• 沒有找到結果。

大學線性代數初步

N/A
N/A
Protected

Academic year: 2022

Share "大學線性代數初步"

Copied!
31
0
0

加載中.... (立即查看全文)

全文

(1)

大學線性代數初步

大學數學

(2)

數學 大 學 線性代數 , 大

數 .

大 學 線性代數學 ,

學 線性代數 . 大學線性代數

. 學 大 大 ( ) 線性

代數 , . 大學 線性代數 , 大

學 數學 . 大 大 數學

, 學 , 線性代數

. , 線性代數

數學 . , .

, .

學 , 數學 學 , 線性

代數 . 線性代數 .

, . 學

. , (Question).

, 大

. , 線性代數 . ,

學 線性代數 學 線性代數 , .

, ,

代. , .

, . , 性

, . , .

v

(3)

Chapter 9

Eigenvalues and Eigenvectors

, n× n matrices eigenvalue eigenvector.

eigenvalue eigenvector 性 . n×n

matrix .

9.1. Characteristic Polynomial

n× n matrix A, v∈ Rn, 數學 Akv k

. Fibonacci sequence F1, F2, . . . . Fk+1= Fk+ Fk−1 數 . A =

[1 1 1 0 ]

k≥ 2 vk= [ Fk

Fk−1 ]

,

Avk= [1 1

1 0 ][ Fk

Fk−1 ]

=

[Fk+ Fk−1

Fk ]

= [Fk+1

Fk ]

= vk+1.

v3= Av2, v4= Av3= A(Av2) = A2v2, . . . , vk+1= Ak−1v2.

k≥ 2, Ak−1v2, Fk+1 .

k 大 , Akv . , λ ∈ R

Av =λv , A2v = A(Av) = A(λv) = λ(Av) = λ2v. A3v =λ3v, . . . ,

Akv =λkv. , Akv. v

λ ∈ R Av =λv . .

Definition 9.1.1. A n× n matrix. v∈ Rn, λ ∈ R

Av =λv, v A eigenvector, λ A eigenvalue.

, A eigenvector . v A eigenvector,

λ,λ∈ R Av =λv = λv, (λ − λ)v = O v̸= O, λ = λ. A

eigenvector v 數 λ Av =λv. eigenvector v

eigenvalue λ.

189

(4)

Question 9.1. A n× n matrix, v ∈ Rn Av = O. v

eigenvector? eigenvalue ?

n× n matrix eigenvector eigenvalue ?

eigenvalue, eigenvector. λ ∈ R A

eigenvalue, v∈ Rn Av =λv. Inv = v,

λv = (λIn)v. Av =λv (A−λIn)v = O. 言 ,λ A eigenvalue

n× n matrix A −λIn linear system (A−λIn)x = O nontrivial solution x = v.

Theorem 3.5.9, A−λIn invertible, Theorem 8.2.6(1)

det(A−λIn) = 0. 言 , A eigenvalueλ λ det(A−λIn) = 0.

λ det(A−λIn) = 0 ? A = [ai j], t 數, det(A−tIn).

A−tIn=





a1 1−t a1 2 ··· a1 n a2 1 a2 2−t ··· a2 n

... ... . .. ... an 1 an 2 ··· an n−t





數學 , det(A−tIn) tn 數 .

t =λ 數 , λ det(A−λIn) = 0, λ A

eigenvalue. , λ A eigenvalue, t =λ det(A−tIn)

. det(A−tIn) A eigenvalue,

.

Definition 9.1.2. A n× n matrix, tpA(t) = det(A−tIn).

pA(t) A characteristic polynomial ( )..

t =λ characteristic polynomial pA(t)

λ A eigenvalue. A Rn eigenvectors,

t =τ pA(t) ( 數 ), v∈ Rn Av =τv.

Av∈ Rn, τv ̸∈ Rn, Av =τv . , eigenvalue

characteristic polynomial .

Example 9.1.3. A =

 2 0 1 1 3 1 1 1 2

, A characteristic polynomial pA(t) =

det(A−tI3) = det

 2−t 0 1

1 3−t 1

1 1 2−t

. row

pA(t) = (2−t)det

[ 3−t 1 1 2−t

] + det

[ 1 3−t

1 1

]

= (2−t)(t2− 5t + 6 − 1) + (1 − (3 −t)).

pA(t) = (2−t)(t2− 5t + 4) = (2 −t)(t − 1)(t − 4). t = 1, 2, 4 A charac- teristic polynomial , A eigenvalues 1, 2, 4.

