j ∈ lR m : flux vector, j = 1, 2, · · · , N d , ψ ∈ lR m : sources

~x = (x 1 , x 2 , · · · , x N d ) : spatial vector, t ≥ 0 : time

(9)

Mathematical Formulation

Now consider a general non-rectangular domain Ω in

N d = 2 & introduce coordinate change (~x, t) 7→ (~ ξ, τ ) via

ξ = (ξ ~ 1 , ξ 2 , · · · , ξ N d ) , ξ j = ξ j (~x, t), τ = t,

that maps Ω to a logical domain Ω ˆ & also transforms balance law to a new form

−1 −0.5 0 0.5 1

−1.5

−1

−0.5 0

−1 −0.5 0 0.5

−2

−1.8

−1.6

−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

x

y η Ω ˆ Ω

logical domain

physical domain

(10)

Mathematical Formulation

That is, using chain rule of partial differentiation, derivatives in physical space become

∂t = ∂

∂τ +

N d

X

i=1

∂ξ i

∂t

∂ξ i , ∂

∂x j =

N d

X

i=1

∂ξ i

∂x j

∂ξ i for j = 1, 2, · · · , N d ,

yielding strong form of balance law in transformed space

∂τ q ˜ ~ξ, τ + X N d

j=1

∂ξ j f ˜ j 

˜

q, ∇~ ξ 

= ˜ ψ 

˜

q, ∇~ ξ 

with

˜ ∂ξ j X N d ∂ξ j !

˜   −1

(11)

Mathematical Formulation

Assume existence of inverse transformation

t = τ, x j = x j (~ ξ, t) for j = 1, 2, · · · , N d ,

To find basic geometric-metric relations between different coordinates, employ elementary differential rule

∂(τ, ~ ξ)

∂(t, ~x) = ∂(t, ~x)

∂(τ, ~ ξ)

−1

,

yielding in N d = 3 case, for example, as

1 0 0 0

t ξ 1 ∂ x 1 ξ 1 ∂ x 2 ξ 1 ∂ x 3 ξ 1

t ξ 2 ∂ x 1 ξ 2 ∂ x 2 ξ 2 ∂ x 3 ξ 2

t ξ ∂ x ξ ∂ x ξ ∂ x ξ

= 1 J

J 0 0 0

J 01 J 11 J 21 J 31

J 02 J 12 J 22 J 32

J J J J

(12)

Mathematical Formulation

Here

J =

∂(x 1 , x 2 , x 3 )

∂(ξ 1 , ξ 2 , ξ 3 )

= det  ∂(x 1 , x 2 , x 3 )

∂(ξ 1 , ξ 2 , ξ 3 )

 , J 11 =

∂(x 2 , x 3 )

∂(ξ 2 , ξ 3 )

, J 21 =

∂(x 1 , x 3 )

∂(ξ 3 , ξ 2 )

, J 31 =

∂(x 1 , x 2 )

∂(ξ 2 , ξ 3 )

, J 12 =

∂(x 2 , x 3 )

∂(ξ 3 , ξ 1 )

, J 22 =

∂(x 1 , x 3 )

∂(ξ 1 , ξ 3 )

, J 32 =

∂(x 1 , x 2 )

∂(ξ 3 , ξ 1 )

, J 13 =

∂(x 2 , x 3 )

∂(ξ 1 , ξ 2 )

, J 23 =

∂(x 1 , x 3 )

∂(ξ 2 , ξ 1 )

, J 33 =

∂(x 1 , x 2 )

∂(ξ 1 , ξ 2 )

,

J 0 j = −

N d

X

i=1

J ijτ x i , j = 1, 2, 3,

and so numerically computatable ∇ξ j , j = 1, 2, 3 , as

(13)

Mathematical Formulation

Note that to complete the model When ∂ τ ~x = 0 (stationary case)

t ξ = 0 ~ & ∇ ~ x ξ ~ time-independent; no more condition

(14)

Mathematical Formulation

Note that to complete the model When ∂ τ ~x = 0 (stationary case)

t ξ = 0 ~ & ∇ ~ x ξ ~ time-independent; no more condition When ∂ τ ~x = ~u 0 , ~u 0 is constant (quasi-stationary case)

Both ∂ t ~ ξ & ∇ ~ x ξ ~ time-independent; no more condition

(15)

Mathematical Formulation

Note that to complete the model When ∂ τ ~x = 0 (stationary case)

t ξ = 0 ~ & ∇ ~ x ξ ~ time-independent; no more condition When ∂ τ ~x = ~u 0 , ~u 0 is constant (quasi-stationary case)

Both ∂ t ~ ξ & ∇ ~ x ξ ~ time-independent; no more condition Otherwise ∂ τ ~x 6= 0 (genuine moving case)

Both ∂ t ~ ξ & ∇ ~ x ξ ~ time-dependent; require N d degree of freedom for ∂ τ ~x & numerical approach to compute

ξ ~ ~x over time

(16)

