• 沒有找到結果。

行政院國家科學委員會專題研究計畫 成果報告

N/A
N/A
Protected

Academic year: 2022

Share "行政院國家科學委員會專題研究計畫 成果報告"

Copied!
44
0
0

加載中.... (立即查看全文)

全文

(1)

行政院國家科學委員會專題研究計畫 成果報告

數值分析建築物整合鋪設穩態形狀相變材料板(SSPCM)及主 動式外表帷幕系統(ABE)之空調效應

研究成果報告(精簡版)

計 畫 類 別 : 個別型

計 畫 編 號 : NSC 98-2221-E-216-047-

執 行 期 間 : 98 年 08 月 01 日至 99 年 07 月 31 日 執 行 單 位 : 中華大學機械與航太工程研究所

計 畫 主 持 人 : 蔡博章

計畫參與人員: 碩士班研究生-兼任助理人員:楊位盛 碩士班研究生-兼任助理人員:潘俊良

報 告 附 件 : 赴大陸地區研究心得報告

出席國際會議研究心得報告及發表論文

處 理 方 式 : 本計畫涉及專利或其他智慧財產權,2 年後可公開查詢

中 華 民 國 99 年 10 月 31 日

(2)

行政院國家科學委員會補助專題研究計畫 ■ 成 果 報 告

□期中進度報告

數值分析建築物整合鋪設穩態形狀相變材料板(SSPCM)及主動式外表帷幕系統(ABE)之 空調效應

計畫類別: ■ 個別型計畫 □整合型計畫

計畫編號:NSC - 98-2221- E - 216 -047 執行期間: 2009 年 08 月 01 日至 2010 年 07 月 31 日 執行機構及系所:

中華大學機械工程研究所

計畫主持人: 蔡博章 共同主持人:

計畫參與人員:楊位盛、潘俊良

成果報告類型(依經費核定清單規定繳交): ■ 精簡報告 □完整報告

本計畫除繳交成果報告外,另須繳交以下出國心得報告:

□赴國外出差或研習心得報告

■ 赴大陸地區出差或研習心得報告

■ 出席國際學術會議心得報告

□國際合作研究計畫國外研究報告

處理方式:除列管計畫及下列情形者外,得立即公開查詢

□涉及專利或其他智慧財產權,□一年 ■ 二年後可公開查詢 中 華 民 國 99 年 10 月 25 日

附件一

(3)

目錄:

附件一: 行政院國家科學委員會補助專題研究計畫成果報告 一、 目錄

二、 報告內容 三、 參考文獻 四、 計畫成果自評

附件二: 國科會補助專題研究計畫成果報告自評表 附件三: 國科會補助計畫衍生研發成果推廣資料表

附件四: 國科會補助專題研究計畫項下出席國際學術會議心得報告

附件五: 國科會補助專題研究計畫項下赴國外(或大陸地區)出差或研習心得

報告

(4)

Numerical HVAC analysis of shape-stabilized phase change material plates coupling an active building envelope system in a building

蔡博章1、楊位盛2、潘俊良3

1中華大學機械與航太工程研究所教授

2,3中華大學機械與航太工程研究所研究生

國科會計畫編號. : NSC-98-2221-E-216-047

Abstract

Effect of shape-stabilized phase change material (SSPCM) plates combined with night ventilation in summer is investigated numerically. A building in Hsinchu, Taiwan without active air-conditioning is considered for analysis, which includes SSPCM plates as inner linings of walls、 the ceiling and floor, and an active building envelope system (ABE) is installed as well in the room becomes the Hybrid system. Unsteady simulation is performed using a verified enthalpy model, with time period covering the summer season. In the present study, a kind of floor with SSPCM is put forward which can absorb the solar radiation energy in the daytime or in summer and release the heat at night or in winter. In the present paper, the thermal performance of a room using such floor、wall and ceiling were numerically studied. Results show that the average indoor air temperature of a room with the SSPCM floor was about 2 K to 4 K higher than that of the room without SSPCM floor, and the indoor air temperature swing range was narrowed greatly. This manifests that applying SSPCM in room suitably can increase the thermal comfort degree and save space heating energy in winter.