(5)

9.1. Characteristic Polynomial 191

A n×n matrix , characteristic polynomial det(A−tIn)

t . determinant , . 數學

column

row. 2×2 matrix

[ a b c d

]

characteristic polynomial det

[ a−t b c d−t

]

t (a− t)(d − t) bc

數 , t2 t(a−t)(d −t) t2 t

at2− (a + d)t . 3× 3 matrix A =

a b c d e f g h i

 characteristic polynomial.

row det

a−t b c

d e−t f

g h i−t

 = (a −t)det[

e−t f h i−t

]

− bdet

[ d f g i−t

] + c det

[ d e−t

g h

] .

前 2× 2 det

[ e−t f h i−t

]

t2 t

(e− t)(i − t) t2 t 數 , (a− t)(e − t)(i − t) t3 t2 數.

det

[ d f g i−t

] det

[ d e−t

g h

]

t , det(A− tI3) t3 t2

(a−t)(e −t)(i −t) . A chacteristic polynomial pA(t)

3 (−1)3t3+ (−1)2(a + e + i). a, e, i A diagonal

entries, a + e + i A trace, tr(A) . 數學 ,

A = [ai j] n× n matrix , A characteristic polynomial pA(t) = det(A−tIn)

t n 數 , (a1 1−t)(a2 2−t)···(an n−t)

(−1)ntn+ (−1)n−1(a1 1+··· + an n)tn−1. A diagonal entries a1 1+··· + an n

tr(A), .

Proposition 9.1.4. A n×n matrix. A characteristic polynomial t n. tn 數 (−1)n, tn−1 數 (−1)n−1tr(A) 數 數 det(A).

Proof. pA(t) = det(A−tIn), 前 pA(t) 數 . pA(t)

pA(0) = det(A− 0In) = det(A). 

Question 9.2. A n× n matrix. A eigenvalues?

eigenvalue . λ ∈ R A eigenvalue. t =λ

A characteristic polynomial pA(t) = det(A−tIn) . t−λ pA(t). (t−λ)m pA(t), (t−λ)m+1 pA(t), eigenvalueλ

algebraic multiplicity (代數 數) m. t =λ pA(t) , λ

algebraic multiplicity 1.

Question 9.3. Identity matrix In eigenvalue ? algebraic multiplicity ?

characteristic polynomial 性 . n× n

matrices characteristic polynomial . ,

(6)

characteristic polynomial . A, B n× n matrices, n× n invertible matrix U, B = U−1AU , A, B similar (

). A B characteristic polynomial .

Proposition 9.1.5. A, B n× n matrices n× n invertible matrix U B = U−1AU . A B characteristic polynomial.

Proof. B characteristic polynomial det(B−tIn) = det(U−1AU−tIn).

U−1(A−tIn)U = U−1AU−U−1(tIn)U = U−1AU−tU−1InU = U−1AU−tIn. determinant 性 (Theorem 8.2.6)

det(B−tIn) = det(U−1(A−tIn)U ) = det(U−1) det(A−tIn) det(U ) = det(A−tIn).

A B characteristic polynomial. 

characteristic polynomial A AT characteris- tic polynomial.

Proposition 9.1.6. A n×n matrix, A AT characteristic polynomial Proof. trnaspose 性 (A− tIn)T = AT− tInT= AT− tIn (Proposition 3.2.4),

Theorem 8.2.6 (3),

PAT(t) = det(AT−tIn) = det((A−tIn)T) = det(A−tIn) = PA(t).



Question 9.4. A AT eigenvalues eigenvalue A AT

algebraic multiplicity . 9.2. Eigenspace

n× n matrix eigenvalue , eigenvalue eigenvectors.

A n× n matrix λ ∈ R A eigenvalue. det(A−λIn) = 0, (A−λIn)x = O nontrivial solution. v∈ Rn

x = v (A−λIn)x = O . v (A−λIn)v = O, Av =λv.

v A λ eigenvalue eigenvector. , v A λ eigenvalue

eigenvector, x = v (A−λIn)x = O nontrivial solution.

n× n matrix A −λIn nullspace ( {v ∈ Rn| (A −λIn)v = O}) A

λ eigenvector. nullspace vector space, .

Definition 9.2.1. A n× n matrix λ ∈ R A eigenvalue. A−λIn

nullspace A eigenvalueλ eigenspace. EA(λ) .

(7)

9.2. Eigenspace 193

λ eigenspace λ eigenvalue eigenvectors .

O eigenvector, vector space O. λ eigenspace

λ eigenvalue eigenvectors O . vector space

? vector space 性, vector space dimension

大 . EA(λ) dimension eigenvalue λ geometric multiplicity

( 數). eigenvalue λ algebraic multiplicity λ

eigenvectors , λ geometric multiplicity .

Example 9.2.2. A =

−1 4 2

−1 3 1

−1 2 2

, B =

 0 3 1

−1 3 1

0 1 1

. A B

characteristic polynomial−(t − 1)2(t− 2). 1 2 A B eigenvalues.

A B, eigenvalue 1 algebraic multiplicity 2, eigenvalue 2 algebraic

multiplicity 1. A B eigenspace.