Grid Movement Conditions

Here we are interested in

Lagrange-like condition ∂ τ ~x = h 0 ~u , ~u velocity, h 0 ∈ [0, 1]

Compatibility conditions for ∂ τξ j x i & ∂ ξ jτ x i , i.e. ,

∂τ

 ∂x i

∂ξ j



+ ∂

∂ξ j



− ∂x i

∂τ



= 0 for i, j = 1, 2, · · · , N d

(17)

Grid Movement Conditions

Here we are interested in

Lagrange-like condition ∂ τ ~x = h 0 ~u , ~u velocity, h 0 ∈ [0, 1]

Compatibility conditions for ∂ τξ j x i & ∂ ξ jτ x i , i.e. ,

∂τ

 ∂x i

∂ξ j



+ ∂

∂ξ j



− ∂x i

∂τ



= 0 for i, j = 1, 2, · · · , N d

General 1 -parameter ∂ τ ~x = h~u with h ∈ [0, 1] chosen by J or grid-angle preserving, yielding

A 0 h +

N d

X

j=1

A jξ j h = 0 (1st order PDE constraint )

General k -parameter, k > 1 , · · ·

(18)

Shallow Water Equations

With bottom topography included, for example Cartesian coordinate case

∂t

 h hu i

 +

N d

X

j=1

∂x j

hu j

hu i u j + 1 2 gh 2

 =

0

−gh ∂x ∂B

i

 , i = 1, · · · , N d

Generalized coordinate case

∂τ

hJ hJu i

 +

N d

X

j=1

∂ξ j J

hU j

hu i U j + 1 2 gh 2 ∂ξ ∂x j

i

 =

0

−ghJ ∂x ∂B

i

with U j = ∂ t ξ j + P N d

i=1 u ix i ξ j , j = 1, 2, · · · , N d

h : water height, u : velocity in x -direction

(19)

Shallow Water Equations

With ∂ τ ~x = h 0 ~u & grid-metric conditions, complete model system in N d = 2 transformed space, for example, takes

∂τ

hJ hJu 1

hJu 2

A B C D

+ ∂

∂ξ 1

hJU 1

hJu 1 U 1 + 1 2 gJh 2 ∂x ∂ξ 1 1 hJu 2 U 1 + 1 2 gJh 2 ∂x ∂ξ 1

2

−h 0 u 1

−h 0 u 2

0 0

+ ∂

∂ξ 2

hJU 2

hJu 1 U 2 + 1 2 gJh 2 ∂x ∂ξ 2 1 hJu 2 U 2 + 1 2 gJh 2 ∂x ∂ξ 2

2

0 0

−h 0 u 1

−h 0 u 2

= ˜ ψ

Here A = ∂ ξ 1 x 1 , B = ∂ ξ 1 x 2 , C = ∂ ξ 2 x 1 , D = ∂ ξ 2 x 2

(20)

Remarks

Hyperbolicity

In Cartesian coordinates, model is hyperbolic In generalized coord., model is hyperbolic when

h 0 6= 1 , & is weakly hyperbolic when h 0 = 1 & N d > 1 Canonical form

In Cartesian coordinates

∂t q (~x, t) +

N d

X

j=1

∂x j f j (q) = ψ (q)

In generalized coordinates: spatially varying fluxes

N d ∂    

(21)

Compressible Euler Equations

With gravity effect included, for example Cartesian coordinate case

∂t

 ρ ρu i

E

 +

N d

X

j=1

∂x j

ρu j

ρu i u j + pδ ij Eu j + pu j

=

0

−ρ ∂x ∂φ

i

−ρ~u · ∇φ

, i = 1, · · · , N d

Generalized coordinate case

∂τ

ρJ ρJu i

JE

 +

N d

X

j=1

∂ξ j J

ρU j

ρu i U j + p ∂ξ ∂x j

i

EU j + pU j − p ∂ξ ∂t j

=

0

−ρJ ∂x ∂φ

i

−ρJ~u · ∇φ

ρ : density, p = p(ρ, e) : pressure , e : internal energy E = ρe + ρ P N d

j=1 u 2 j /2 : total energy, φ : gravitational potential

(22)

Extension to Multifluid

Assume homogeneous ( 1 -pressure & 1 -velocity) flow;

i.e. , across interfaces p ι = p & ~u ι = ~u , ∀ fluid phase ι

gas

gas gas

gas

gas gas

gas

gas gas

gas

liquid

(23)

Extension to Multifluid

Mathematical model: Fluid-mixture type

Use basic conservation (or balance) laws for single

& multicomponent fluid mixtures

Introduce additional transport equations for problem-dependent material quantities near numerically diffused interfaces, yielding direct computation of pressure from EOS

Model barotropic 2 -phase flow problem with

fluid component 1 & 2 characterized by Tait EOS

p(ρ) = (p 0 ι + B ι )

 ρ ρ 0 ι

 γ ι

− B ι , ι = 1, 2

(24)