Keywords: Shape-stabilized phase change material, active building envelope system, HVAC, renewable energy

I. Introduction

The scientists all over the world are in search of new and renewable energy sources. One of the options is to develop energy storage devices, which are as important as developing new sources of energy. The storage of energy in suitable forms, which can conventionally be converted into the required form, is a present day challenge to the technologists. Energy storage not only reduces the mismatch between supply and demand but also improves the performance and reliability of energy systems and plays an important role in conserving the energy [1, 2]. It leads to saving of premium fuels and makes the system more cost effective by reducing the wastage of energy and capital cost. For example, storage would improve the performance of a power generation plant by load leveling and higher efficiency would lead

to energy conservation and lesser generation cost. One of prospective techniques of storing thermal energy is the application of phase change materials (PCMs).

Unfortunately, prior to the large-scale practical application of this technology, it is necessary to resolve numerous problems at the research and development stage. One of problems is so called the Stefan problem [3]. The heat transfer characteristics of melting and solidification process arise in the presence of phase change and expressing the energy conservation across the interface. In literature, this solid-liquid interface boundary is known as Stefan or moving boundary problem. It may have low conduction heat transfer.

1. Shape-stabilized PCM (SSPCM)

In recent years, the Stefan problem has been resolved, a kind of novel compound PCM, the, Shape-stabilized PCM (SSPCM) has been attracting the interests of the researchers [4–6]. Fig. 1 shows the picture of this PCM plate. It consists of paraffin as dispersed PCM and high-density polyethylene (HDPE) or other materials as supporting material. Since the mass percentage of paraffin can be as much as 80% or so, the total stored energy is comparable with that of traditional PCMs.

Zhang et al. [7] investigated the influence of additives on thermal conductivity of SSPCM and analyzed the thermal performance of SSPCM floor for passive solar heating. To the authors’ knowledge, no research work reported in the literature has made on the performance of shape-stabilized PCM application coupling the active building envelope system (ABE) in buildings combined with night ventilation. Therefore, the purpose of this study is to perform a numerical analysis on the thermal effect of shape-stabilized PCM plates as inner linings on the indoor air temperature under night ventilation conditions in summer, coupling the ABE system in a building, and for overall system of the building based upon a simulated room; a generic enclosure, combined with the climate report of Hsinchu city, Taiwan, 0am~24pm, 1st ~6th July., 2008. [8] to investigate: (1) feasibility study of the hybrid system (2) heating capability analysis (3) cooling capability analysis (4) indoor temperature levels. For the sake of simplification, thermal performance is the only consideration.

2. Active building envelopes:

A brief description of the proposed ABE system is

(5)

provided here (see Fig. 2). For more details, see [9]. The ABE system is comprised of two basic components: a photovoltaic unit (PV unit) and a thermoelectric heat pump unit (TE unit). The PV unit consists of photovoltaic cells, which are solid-state devices that convert solar radiation energy into electrical energy.

The TE unit consists of thermoelectric heaters/coolers (referred to here onwards as TE coolers), which are solid-state devices that convert electrical energy into thermal energy, or the reverse. The PV and the TE units are integrated within the overall ABE enclosure. As shown in Fig. 2, the PV unit forms an envelope surrounding the external wall such that a gap is maintained between the wall and the PV unit. This gap acts as an external heat dissipation zone for the TE unit.

The external walls of the proposed ABE system consist of two layers, as shown in Fig. 2. The external layer (facing the PV unit) is made of a thermal insulating material, and the internal layer is made of a material with high heat storage capacity. In Fig. 2, the words

‘‘Thermal insulation’’ and ‘‘Thermal Mass’’ pertain to the external and the internal layers of the ABE wall, respectively. The TE coolers/heaters are dispersed inside the openings that are provided in the insulating layer. Each TE cooler/heater consists of two heat sinks.