A eigenvalue 1 eigenspace, A− I3 =

−2 4 2

−1 2 1

−1 2 1

null space. elementary row operations, echelon form

 1 −2 −1

0 0 0

0 0 0

.

EA(1) = Span(

2 1 0

,

1 0 1

). A eigenvalue 1 eigenvector

2 1 0

1 0 1

 linear combination nonzero vector. v =

4 1 2

 =

2 1 0

 + 2

1 0 1

Av =

−1 4 2

−1 3 1

−1 2 2

4 1 2

 =

4 1 2

 = v.

dim(EA(1)) = 2, A eigenvalue 1 geometric multiplicity 2.

A eigenvalue 2 eigenspace, A− 2I3 =

−3 4 2

−1 1 1

−1 2 0

 null space.

elementary row operations, echelon form

 1 −2 0

0 1 −1

0 0 0

. EA(2) =

Span(

2 1 1

). A eigenvalue 2 eigenvector

2 1 1

 nonzero vector, A eigenvalue 2 geometric multiplicity 1.

(8)

B eigenvalue 1 eigenspace, B− I3=

−1 3 1

−1 2 1 0 1 0

 null space.

elementary row operations, echelon form

 1 0 −1

0 1 0

0 0 0

. EB(1) = Span(

1 0 1

).

B eigenvalue 1 eigenvector

1 0 1

 nonzero vector,

B eigenvalue 1 geometric multiplicity 1. B eigenvalue 2 eigenspace, B− 2I3=

−2 3 1

−1 1 1

0 1 −1

 null space. elementary row

operations, echelon form

 1 0 −2 0 1 −1

0 0 0

. EA(2) = Span(

2 1 1

). A

eigenvalue 2 eigenvector

2 1 1

 nonzero vector, A

eigenvalue 2 geometric multiplicity 1.

Example 9.2.2 characteristic polynomial,

eigenvectors 大 , eigenspace dimension .

eigenvalues algebraic multiplicity , geometric multiplicity .

Question 9.5. Identity matrix In eigenvalue geometric multiplicity ?

Proposition 9.1.6 A AT characteristic polynomial eigenvalue eigenvalue A AT algebraic multiplicity .

geometric multiplicity , .

Proposition 9.2.3. A n× n matrix λ ∈ R A eigenvalue. λ A geometric multiplicity λ AT geometric multiplicity .

Proof. dim(EA(λ)) = dim(EAT(λ)), dim(N(A−λIn)) = dim(N(AT−λIn)).

Theorem 4.4.13 dim(N(A−λIn)) = null(A−λIn) = n−rank(A−λIn), A∈ Mn×n

dim(N(AT−λIn)) = n−rank(AT−λIn). AT−λIn= (A−λIn)T rank((A−λIn)T) = rank(A−λIn) (Proposition 4.4.14), dim(N(A−λIn)) = dim(N(AT−λIn)). 

v A eigenvector, eigenvalue λ, v nonzero vector

eigenvalue λ eigenvector. v, w A eigenvectors

eigenvalue , v, w . v, w linearly independent.

.

(9)

9.3. Diagonalization 195

Proposition 9.2.4. A n×n matrix v1, . . . , vk A eigenvectors. v1, . . . , vk eigenvalues , v1, . . . , vk linearly independent.

Proof. 數學 . 前 k = 2 , k− 1

eigenvectors . k eigenvectors . v1, . . . , vk A

eigenvectors eigenvalue λ1, . . . ,λk ( Aviivi, for i = 1, . . . , n).

v1, . . . , vk−1 linearly independent. , v1, . . . , vk−1, vk linearly dependent. Lemma 4.2.4, vk ∈ Span(v1, . . . , vk−1). c1, . . . , ck−1∈ R

vk= c1v1+··· + ck−1vk−1 (9.1) eigenvector

λkvk= Avk= A(c1v1+··· + ck−1vk−1) = c1Av1+··· + ck−1Avk−1= c1λ1v1+···ck−1λk−1vk−1. (9.2)

(9.1) λk (9.2)

c1kλ1)v1+··· + ck−1k−λk−1)vk−1= O. (9.3)

vk ̸= O, c1, . . . , ck−1 0. eigenvalue , i =

1, . . . , k− 1, λkλi̸= 0. c1kλ1), . . . , ck−1kλk−1) 0 數.

, (9.3) v1, . . . , vk−1 linearly dependent, ,

. 

9.3. Diagonalization

A n× n matrix, v A eigenvector eigenvalue

λ, Akv =λkv. v A eigenvector ?