Barotropic 2-Phase Flow

Define mixture pressure law (Shyue, JCP 2004)

p(ρ, ρe) =

 

 

 

 

(p 0 ι + B ι )

 ρ ρ 0 ι

 γ ι

− B ι if α = 0 or 1 (γ − 1)



ρe + ρB ρ 0



− γB if α ∈ (0, 1)

Derived from de = −pd(1/ρ) using

p(ρ, S) = A(S) (p 0 + B)  ρ ρ 0

 γ

− B

Here A(S) = e [(S−S 0 )/C V ] , S , C V : specific entropy & heat

at constant vol. α : volume fraction of one fluid component

(25)

Barotropic 2-Phase Flow

Transport equations for material quantities γ , B , & ρ 0 γ -based equations

∂τ

 1 γ − 1

 +

N d

X

j=1

U j

∂ξ j

 1 γ − 1



= 0

∂τ

 γB γ − 1

 +

N d

X

j=1

U j

∂ξ j

 γB γ − 1



= 0

∂τ

 J B

ρ 0

ρ

 +

N d

X

j=1

∂ξ j

 J B

ρ 0

ρU j



= 0

Above equations are derived from energy equation &

make use of homogeneous equilibrium flow

assumption together with mass conservation law

(26)

Barotropic 2-Phase Flow

α -based equations

∂ α

∂τ +

N d

X

j=1

U j ∂α

∂ξ = 0, with z =

2

X

ι=1

α ι z ι , z = 1

γ − 1 & γB γ − 1

∂τ

 J B

ρ 0

ρ

 +

N d

X

j=1

∂ξ j

 J B

ρ 0

ρU j



= 0

α -based equations (Allaire et al. , JCP 2002)

∂ α

∂τ +

N d

X

j=1

U j ∂α

∂ξ j = 0 with z =

2

X

ι=1

α ι z ι , z = 1

γ − 1 & γB γ − 1

N d

(27)

Multifluid Model

With (x τ , y τ ) = h 0 (u, v) & sample EOS described above, our α -based model for multifluid flow is

∂τ

Jρ Jρu Jρv JE

x ξ y ξ x η y η Jρ 1 α

+ ∂

∂ξ

JρU

JρuU + y η p JρvU − x η p

JEU + (y η u − x η v)p

−h 0 u

−h 0 v 0 0 Jρ 1 αU

+ ∂

∂η

JρV

JρuV − y ξ p JρvV + x ξ p

JEV + (x ξ v − y ξ u)p 0

0

−h 0 u

−h 0 v Jρ 1 αV

= ˜ ψ

∂ α

∂τ + U ∂α

∂ξ + V ∂α

∂η = 0, plus α-averaged material quantities

(28)

Multifluid Model

For convenience, our multifluid model is written into

∂q

∂τ + f 1

 ∂

∂ξ , q, ∇~ ξ



+ f 2

 ∂

∂η , q, ∇~ ξ



= ˜ ψ with

q = [Jρ, Jρu, Jρv, JE, x ξ , y ξ , x η , y η , Jρ 1 α, α] T f 1 =  ∂

∂ξ (JρU ), ∂

∂ξ (JρuU + y η p), ∂

∂ξ (JρvU − x η p), ∂

∂ξ (JEU + (y η u − x η v)p),

∂ξ (−h 0 u), ∂

∂ξ (−h 0 v), 0, 0, ∂

∂ξ (Jρ 1 αU ), U ∂α

∂ξ

 T

f 2 =  ∂

∂η (JρV ), ∂

∂η (JρuV − y ξ p), ∂

∂η (JρvV + x ξ p), ∂

∂η (JEV + (x ξ v − y ξ u)p),

(29)

Multifluid model: Remarks

As before, under thermodyn. stability condition, our

multifluid model in generalized coordinates is hyperbolic when h 0 6= 1 , & is weakly hyperbolic when h 0 = 1

Our model system is written in quasi-conservative form with spatially varying fluxes in generalized coordinates Our grid system is a time-varying grid

Extension of the model to general non-barotropic

multifluid flow can be made in an analogous manner

(30)

Multifluid model: Remarks

As before, under thermodyn. stability condition, our

multifluid model in generalized coordinates is hyperbolic when h 0 6= 1 , & is weakly hyperbolic when h 0 = 1

Our model system is written in quasi-conservative form with spatially varying fluxes in generalized coordinates Our grid system is a time-varying grid

Extension of the model to general non-barotropic

multifluid flow can be made in an analogous manner

Numerical discretization?