As shown in Fig. 2, the internal heat sink either absorbs or dissipates heat to the thermal mass layer. The external heat sink either absorbs heat from, or dissipates heat to, the surrounding air; through natural or forced convection.

The author’s team; Tsai BJ [10] just finished a project;

In a building installed the ABE system without SSPCM, wind、solar driven, bypass the windmill flow as a air flow (as shown Fig. 3), ambient temperature, To is equal to 308 K and indoor temperature, Ti is 301 K.

Numerical results show the Ti will decrease 2 K when the ABE operating with heat sinks, without fan. As fan is opened, strong convective heat transfer, Ti will decrease approximately 4~5 K.

3. Hybrid system:

Zhou et al. [11] in 2009 reported effect of shape-stabilized phase change material (SSPCM) plates in a building (as shown Fig. 4) combined with night ventilation in summer is investigated numerically. Their conclusions show that the SSPCM plates could decrease the daily maximum temperature by up to 2 K due to the cool storage at night. Under the present conditions, the appropriate values for melting temperature, heat of fusion, thermal conductivity and thickness of SSPCM plates are 26 C, 160 kJ kg-1, 0.5Wm-1 C-1 and 20 mm, respectively. The ACH at night needs to be as high as possible but the ACH at daytime should be controlled.

4. Literature survey of numerical techniques : During the phase change the solid–liquid interface moves away from the heat transfer surface. The difficulty in solving a phase change problem is the presence of a moving boundary or region on which heat

and mass balance conditions have to be met. Generally, two approaches of the finite difference and finite element techniques are used to solve the phase change problems numerically. One of the methods to solve the moving boundary problem is enthalpy formulation [12, 13]. The enthalpy method is used in a particular way so that the only unknown variable is the temperature of the phase change material and the solidification occurs at a uniform temperature. In this work we use the modified enthalpy method treats the enthalpy as a temperature dependent variable and constructs the latent heat flow through the volume integration with the use of the enthalpy of the system [14, 15]. Heat transfer with moving boundary involving phase change is very important in latent heat storage application, i.e., ice formation, freezing of food, castings, metallurgy, crystal growth and various other solidification techniques. The predication of temperature distribution and rate of melting or solidification is very important in order to design such storage device.

II. Analysis method—Physical and Mathematic analysis and modeling

The analysis is designed to examine the indoor thermal comfort level under night ventilation when the SSPCM plates are used or not. A typical south-facing middle room (room A shown in Fig. 5) in a multi-layer building in Hsinchu city, Taiwan, is considered as the model room for analysis, which has only one exterior wall (the south wall) and others are all interior envelopes. The dimension of the room is assumed as 3.9 m (length) x 3.3 m (width) x 2.7 m (height). The south wall is externally insulated with 60-mm-thick expanded polystyrene (EPS) board. There are a 2.1 m x 1.5 m double-glazed window and 1.5 m x 1.5 m ABE system in the south wall and a 0.9 m x 2 m wood door in the north wall which is adjacent to another room or the corridor. The overall heat transfer coefficients of the window and door are 3.01 and 0.875Wm-2 C-1, respectively. SSPCM plates are attached to inner surfaces of four walls and the ceiling as linings. Based on a practical consideration, no SSPCM is included in the floor structure. Thermo-physical properties of SSPCM and materials of building envelopes are shown in Table 1. The phase transition temperature range of SSPCM is assumed to be 1 K. Natural ventilation in the day and mechanical ventilation at night are considered.

The total indoor heat produced by the equipments, furniture, light and occupants, etc. is assumed to be 50W (average value over the day). The summer climate data is generated by the software Medpha [8]. A verified enthalpy model [16] is applied for this simulation.