, Akv . , v1, . . . , v∈ Rn Rn

basis A eigenvectors , Akv.

v∈ Rn, basis c1, . . . , cn∈ R v = c1v1+··· + cnvn. v1, . . . , vn

eigenvalues λ1, . . . ,λn,

Av = A(c1v1+··· + cnvn) = c1Av1+··· + cnAvn= c1λ1v1+··· + cnλnvn. A

A2v = A(Av) = A(c1λ1v1+··· + cnλnvn) = c1λ1Av1+··· + cnλnAvn= c1λ12v1+··· + cnλn2vn. 數學

Akv = c1λ1kv1+··· + cnλnkvn.

matrix .

Definition 9.3.1. A n× n matrix. Rn basis v1, . . . , vn vi A eigenvectors, A diagonalizable ( ).

(10)

diagonalizable ? v1, . . . , v∈ Rn Rn basis A eigenvectors, eigenvalues λ1, . . . ,λn. Av11v1, . . . , Avn= λnvn.

A

 v 1 v2 ··· v n

 =

Av 1 Av 2 ··· Av n

 =

λ1v1 λ2v2 ··· λnvn

.

(i, i)-th entry λi n× n diagonal matrix (i λi

線 0),

 v1 v2 ··· vn

D =

 v1 v2 ··· vn





λ1 0 ··· 0 0 λ2 ··· 0 ... ... . .. ...

0 0 0 λn



=

λ1v1 λ2v2 ··· λ3vn

.

C =

 v 1 v2 ··· v n

, AC = CD. C column linearly

independent n column, C rank n, C n×n matrix C

invertible ( Theorem 3.5.2). AC = CD D = C−1AC. ,

n× n invertible matrix C−1AC diagonal matrix D, C n× n invertible

matrix, C n column vectors Rn basis. AC = CD,

C i-th column A D (i, i)-th entry eigenvalue eigenvector.

C column vectors Rn basis A eigenvectors, A

diagonalizable. 前 , U−1AU ( U n× n invertible matrix)

matrix A similar matrix. , A diagonalizable

A diagonal matrix similar. diagonalizable .

n×n matrix A diagonalizable ? ,

eigenvectors. A eigenvectors

A diagonalizable. eigenvectors eigenvalues,

A characteristic polynomial R . λ1, . . . ,λk∈ R pA(t) = (−1)n(t−λ1)m1···(t −λk)mk. i = 1, . . . , k, mi λi

algebraic multiplicity pA(t)n, m1+···+mk= n.

eigenvalue, geometric multiplicity algebraic multiplicity.

A eigenvectors , eigenvalue geometric multiplicity

algebraic multiplicity. i = 1, . . . , k,λi geometric multiplicity algebraic multiplicity, dim(EAi)) = mi. vi,1, . . . , vi,mi EAi) basis. k vectors , v1,1, . . . , v1,m1, . . . , vk,1, . . . , vk,mk

linearly independent. Rn m1+··· + mk = n ,

Corollary 4.3.5, Rn basis. A eigenvectors,

A diagonalizable.

(11)

9.3. Diagonalization 197

v1,1, . . . , v1,m1, . . . , vk,1, . . . , vk,mk linearly dependent. 0 數 c1,1, . . . , c1,m1, . . . , ck,1, . . . , ck,mk

c1,1v1,1+··· + c1,m1v1,m1+··· + ck,1vk,1+··· + ck,mkvk,mk= O.

i∈ {1,...,k}, wi = ci,1vi,1+··· + ci,mivi,mi. vi,1, . . . , vi,mi linearly independent, ci,1, . . . , ci,mi 0, wi ̸= O. wi∈ EAi),

wi eigenvalue λi eigenvector. , ci, j̸= 0,

i, wi eigenvalue λi eigenvectors w1+··· + wk = O. Proposition

9.2.4 , eigenvalue eigenvectors linearly independent ,

v1,1, . . . , v1,m1, . . . , vk,1, . . . , vk,mk linearly independent. A

characteristic polynomial R A eigenvalue geometric

multiplicity algebraic multiplicity, A diagonalizable.

, A diagonalizable, A characteristic polynomial

R A eigenvalue geometric multiplicity algebraic

multiplicity. 前 前 eigenvalue geometric

multiplicity algebraic multiplicity.

Proposition 9.3.2. A n× n matrix. λ A eigenvalue geometric multiplicity d algebraic multiplicity m, d≤ m.