(31)

Numerical Discretization

In 2 D, equations to be solved takes the form

∂q

∂τ + f 1

 ∂

∂ξ , q, ∇~ ξ



+ f 2

 ∂

∂η , q, ∇~ ξ



= ˜ ψ

A simple dimensional-splitting approach based on f -wave formulation of LeVeque et al. is used

Solve one-dimensional generalized Riemann problem (defined below) at each cell interfaces Use resulting jumps of fluxes (decomposed into

each wave family) of Riemann solution to update cell averages

Introduce limited jumps of fluxes to achieve high

resolution

(32)

Numerical Discretization

Employ finite volume formulation of numerical solution

Q n ij ≈ 1

∆ξ∆η Z

C ij

q(ξ, η, τ n ) dA

that gives approximate value of cell average of solution q over cell C ij = [ξ i , ξ i+1 ] × [η j , η j+1 ] at time τ n

−1.5

−1

−0.5 0

−1.6

−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

y η

computational grid

physical grid

(33)

Generalized Riemann Problem

Generalized Riemann problem of our multifluid model at cell interface ξ i−1/2 consists of the equation

∂q

∂τ + F i− 1

2 ,j

 ∂ ξ , q, ∇~ ξ 

= 0 together with flux function

F i− 1

2 ,j =

f i−1,j 

ξ , q, ∇~ ξ 

for ξ < ξ i−1/2 f ij 

ξ , q, ∇~ ξ 

for ξ > ξ i−1/2 and piecewise constant initial data

q(ξ, 0) =

Q n i−1,j for ξ < ξ i−1/2

Q n ij for ξ > ξ i−1/2

(34)

Generalized Riemann Problem

Generalized Riemann problem at time τ = 0

ξ τ

Q n i−1,j Q n ij

(35)

Generalized Riemann Problem

Exact generalized Riemann solution: basic structure

q τ + f i−1,j 

ξ , q, ∇~ ξ 

= 0 q τ + f i,j 

ξ , q, ∇~ ξ 

= 0 ξ τ

Q n i−1,j Q n ij

(36)

Generalized Riemann Problem

Shock-only approximate Riemann solution: basic structure

    ξ

τ

Q n i−1,j Q n ij

λ 1 λ 2

λ 3 q mL q mL +

q mR

Z 1 = f L (q mL ) − f L (Q n i−1,j ) Z 2 = f R (q mR ) − f R (q mL + )

Z 3 = f R (Q n ij ) − f R (q mR )

(37)

Numerical Discretization

Basic steps of a dimensional-splitting scheme ξ -sweeps: solve

∂q

∂τ + f 1

 ∂

∂ξ , q, ∇~ ξ



= 0

updating Q n ij to Q i,j η -sweeps: solve

∂q

∂τ + f 2

 ∂

∂η , q, ∇~ ξ



= 0

updating Q ij to Q n+1 i,j

(38)

Numerical Discretization

That is to say,

ξ -sweeps: we use

Q ij = Q n ij − ∆τ

∆ξ

 F i+ 1

2 ,j − F i− + 1

2 ,j

 − ∆τ

∆ξ  ˜ Z i+ 1

2 ,j − ˜ Z i− 1

2 ,j



with Z ˜ i− 1

2 ,j = 1 2

m w

X

p=1

sign 

λ p i− 1

2 ,j

 

1 − ∆τ

∆ξ λ

p

i− 1 2 ,j



Z ˜ p i− 1

2 ,j

η -sweeps: we use

Q n+1 ij = Q ij − ∆τ

∆η

 G i,j+ 1

2

− G +

i,j− 1 2

 − ∆τ

∆η  ˜ Z i,j+ 1

2 − ˜ Z i,j− 1

2



with Z ˜ i,j− 1

2 = 1 2

m w

X sign  λ p

i,j− 1

 

1 − ∆τ

∆η λ

p i,j− 1

 Z ˜ p

i,j− 1

(39)

Numerical Discretization

Flux-based wave decomposition

f i,j − f i−1,j =

m w

X

p=1

Z i−1/2 p =

m w

X

p=1

λ p i−1/2 W i−1/2 p

Some care should be taken on the limited jump of fluxes W ˜ p , for p = 2 (contact wave), in particular to ensure

correct pressure equilibrium across material interfaces MUSCL-type (slope limited) high resolution extension is not simple as one might think of for multifluid problems Splitting of discontinuous fluxes at cell interfaces:

significance ?

First order or high resolution method for geometric

conservation laws: significance to grid uniformity ?

(40)

Lax’s Riemann problem

h 0 = 0 Eulerian result

h 0 = 0.99 Lagrangian-like result

sharper resolution for contact discontinuity

0 0.5 1

0 0.5 1 1.5 2

x

ρ

Exact h 0 =0 h 0 =0.99

0 0.5 1

0 0.5 1 1.5 2

x

u

0 0.5 1

0 1 2 3 4

x

p

(41)

Lax’s Riemann problem

Physical grid coordinates at selected times

Each little dashed line gives a cell-center location of the proposed Lagrange-like grid system

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0 0.05 0.1 0.15

x

time

(42)

Woodward-Colella’s problem

h 0 = 0 Eulerian result

h 0 = 0.99 Lagrangian-like result

sharper resolution for contact discontinuity

0 0.5 1

0 2 4 6 8

ρ

0 0.5 1

−10 0 10 20

0 0.5 1

0 100 200 300 400

u p

t = 0.016 t = 0.016

t = 0.016

(43)