1 Heat transfer model of SSPCM wall and ceiling The schematic of heat transfer through the exterior wall is shown in Fig. 6. The transient enthalpy equation is

2 2

x k T t H

j

j

=

ρ (1)

(6)

where for SSPCM, =

1 +

+

0

2

1 , 2 ,

,

T T

T

T T pl m

p s

p T

dT c dT c dT c

H ,

for the insulation layer and the hollow brick layer,

<

=

=

<

=

=

=

<

=

=

=

3 2

2 1 , ,

1 ,

,

,

, ,

0 ,

,

x x x k

k

x x x c c k k

x x c

c k k

p j p j

b p j p b j b j

i p j p j j i j

ρ ρ

ρ ρ

ρ ρ

The initial condition is

init

t T

t x

T( , )=0= (2)

For the surfaces exposed to the outside and inside air, the boundary conditions are

( )

0 ,

,

=

=

+

x i out i out out out

r x

k T T T h

q (3)

( )

3

, ,

x x p in i in in in

r x

k T T T h q

=

− ∂

=

+ (4)

For the exterior wall, qr,in and qr,out are indoor and outdoor radiation heat flux, respectively (Fig. 6). The convective coefficients hout and h are calculated in according to the ASHRAE Handbook [17].

The above equations are also applicable to interior walls and the ceiling. For the interior walls,h andout qr,out are zero. For the ceiling (Fig. 7), the surface atx=0is assumed insulated and the inner surface corresponds to convective heat transfer coefficient

h

c and thermal radiationqr,c. Thermal radiations among the internal surfaces of walls, floor and ceiling are calculated by thermal radiation network method [18].

2 Heat transfer model of the SSPCM floor

For floor construction shown in Fig. 8, the transient heat transfer equation is

2 2

, y

k T t cpj T j

j

= ∂

ρ ∂ (5)

ρ

j,

k

jand

c

p,j are as follows:

⎪⎩

⎪⎨

<

=

=

=

<

=

=

=

<

=

=

=

3 2 , ,

2 1 , ,

1 ,

,

,

, ,

0 ,

,

y y y c c k k

y y y c c k k

y y c

c k k

f p j p f j f j

a p j p a j a j

i p j p j j i j

ρ ρ

ρ ρ

ρ ρ

Again, the initial condition is

init

t T

t y

T( , )=0= (6)

The boundary conditions are

( ) ( ) ( )

=

=

+

=

=

+

=

=

+

=

=

=

=

=

3 ,

,

2 ,

4 ,

1 4

, 4 ,

0

3 2 1

0

y y y

k T T T h q

y y y

k T T T q

y y y

k T T T q

y y k T

y y f up f in f up f

y y f un i up i gap

y y i up i un i gap

y i

εσ

εσ (7)

Where qf,upis the radiation heat flux from the walls and ceiling to the wood floor; for the air gap, heat flux qgap be calculated by the following equation [19]:

(

iup fun

)

gap a u

gap T T

L N k

q = ,,

(8)

Where Ti,up,Tf,unare the temperature at the upper surface of the insulation layer and at the under surface of the wood floor respectively. And Nu(Nusselt number) is calculated by the following equation:

( )

( )

⎪⎩

×

>

×

×

= =

3 5 1

5 4 4

1

10 6 . 4 ,

061 . 0

10 6 . 4 10 1 ,

212 . 0

L r

L

L r L

u GrP Gr

Gr P

N Gr (9)

When GrLis less than10 , only thermal conductivity is 4 considered.