Proof. dim(EA(λ)) = d, v1, . . . , vd EA(λ) basis. v1, . . . , vd

linearly independent, Rn basis v1, . . . , vd, vd+1, . . . , vn. C

i-th column vi n× n invertible matrix. AC = CE

E =

[ λId M1

O M2

]

. 1-st column , 數學 det(E− tIn) =

(λ −t)ddet(M2−tIn−d). 言 , E characteristic polynomial (t−λ)d . A E similar ( E = C−1AC), characteristic polynomial ( Proposition 9.1.5), (t−λ)d pA(t). λ algebraic multiplicity m,

m t−λ pA(t) 數, d≤ m. 

n× n matrix A diagonalizable. v1,1, . . . , v1,d1, . . . , vk,1, . . . , vk,dk Rn basis, i∈ {1,...,k}, vi,1, . . . , vi,di A λi eigenvalue eigenvector, λ1, . . . ,λk . vi,1, . . . , vi,di ∈ EAi) linearly independent, λi

geometric multiplicity dim(EAi))≥ di. λi algebraic multiplicity mi, Proposition 9.3.2

mi≥ dim(EAi))≥ di,∀i = 1,...,k. (9.4) m1+··· + mk A characteristic polynomial pA(t) 數 ( ),

pA(t) 數 n. m1+···+mk Rn dimension, n. (9.4) i = 1, . . . , k

n≥ m1+··· + mk≥ dim(EAi)) +··· + dim(EAk))≥ d1+··· + dk= n.

(12)

≥” “=” ( n > n ).

n = m1+··· + mk ( pA(t) 數 ) mi= dim(EAi)),∀i = 1,...,k ( eigenvalue geometric multiplicity algebraic multiplicity).

.

Theorem 9.3.3. A n× n matrix. .

(1) Rn basis A eigenvectors .

(2) n× n invertible matrix C C−1AC diagonal matrix.

(3) A characteristic polynomialA eigenvalue

geometric multiplicity algebraic multiplicity.

diagonalizable matrix , Theorem 9.3.3

diagonalizable , (3) .

Question 9.6. A n× n matrix. A diagonalizable AT diagonalizable.

Example 9.3.4. Example 9.2.2 A =

−1 4 2

−1 3 1

−1 2 2

, B =

 0 3 1

−1 3 1

0 1 1

.

前 characteristic polynomial−(t −1)2(t−2). A, B eigenvalue 1 algebraic multiplicity 2, eigenvalue 2 algebraic multiplicity 1.

Example 9.2.2 B eigenvalue 1 geometric multiplicity 1, B diagonalizable matrix. , A eigenvalue 1 eigenvalue 2 geometric multiplicity

algebraic multiplicity, A diagonalizable matrix. A . A eigenvalue 1 2 eigenspace EA(1) = Span(

2 1 0

,

1 0 1

)

EA(2) = Span(

2 1 1

),

2 1 0

,

1 0 1

,

2 1 1

A eigenvectors R3

basis. C =

 2 1 2 1 0 1 0 1 1

D =

 1 0 0 0 1 0 0 0 2

,

AC =

−1 4 2

−1 3 1

−1 2 2

 2 1 2 1 0 1 0 1 1

 =

 2 1 4 1 0 2 0 1 2

 =

 2 1 2 1 0 1 0 1 1

 1 0 0 0 1 0 0 0 2

 = CD.

C invertible, C−1AC = D.

, A eigenvalueλ geometric multiplicity 大 0 ( λ eigenvector ) algebraic multiplicity (Proposition 9.3.2).

λ A characteristic polynomial ( λ algebraic multiplicity 1), geometric multiplicity algebraic multiplicity ( 1).

(13)

9.4. The Spectral Theorem 199

diagonalizable , algebraic multiplicity 1 eigenvalue

geometric multiplicity . , A characteristic polynomial R

( ), A diagonalizable.

diagonalizable, symmetric matrix. symmetric

matrix diagonalizable.

9.4. The Spectral Theorem

symmetric matrix. symmetric matrix diago-

nalizable, orthogonal diagonalizable. 數學

, , symmetric

matrix .

2× 2 symmetric matrix . A =

[ a b b c

]

, b̸= 0 (

b = 0, A diagonal matrix ). A characteristic polynomial

PA(t) = t2−(a+c)t +(ac−b2). pA(t) (a + c)2−4(ac−b2) = (a−c)2+ 4b2> 0,

PA(t) = 0 λ1,λ2. λ1,λ2 A eigenvealue, A

diagonalizable. v1= [ b

λ1− a ]

,

Av1= [ a b

b c

][ b λ1− a

]

=

[ λ1b b21c− ac

]

1

[ b λ1− a

]

1v1.

λ12−(a+c)λ1+ (ac−b2) = 0. b̸= 0, v1̸= O, v1 A eigenvector eigenvalue λ1. v2=

[ b λ2− a

]

, v2 A eigenvector

eigenvalue λ2. , ⟨v1, v2⟩ = b21λ2−a(λ12) + a2. 數 , λ1λ2= ac− b2 λ12= a + c, ⟨v1, v2⟩ = 0. v1, v2 R2 basis

A eigenvectors , . diagonalizable

orthogonal diagonalizable. .

Definition 9.4.1. A∈ Mn×n, Rn orthogonal basis v1, . . . , vn vi A eigenvectors, A orthogonal diagonalizable.