Woodward-Colella’s problem

h 0 = 0 Eulerian result

h 0 = 0.99 Lagrangian-like result

sharper resolution for contact discontinuity

0 0.5 1

0 5 10 15 20

ρ

Fine grid h 0 =0 h 0 =0.99

0 0.5 1

−5 0 5 10 15

0 0.5 1

0 200 400 600

u p

t = 0.032 t = 0.032

t = 0.032

(44)

Woodward-Colella’s problem

h 0 = 0 Eulerian result

h 0 = 0.99 Lagrangian-like result

sharper resolution for contact discontinuity

0 0.5 1

0 2 4 6 8

ρ

0 0.5 1

−5 0 5 10 15

0 0.5 1

0 200 400 600

u p

x x

x

t = 0.038 t = 0.038

t = 0.038

(45)

Woodward-Colella’s problem

Physical grid coordinates at selected times

Each little dashed line gives a cell-center location of the proposed Lagrange-like grid system

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0 0.01 0.02 0.03 0.04

x

time

(46)

2 D Riemann problem

With initial 4 -shock wave pattern

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

 ρ u v p

=

 1.5

0 0 1.5

0.532 1.206

0 0.3

0.138 1.206 1.206 0.029

0.532 0 1.206

0.3

(47)

2 D Riemann problem

With initial 4 -shock wave pattern Lagrange-like result

Occurrence of simple Mach reflection

0.2 0.4 0.6 0.8 0.2

0.4 0.6 0.8

0.2 0.4 0.6 0.8 0.2

0.4 0.6 0.8

0.2 0.4 0.6 0.8 0.2

0.4 0.6 0.8

Density Pressure Physical grid

(48)

2 D Riemann problem

With initial 4 -shock wave pattern Eulerian result

Poor resolution around simple Mach reflection

0.2 0.4 0.6 0.8

0.2 0.4 0.6 0.8

0.2 0.4 0.6 0.8

Density Pressure Physical grid

(49)

More Examples

Two-dimensional case

Radially symmetric problem Underwater explosion

Shock-bubble interaction Helium bubble case

Refrigerant bubble case Three-dimensional case

Underwater explosion Shock-bubble interaction

Helium bubble case

Refrigerant bubble case

(50)

Conclusion

Have described fluid-mixture type algorithm in generalized moving-curvilinear grid

Have shown results in 1 , 2 & 3 D to demonstrate

feasibility of method for practical problems

(51)

Conclusion

Have described fluid-mixture type algorithm in generalized moving-curvilinear grid

Have shown results in 1 , 2 & 3 D to demonstrate feasibility of method for practical problems

Future direction

Efficient & accurate grid movement strategy Static & Moving 3 D geometry problems

Weakly compressible flow Viscous flow extension

· · ·

(52)

Conclusion

Have described fluid-mixture type algorithm in generalized moving-curvilinear grid

Have shown results in 1 , 2 & 3 D to demonstrate feasibility of method for practical problems

Future direction

Efficient & accurate grid movement strategy Static & Moving 3 D geometry problems

Weakly compressible flow Viscous flow extension

· · ·

Thank You

(53)

Euler in General. Coord.

Model system in quasi-linear form

∂ ˜ q

∂τ + A ∂ ˜ q

∂ξ + B ∂ ˜ q

∂η = ˜ ψ

A = ∂ ˜ f

∂ ˜ q =

ξ t ξ x ξ y 0

ξ x p ρ − uU ξ x u(1 − p E ) + U ξ y u − ξ x vp E ξ x p E ξ y p ρ − vU ξ x v − ξ y up E ξ y v(1 − p E ) + U ξ y p E (p ρ − H)U ξ x H − uU p E ξ y H − vU p E U + p E U

B = ∂˜ g

∂ ˜ q =

η t η x η y 0

η x p ρ − uV η x u(1 − p E ) + V η y u − η x vp E η x p E η y p ρ − vV η x v − η y up E η y v(1 − p E ) + V η y p E (p ρ − H)V η x H − uV p E η y H − vV p E V + p E V

with H = (E + p)/ρ, U = U − ξ t = ξ x u + ξ y v, V = V − η t = η x u + η y v

(54)

Euler in General. Coord. (Cont.)

Eigen-structure of matrix A is

Λ A = diag 

U − c q

ξ x 2 + ξ y 2 , U, U, U + c q

ξ x 2 + ξ y 2 

R A =

1 1 0 1

u − α 1 c u α 2 u + α 1 c v − α 2 c v −α 1 v + α 2 c H − U 1 c H − c 2 /p E −U 2 H + U 1 c

L A =

(p ρ + cU 1 )/2c 2 −(α 1 c + up E )/2c 2 −(α 2 c + vp E )/2c 2 p E /2c 2 1 − p ρ /c 2 up E /c 2 vp E /c 2 −p E /c 2

U 2 α 2 −α 1 0

(p ρ − cU 1 )/2c 2 (α 1 c − up E )/2c 2 (α 2 c − vp E )/2c 2 p E /2c 2

(55)

Euler in General. Coord. (Cont.)