3 Model of the indoor air of hybrid system building The energy conservation equation fir the indoor air is

win N

i

L c s i w a

R a a

p Q Q Q Q

dt V dT

c

=

+ + +

=

1

, ,

, ρ + QABE (10)

Where QS,Cis assumed 70% of the total energy from the heat source [20], and Q ,w,i QL and Qwin QABE [9,10]

are calculated by the following equations:

(

wi in

)

wi in

win h T T A

Q = × , − × , (11)

( ) 3600

,a a R out in

p

L c V ACH T T

Q = ρ × × − (12)

(

out in

)

wi

win

win U T T A

Q = × − × , (13)

QABE = Qph = Qpc + IV (14)

4. Model of the SSPCM

The phase change model is based on the enthalpy method as modified by Zivkovic and Fujii [21]. They split the enthalpy as sensible and latent heats and included the melting fractionfin the one-dimensional transient heat equation as given in Eq. (18) below,

. f1

L h

H= + (15)

Where, h=

TTmcdT

The local liquid fractionf1: is given as,

( )

( )

⎪⎪

>

<

=

1 0 ,

1

, 0

1 1

and between and

dependent time

is f

CV the of tion solidifica or

melting druing

Liquid T T if

Solid T T if

f m

m

Substituting in the one dimensional transient heat equation for constant conductivity, density, specific heat gives

t L f x

T k t c T

− ∂

= ∂

1

2 2

ρ (16)

The whole domain of the rectangular storage is partitioned inN equidistant nodes. The control volume

(7)

(CV) associated with each node has a thicknessΔx, while nodes 1 andN have half-thickness (Δx 2).

III. Numerical technique

1. Description of the model room

The model room for analysis, which has dimension assumed as 3.9 m (length) x 3.3 m (width) x 2.7 m (height) concrete chamber. The thickness of chamber is 300mm, except the floor and the south wall each wall was installed 50mm thick SSPCM. The south wall is externally insulated with 60-mm-thick expanded polystyrene (EPS) board. There are a 2.1 m x 1.5 m double-glazed window and 1.5 m x 1.5 m ABE system in the south wall and a 0.9 m x 2 m wood door in the north wall which is adjacent to another room or the corridor. Floor is made of the first 30mm thick wood layer, under that the second layer is 40mm SSPCM layer, in between is the air layer with 30mm thick. And the extended computational domain is six times larger than that of the model room. ( see Fig. 9, Fig. 10) 2. Input parameters of the model room and applying software

In this study, using the Gambit to construct the solid model and grid mesh, then applying the Fluent as the solver of flow and thermal field. All parameters of the building and material properties of SSPCM were tabulated in Table 1. Regarding conditions of outside environments of the model room were listed in Table 2.

3. Establish grid cells

Cells of grid mesh of this model room as Fig. 11.

Outside environment (7505.784 m3):188520 cells Concrete layer (11.565 m3): 285517 cells SSPCM layer (2.364 m3):154989 cells Inside air of room (18.72 m3):149760 cells Floor-wood layer (0.2673 m3):7128 cells Floor-air gap layer (0.2673 m3):7128 cells Floor-SSPCM layer (0.3564 m3):7128 cells Door-wood (0.09 m3):720 cells

Window-glass (0.21 m3):1680cells

Air layer front glass window (1.26 m3):4320 cells Air layer front wood door (0.54 m3):10,080 cells 4. Settings of the Fluent

Settings of the Fluent software as below:

1. Solver:Segregated 2. Space:3D

3. Velocity Formulation:Absolute 4. Gradient Option:Cell-Based 5. Formulation:Implicit 6. Time:Unsteady

7. Unsteady Formulation:1st-Order Implicit 8. Porous Formulation:Superficial Velocity 5. Initial conditions

The energy stored in cycle is: absorption heat

The ambient temperature is 303 K, 1atm and

temperature of SSPCM layer is assuming a constant temperature 293 K, the optimal time (ie. Melting/fusing temperature, and its latent capacity is 265MJ/m3。The initial condition (t=0) of indoor air temperature is assuming 303 K。 On the contrary,

The energy release in cycle is: removal heat

The ambient temperature is 289 K, 1atm and temperature of SSPCM layer is assuming a constant temperature 303 K, the optimal time (i.e. Melting/fusing temperature, and its latent capacity is 265MJ/m3。The initial condition (t=0) of indoor air temperature is assuming 289 K。

Each time increment t is 0.1 sec, then iterations up to the time we set, and need to satisfy the convergence criteria.