, Definition 9.4.1 ui= ∥v1

ivi u1, . . . , un Rn orthonormal basis A eigenvectors. A orthogonal diagonalizable Rn

orthonormal basis A eigenvector . ui eigenvalue λi

Q =

 u 1 u2 ··· u n

AQ = QD D (i, i)-th entry λi diagonal matrix,

A Q−1AQ = D. eigenvectors basis

, u1, . . . , un orthonormal basis ?

u1, . . . , un Rn orthonormal basis , QTQ = In, inverse matrix 性, QT= Q−1. Q column vectors Rn orthonormal basis

(14)

, Q−1= QT. 性, n× n matrix column vectors

Rn orthonormal basis , orthogonal matrix (

orthonormal matrix). A QTAQ = D, A orthogonal

diagonalizable.

Question 9.7. Q∈ Mn×n, Q−1= QT Q orthogonal matrix?

, Q n× n orthogonal matrix D =

 λ1

. ..

 n× n diagonal

matrix QTAQ = D. AQ = QD, Q i-th column A eigenvalue λi

eigenvector, Q column vectors Rn orthonormal basis, .

Proposition 9.4.2. A∈ Mn×n. A orthogonal diagonalizable n×n orthogonal matrix Q QTAQ diagonal matrix.

Proposition 9.4.2, A orthogonal diagonalizable Q, D∈ Mn×n

Q orthogonal matrix, D diagonal matrix A = QDQT. AT= (QDQT)T= (QT)TDTQT. (QT)T= Q DT= D ( D diagonal matrix), AT= QDQT= A,

A symmetric. .

Corollary 9.4.3. A∈ Mn×n orthogonal diagonalizable, A symmetric matrix.

Spectral Theorem Corollary 9.4.3 .

A symmetric , A orthogonal diagonalizable. symmetric

matrix .

Lemma 9.4.4. A∈ Mn×n symmetric, v, w∈ Rn ⟨Av,w⟩ = ⟨v,Aw⟩.

Proof. , , v, w∈ Rn ⟨v,w⟩ = vTw

( v, w n× 1 matrix).

⟨Av,w⟩ = (Av)Tw = (vTAT)w = vT(ATw) =⟨v,ATw⟩.

AT= A ⟨Av,w⟩ = ⟨v,Aw⟩. 

n× n matrix diagonalizable characteristic

polynomial 數 . symmetric matrix

characteristic polynomial 數 .

Lemma 9.4.5. A∈ Mn×n symmetric, A characteristic polynomial pA(t) .

(15)

9.4. The Spectral Theorem 201

Proof. λ = a + bı ( ıı2=−1) pA(t) , a, b∈ R

b̸= 0. 數 , entry 數 .

數 . a + bı pA(t) , A− (a + bı)In

0. A− (a + bı)In A− (a − bı)In

(A− (a + bı)In)(A− (a − bı)In) = A2− 2aA + (a2+ b2)In.

a, b∈ R A 數 , A2− 2aA + (a2+ b2)In 數 . det(A− (a + bı)In) = 0,

det(A2− 2aA + (a2+ b2)In) = det(A− (a + bı)In) det(A− (a − bı)In) = 0.

A2− 2aA + (a2+ b2)In singular, v∈ Rn v̸= 0 (A2− 2aA + (a2+ b2)In)v = A2v− 2aAv + (a2+ b2)v = O.

⟨A2v− 2aAv + (a2+ b2)v, v⟩ = ⟨A2v, v⟩ − 2a⟨Av,v⟩ + a2⟨v,v⟩ + b2⟨v,v⟩.

A symmetric, Lemma 9.4.4 ⟨A2v, v⟩ = ⟨A(Av),v⟩ = ⟨Av,Av⟩,

⟨Av − av,Av − av⟩ + b2⟨v,v⟩ = ⟨A2v, v⟩ − 2a⟨Av,v⟩ + a2⟨v,v⟩ + b2⟨v,v⟩,

∥Av − av∥2+ b2∥v∥2=⟨A2v− 2aAv + (a2+ b2)v, v⟩ = ⟨O,v⟩ = 0.

∥Av − av∥ ≥ 0, ∥v∥ > 0, b = 0.b̸= 0 , pA(t) = 0

, . 

symmetric matrix characteristic polynomial ,

symmetric matrix orthogonal diagonalizable. 數學 ,

2× 2 symmetric matrix orthogonal diagonalizable. (n− 1) × (n− 1) symmetric matrix orthogonal diagonalizable. A n× n symmetric matrix orthogonal diagonalizable. Lemma 9.4.5 數 λ A eigenvalue. u1 A λ eigenvector ∥u1∥ = 1. Gram-Schmidt process, u1 Rn orthonormal basis u1, . . . , un. orthogonal matrix Q =

 u 1 u2 ··· u n

, j = 1, . . . , n Auj= c1 ju1+···+cn jun,

AQ = QC, C = [ci j]. Q orthogonal matrix, C = Q−1AQ = QTAQ.