Eigen-structure of matrix B is

Λ B = diag 

V − c q

η x 2 + η y 2 , V, V, V + c q

η x 2 + η y 2 

R B =

1 1 0 1

u − β 1 c u β 2 u + β 1 c v − β 2 c v −β 1 v + β 2 c H − V 1 c H − c 2 /p E −V 2 H + V 1 c

L B =

(p ρ + cV 1 )/2c 2 −(β 1 c + up E )/2c 2 −(β 2 c + vp E )/2c 2 p E /2c 2 1 − p ρ /c 2 up E /c 2 vp E /c 2 −p E /c 2

V 2 β 2 −β 1 0

(p ρ − cV 1 )/2c 2 (β 1 c − up E )/2c 2 (β 2 c − vp E )/2c 2 p E /2c 2

with (β 1 , β 2 ) = (η x , η y )/ q

η x 2 + η y 2 , V 1 = β 1 u + β 2 v, V 2 = −β 2 u + β 1 v

(56)

Grid Movement (Cont.)

General 1 -parameter case: (x τ , y τ ) = h(u, v) , h ∈ [0, 1]

At given time instance, h can be chosen based on

Grid-angle preserving condition (Hui et al. JCP 1999)

∂τ cos −1  ∇ξ

|∇ξ| · ∇η

|∇η|



= ∂

∂τ cos −1

−y η x η − y ξ x ξ q y ξ 2 + y η 2 q

x 2 ξ + x 2 η

= · · ·

= Ah ξ + Bh η + Ch = 0 (1st order PDE )

with

A = q

x 2 η + y η 2 (vx ξ − uy ξ ) , B = q

x 2 ξ + y ξ 2 (uy η − vx η )

(57)

Grid Movement (Cont.)

General 1 -parameter case: (x τ , y τ ) = h(u, v) , h ∈ [0, 1]

Or alternatively, based on

Mesh-area preserving condition

∂J

∂τ = ∂

∂τ (x ξ y η − x η y ξ )

= x ξτ y η + x ξ y ητ − x ητ y ξ − x η y ξτ

= · · ·

= Ah ξ + Bh η + Ch = 0 (1st order PDE )

with

A = uy η − vx η , B = vx ξ − uy ξ , C = u ξ y η + v η x ξ − u η y ξ − v ξ x η

(58)

Grid Movement (Cont.)

To ensure h ∈ [0, 1] , transformed variable ˜h = κ(h) is used,

e.g. , Hui et al. employed κ = ln (εh|~u|) , ε normalized constant, yielding

A˜ ˜ h ξ + ˜ B˜ h η + ˜ C = 0

Grid-angle preserving case

A = ˜ q

x 2 η + y η 2 (x ξ sin θ − y ξ cos θ) , B = ˜ q

x 2 ξ + y ξ 2 (y η cos θ − x η sin θ) C = ˜ q

x 2 ξ + y ξ 2 [y η (cos θ) η − x η (sin θ) η ] − q

x 2 η + y η 2 [y ξ (cos θ) ξ − x ξ (sin θ) ξ ]

Mesh-area preserving case

A = y ˜ η cos θ − x η sin θ, B = x ˜ ξ sin θ − y ξ cos θ

C = y ˜ (cos θ) − x (sin θ) + x (sin θ) − y (cos θ)

(59)

Grid Movement: Remarks

Numerics: h - or ˜h -equation constraint geometrical laws

∂τ

 x ξ y ξ x η y η

− ∂

∂ξ

 hu hv 0 0

− ∂

∂η

 0 0 hu hv

= 0

Usability: Mesh-area evolution equation

∂J

∂τ − ∂

∂ξ [h (uy η − vx η )] − ∂

∂η [h (vx ξ − uy ξ )] = 0

Initial & boundary conditions for h - or ˜h -equation ?

(60)

Grid Movement: 2 Free Degrees

2 -parameter case of Hui et al. (2005): (x τ , y τ ) = (U g , V g ) Imposed conditions

1. Grid-angle preserving

2. Specialized grid-material line matching (see next)

(61)

Grid Movement: 2 Free Degrees

2 -parameter case of Hui et al. (2005): (x τ , y τ ) = (U g , V g ) Imposed conditions

1. Grid-angle preserving

2. Specialized grid-material line matching (see next)

Good results are shown for steady-state problems

(62)

Grid Movement: 2 Free Degrees

2 -parameter case of Hui et al. (2005): (x τ , y τ ) = (U g , V g ) Imposed conditions

1. Grid-angle preserving

2. Specialized grid-material line matching (see next)

Good results are shown for steady-state problems

Little results for time-dependent problems with rapid

transient solution structures

(63)

Grid Movement: 2 Free Degrees

2 -parameter case of Hui et al. (2005): (x τ , y τ ) = (U g , V g ) Imposed conditions

1. Grid-angle preserving

2. Specialized grid-material line matching (see next) Good results are shown for steady-state problems Little results for time-dependent problems with rapid transient solution structures

Other 2 -parameter case: (x τ , y τ ) = (hu, k v)

Novel imposed conditions for h ∈ [0, 1] & k ∈ [0, 1] ?