A symmetric CT= QTAQ = C, C symmetric.

Au1=λu1, C 1-st column



 λ

0 ... 0



, C symmetric C 1-st row

(16)

[λ 0 ··· 0]. C

C =





λ 0 ··· 0 0

... B 0



.

C symmetric, B (n− 1) × (n − 1) symmetric matrix. ,

B orthogonal diagonalizable, w1, . . . , wn−1 Rn−1 orthonomal basis B eigenvectors. R =

w 1 w2 ··· wn −1

, R (n− 1) × (n − 1) orthogonal matrix (n− 1) × (n − 1) digonal matrix D RTBR = D.

P =





1 0 ··· 0 0... R 0



. ,

PTCP =





λ 0 ··· 0

0

... RTBR 0



=





λ 0 ··· 0 0

... D 0



.

PTCP diagonal matrix, (QP)TA(QP) = PT(QTAQ)P = PTCP diagonal matrix. Q, P orthogonal matrix, (QP)T(QP) = PT(QTQ)P = PTP = In,

QP orthogonal matrix. Proposition 9.4.2, A orthogonal diagonalizable, Spectral Theorem.

Theorem 9.4.6 (Spectral Theorem). A n×n symmetric matrix, A orthogonal diagonalizable.

, n× n symmetric matrix A, orthogonal matrix Q

QTAQ diagonal matrix. , Theorem 9.4.6 , 數學

步 步 Q . Gram-Schmidt process, .

Proposition, 步 .

Proposition 9.4.7. A n× n symmetric matrix. v, w∈ Rn A eigenvectors eigenvalue 數, ⟨v,w⟩ = 0.

Proof. v, w eigenvalue λ,λ. Av =λv,Aw = λw.

⟨Av,w⟩ = ⟨λv,w⟩ = λ⟨v,w⟩. ⟨v,Aw⟩ =λ⟨v,w⟩. Lemma 9.4.4

⟨Av,w⟩ = ⟨v,Aw⟩, (λ − λ)⟨v,w⟩ = 0. λ ̸= λ ⟨v,w⟩ = 0. 

A n× n symmetric matrix, A eigenvectors

Rn orthonormal basis. A eigenvaluesλ1, . . . ,λk, eigenspace EA1), . . . , EAk). EAi) basis ,

(17)

9.4. The Spectral Theorem 203

A diagonalizable Rn basis. Proposition 9.4.7 , λi̸=λj

, EAi) EAj) . EAi) basis

. Gram-Schmidt process A eigenspace

EAi) orthonormal basis. eigenspace basis

, A eigenvectors Rn orthonormal basis.

.

Example 9.4.8. (1) symmetric matrix A =

 0 1 1 1 1 0 1 0 1

. A characteristic polynomial pA(t) =−(t + 1)(t − 1)(t − 2). A eigenvalues, −1,1,2.

A , Proposition 9.4.7 eigenvector .

−1,1,2 eigenvector

v1=

−2 1 1

, v2=

 0

−1 1

, v3=

1 1 1

.

. i = 1, 2, 3 ui=∥v1

ivi,

u1= 1

6

−2 1 1

, u2= 1

2

 0

−1 1

, u3= 1

3

1 1 1

R3 orthonromal basis. A



26 16 16 0 12 12

1 3

1 3

1 3



 0 1 1 1 1 0 1 0 1



26 0 1

1 3

6 12 13

1 6

1 2

1 3

 =

−1 0 0

0 1 0

0 0 2

.

(2) symmetric matrix B =

 5 −4 −2

−4 5 −2

−2 −2 8

. B characteristic poly-

nomial pB(t) =−t(t − 9)2. B eigenvalues 0, 9. B , dim(EB(0)) = 1, dim(EB(9)) = 9. v1=

2 2 1

EB(0) = N(B) basis, v2=

−1 1 0

,v3=

−1 0 2

EB(9) basis. Proposition 9.4.7 ⟨v1, v2⟩ = ⟨v1, v3⟩ = 0, . ⟨v2, v3⟩ = 1 ̸= 0, Gram-Schmidt process v2, v3 EB(9) orthogonal basis. w2= v2

w3= v3− Projw2v3=

−1 0 2

 −1 2

−1 1 0

 = 1 2

−1

−1 4

.

(18)

u1=∥v1

1v1, u2=∥w1

2w2, u3=∥w1

3w3 u1= 1

3

2 2 1

, u2= 1

2

−1 1 0

, u3= 1 3

2

−1

−1 4

R3 orthonromal basis. B



2 3

2 3

1

12 12 03

312 312 342



 5 −4 −2

−4 5 −2

−2 −2 8



2

3 12 312

2 3

1

2 312

1

3 0 4

3 2

 =

 0 0 0 0 9 0 0 0 9

.

9.5. Application: Conics and Quadric Surfaces

symmetric matrix orthogonal diagonalizable 性

線 ,

.

線 .

, quadratic form . n

數 quadratic form

n i, j=1

ai jxixj

. x2+ 3xy− y2, 3x2+ y2− z2+ 5xy + xz + 3yz 數 數 quadratic form. x =

 x1

... xn

, n 數 quadratic form

xTAx , A n× n symmetric matrix. 數 quadratic form

ax21+ bx1x2+ cx22

ax21+ bx1x2+ cx22=[

x1 x2 ][ a b/2 b/2 c

][x1 x2 ]

.quadratic form ax21+ bx22+ cx23+ rx1x2+ sx1x3+ tx2x3

ax21+ bx22+ cx23+ rx1x2+ sx1x3+ tx2x3=[

x1 x2 x3

]

a r/2 s/2 r/2 b t/2 s/2 t/2 c

x1

x2

x3

.

quadratic form A symmetric, orthogonal

matrix Q QTAQ diagonal matrix

 λ1

. ..

λn

. 數 x =

 x1

... xn



t =

 t1

... tn

 t = QTx ( QT= Q−1, x = Q t),

xTAx = (Q t)TA(Q t) = tT(QTAQ) t =[

t1 ··· tn

]

 λ1

. ..

λn



 t1

... tn

 = λ1t12+··· +λntn2.

(19)

9.5. Application: Conics and Quadric Surfaces 205

, 數 quadratic form .

.

Example 9.5.1. quadratic form x21+ 4x1x2− 2x22. x21+ 4x1x2− 2x22=[

x1 x2

][ 1 2 2 −2

][x1 x2

] . [ 1 2

2 −2 ]

symmetric matrix, orthogonal diagonalizable, [ 2/√

5 1/√ 5

−1/√

5 2/√ 5

][ 1 2 2 −2

][ 2/√

5 −1/√ 5 1/√

5 2/√ 5

]

=

[ 2 0 0 −3

] . [t1

t2

]

=

[ 2/√

5 1/√ 5

−1/√

5 2/√ 5

][x1

x2

]

[ x1 x2

][ 1 2 2 −2

][x1

x2

]

=[ t1 t2

][ 2 0 0 −3

][t1

t2

]

= 2t12− 3t22. quadratic form x22+ x23+ 2x1x2+ 2x1x3,

x22+ x23+ 2x1x2+ 2x1x3=[

x1 x2 x3

]

 0 1 1 1 1 0 1 0 1

x1

x2

x3

.

Example 9.4.8 QT

 0 1 1 1 1 0 1 0 1

Q =

−1 0 0

0 1 0

0 0 2

Q orthogonal

matrix



26 0 1 1 3

6 12 13

1 6

1 2

1 3

.

t1

t2

t3

 =



26 16 16 0 12 12

1 3

1 3

1 3



x1

x2

x3

[ x1 x2 x3 ]

 0 1 1 1 1 0 1 0 1

x1 x2 x3

 = [ t1 t2 t3 ]

−1 0 0

0 1 0

0 0 2

t1 t2 t3

 = −t12+ t22+ 2t32.

線 . 線 ax2+ bxy +

cy2+ dx + ey + f = 0. ,

[ x y ][ a b/2 b/2 c

][x y ]

+[

d e ][x y ]

+ f = 0. (9.5)

symmetric matrix A =

[ a b/2 b/2 c

]

QTAQ =

[ λ1 0 0 λ2

] . 數

[x y ]

= QT [x

y ]

(

[x y ]

= Q [x

y ]

), (9.5)

[ x y ][ λ1 0 0 λ2

][x y ]

+[

d e ] Q

[x y ]

+ f = 0.

λ1x22y2+ dx + ey + f = 0, (9.6) [ d e ]

=[

d e ] Q.

參考文獻

相關文件

augmented matrix [A |I 4 ], elementary row operation A

column vector

, A echelon form ( reduced echelon form) pivot column vectors.. elementary row operations column

若我們能知道有 k 個 row 的矩陣一 定能利用 elementary row operations 化為 echelon form 這個事實且利用這個事實證得有 k + 1 個 row 的矩陣一定能利用 elementary row

elementary row operations reduced echelon form,.. echelon form Gauss

Lemma 4.5.. Then, the proof is complete.. By Theorem 4.1 and Theorem 4.6, the conclusion is drawn. Baes, Convexity and differentiability properties of spectral functions and

We will give a quasi-spectral characterization of a connected bipartite weighted 2-punctually distance-regular graph whose halved graphs are distance-regular.. In the case the

Miroslav Fiedler, Praha, Algebraic connectivity of graphs, Czechoslovak Mathematical Journal 23 (98) 1973,