(64)

Grid Movement: 2 Free Degrees

2 -parameter case of Hui et al. (2005): (x τ , y τ ) = (U g , V g ) Imposed conditions

1. Grid-angle preserving

2. Specialized grid-material line matching (see next) Good results are shown for steady-state problems Little results for time-dependent problems with rapid transient solution structures

Other 2 -parameter case: (x τ , y τ ) = (hu, k v)

Novel imposed conditions for h ∈ [0, 1] & k ∈ [0, 1] ?

Roadmap of current work:

(65)

Novel Conditions for h & k

Mesh-area preserving case

∂J

∂τ = ∂

∂τ (x ξ y η − x η y ξ )

= x ξτ y η + x ξ y ητ − x ητ y ξ − x η y ξτ

= · · ·

= (A 1 h ξ + B 1 h η + C 1 h) + (A 2 k ξ + B 2 k η + C 2 k) = 0, yielding, for example,

A 1 h ξ + B 1 h η + C 1 h = 0 A 2 k ξ + B 2 k η + C 2 k = 0 with

A 1 = uy η , B 1 = uy ξ , C 1 = u ξ y η − u η y ξ

A 2 = −vx η , B 2 = vx ξ , C 2 = v η x ξ − v ξ x η

(66)

Shock in molybdenum over MORB

Density Pressure

Molybdenum

MORB time = 50µ s

time = 100µ s

(67)

Falling Liquid Drop Problem

Interface capturing with gravity

100 200 300 400 500 600 700 800 900 1000

air

t = 0

(68)

Falling Liquid Drop Problem

100 200 300 400 500 600 700 800 900 1000

air

t = 0.2s

(69)

Falling Liquid Drop Problem

Interface diffused badily

100 200 300 400 500 600 700 800 900

air

t = 0.4s

(70)

Falling Liquid Drop Problem

100 200 300 400 500 600 700 800 900

air

t = 0.6s

(71)

Falling Liquid Drop Problem

100 200 300 400 500 600 700 800 900

air

t = 0.8s

(72)

Falling Liquid Drop Problem

100 200 300 400 500 600 700 800 900

air

t = 1s

(73)

Shock-Bubble Interaction

Volume tracking for material interface

(74)

Shock-Bubble Interaction

(75)

Shock-Bubble Interaction

(76)

Shock-Bubble Interaction

(77)

Shock-Bubble Interaction

(78)

Shock-Bubble Interaction

(79)

Shock-Bubble Interaction

(80)

Shock-Bubble Interaction

(81)

Shock-Bubble Interaction

(82)

Shock-Bubble Interaction

Small moving irregular cells: stability & accuracy

(83)

Falling Rigid Object in Water Tank

Moving boundary tracking & interface capturing

−2 0 2

−3

−2

−1 0 1 2 3

−2 0 2

−3

−2

−1 0 1 2 3

−2 0 2

−3

−2

−1 0 1 2 3

Density Pressure Volume fraction

air

water

t = 0ms

(84)

Falling Rigid Object in Water Tank

−2 0 2

−3

−2

−1 0 1 2 3

−2 0 2

−3

−2

−1 0 1 2 3

−2 0 2

−3

−2

−1 0 1 2 3

Density Pressure Volume fraction

air

water

t = 1ms

(85)

Falling Rigid Object in Water Tank

−2 0 2

−3

−2

−1 0 1 2 3

−2 0 2

−3

−2

−1 0 1 2 3

−2 0 2

−3

−2

−1 0 1 2 3

Density Pressure Volume fraction

air

water

t = 2ms

(86)

Falling Rigid Object in Water Tank

Small moving irregular cells: stability & accuracy

−2 0 2

−3

−2

−1 0 1 2 3

−2 0 2

−3

−2

−1 0 1 2 3

−2 0 2

−3

−2

−1 0 1 2 3

Density Pressure Volume fraction

air

water

t = 3ms

(87)

Moving Cylindrical Vessel

initial condition interface

air helium

(88)

Moving Cylindrical Vessel

Two sample grid systems used in computation

−1

−0.5 0 0.5 1

−0.6

−0.4

−0.2 0 0.2 0.4 0.6

Cartesian body-fitted

(89)

Moving Cylindrical Vessel

Cartesian grid results with embedded moving boundary

time=2

(90)

Moving Cylindrical Vessel

Cartesian grid results with embedded stationary boundary

time=2

(91)

NACA0012 over heavier gas

Automatic time-marching grid

0 1 2 3

−1.5

−1

−0.5 0 0.5 1 1.5

0 1 2 3

−1.5

−1

−0.5 0 0.5 1 1.5

0 1 2 3

−1.5

−1

−0.5 0 0.5 1 1.5 a)

Grid system Density Pressure

(92)

NACA0012 over heavier gas

Automatic time-marching grid

0 1 2 3

−1.5

−1

−0.5 0 0.5 1 1.5

0 1 2 3

−1.5

−1

−0.5 0 0.5 1 1.5

SF 6

air

0 1 2 3

−1.5

−1

−0.5 0 0.5 1 1.5 b)

Grid system Density Pressure

(93)

NACA0012 over heavier gas

Automatic time-marching grid

0 1 2 3

−1.5

−1

−0.5 0 0.5 1 1.5

0 1 2 3

−1.5

−1

−0.5 0 0.5 1 1.5

SF 6

air c)

0 1 2 3

−1.5

−1

−0.5 0 0.5 1

Grid system Density 1.5 Pressure

(94)

Radially Symmetric Problem

0 0.2 0.4

0 0.1 0.2 0.3 0.4 0.5

0 0.2 0.4

0 0.1 0.2 0.3 0.4 0.5

0 0.2 0.4

0 0.1 0.2 0.3 0.4

Density Pressure 0.5 Physical grid

gas

liquid a) h 0 = 0.99

0.2 0.3 0.4 0.5

0.2 0.3 0.4 0.5

0.2 0.3 0.4

Density Pressure 0.5 Physical grid

liquid

b) h 0 = 0

(95)

Radially Symmetric Prob. (Cont.)

0 0.1 0.2 0.3 0.4 0.5

0.2 0.4 0.6 0.8 1 1.2

one−d h 0 =0 h 0 =0.99

0 0.1 0.2 0.3 0.4 0.5

0 0.1 0.2 0.3 0.4

0 0.1 0.2 0.3 0.4 0.5

0 0.5 1 1.5

0 0.1 0.2 0.3 0.4 0.5

0.5 1 1.5 2

r (m) r (m)

ρ (M g /m 3 ) ¯u (k m /s )

p (G P a ) J

gas liquid

(96)

Underwater Explosions

Numerical schlieren images h 0 = 0.9 , 800 × 500 grid

(97)

Underwater Explosions

Numerical schlieren images h 0 = 0.9 , 800 × 500 grid

(98)

Underwater Explosions

Numerical schlieren images h 0 = 0.9 , 800 × 500 grid

(99)

Underwater Explosions

Numerical schlieren images h 0 = 0.9 , 800 × 500 grid

(100)

Underwater Explosions

Numerical schlieren images h 0 = 0.9 , 800 × 500 grid

(101)

Underwater Explosions (Cont.)

Grid system (coarsen by factor 5 ) with h 0 = 0.9

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−1

−0.5 0 0.5

time=0ms

(102)

Underwater Explosions (Cont.)

Grid system (coarsen by factor 5 ) with h 0 = 0.9

−1

−0.5 0 0.5

time=0.2ms

(103)

Underwater Explosions (Cont.)

Grid system (coarsen by factor 5 ) with h 0 = 0.9

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−1

−0.5 0 0.5

time=0.4ms

(104)

Underwater Explosions (Cont.)

Grid system (coarsen by factor 5 ) with h 0 = 0.9

−1

−0.5 0 0.5

time=0.8ms

(105)

Underwater Explosions (Cont.)

Grid system (coarsen by factor 5 ) with h 0 = 0.9

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−1

−0.5 0 0.5

time=1.2ms

(106)

Underwater Explosions (Cont.)

Volume tracking & interface capturing results

(107)

Underwater Explosions (Cont.)

Generalized curvilinear grid: single bubble animation

Cartesian grid: multiple bubble animation

參考文獻

相關文件

In this section, we consider a solution of the Ricci flow starting from a compact manifold of dimension n 12 with positive isotropic curvature.. Our goal is to establish an analogue

Other advantages of our ProjPSO algorithm over current methods are (1) our experience is that the time required to generate the optimal design is gen- erally a lot faster than many

Our environmental policy is to promote environmental education in schools, to maintain a management system to improve the environmental quality of our activities, to adopt

This kind of algorithm has also been a powerful tool for solving many other optimization problems, including symmetric cone complementarity problems [15, 16, 20–22], symmetric

For a 4-connected plane triangulation G with at least four exterior vertices, the size of the grid can be reduced to (n/2 − 1) × (n/2) [13], [24], which is optimal in the sense

float *s, float *t, float *dsdx, float *dtdx, float *dsdy, float *dtdy) const =

The objective of the present paper is to develop a simulation model that effectively predicts the dynamic behaviors of a wind hydrogen system that comprises subsystems

The objective of this study is to establish a monthly water quality predicting model using a grammatical evolution (GE) programming system for Feitsui Reservoir in Northern