6. Boundary conditions

Using the embedding macro files of the Fluent to select our boundary conditions and our case is unsteady. And the maximum of solar radiation on the south wall is 900Wm-2 and the Hsin-Chu city in summer wind speed is southern 6 ms-1 、average out door temperature is 302.96 K in winter wind speed is southern 6.6 ms-1 、 average out door temperature is 288.9 K (see Table 2)。

7. Convergence criteria

For the purposes of solving any number of flow field changes in the iterative process, Simulation convergence criteria as shown in table 3.

IV. Result and Discussion

1. Simulated temperature results of active ABE Fig. 12 is the comparison of temperature distribution of active ABE for the fan was on (above) and off (below) in the summer. The gap is between solar panels and the TE wall as the hot side. The temperature can reach 313 to 318 K. Another side of TE produced the cooling effect, and through air-conditioning spread cool air to indoor space. Take the temperature condition at Y = 1.2m. The indoor temperature is 302 to 305 K with fan turning on, or the indoor temperature is about 304 to 307 without turning on the fan. The results show the fan can speed up TE cooling cold-side to spread quickly to the entire room.

2. Simulated PMV results of active ABE

ISO 7730 has recommended the use of the comfort indicators PMV (Predicted Mean Vote):

PMV provides for an average reference, to measure the comfortableness of human body in an environment.

PMV index produced from many different testers, in the specific measurement environment, their subjective assessment for a number of environmental conditions. It is divided into seven stages, ranging from -3 (very cold) extends to +3 (extremely warm), neutral point of 0 for moderate heat conditions.

Fig. 13 is the PMV value when turning on and off the fan, i.e., the smaller the value of PMV, the more

(8)

satisfaction. When the fan was on the indoor PMV value was about 0.69 to 1. When the fan was off the indoor PMV value was about 0.5 to 0.9.

3. Simulated temperature results of passive SSPCM The energy stored in cycle is: absorption heat

The ambient temperature is 303 K, 1atm and temperature of SSPCM layer is assuming a constant temperature 293 K, the optimal temperature (ie.

melting/fusing temperature, and its latent capacity is 265MJ/m3。The initial condition (t=0) of indoor air temperature is assuming 303 K。Fig. 14 (a~f) simulated indoor air temperature vs. time (YZ plane at middle X) for the SSPCM in an energy stored cycle. At this time, initially t = 0, indoor air temperature is bigger than temperature of SSPCM layer, then all SSPCM layers start to absorb heat, Numerical results show as time increasing and the average indoor temperature will decrease. The average indoor temperature from 303 K drops to 295.93 K within 60 minutes. It produces cooling effect in the daytime or say in the summer.

Except the average indoor temperature includes temperatures of wall-concrete、floor-wood、floor-air、

door-wood and window-glass were tabulated in Table 4.

On the contrary,

The energy release in cycle is: removal heat

The ambient temperature is 289 K, 1atm and temperature of SSPCM layer is assuming a constant temperature 303 K, the optimal time (i.e. Melting/fusing temperature, and its latent capacity is 265MJ/m3。The initial condition (t=0) of indoor air temperature is assuming 289 K。Fig. 15 (g~l) simulated indoor air temperature vs. time (YZ plane at middle X) for the SSPCM in an energy released cycle. At this time, initially t = 0, indoor air temperature is smaller than temperature of SSPCM layer, then all SSPCM layers start to release heat, Numerical results show as time increasing and the average indoor temperature will increase. The average indoor temperature from 289 K climbs to 298.8 K within 60 minutes. It produces heating effect at night time or say in the winter. Except the average indoor temperature includes temperatures of wall-concrete、floor-wood、floor-air、door-wood and window-glass were tabulated in Table 5.

4. Comparison between numerical and analytical results for hourly variation of outdoor air temperature

Both of above discussions of SSPCM are idealized cases since the temperature of SSPCM was forced as constant, therefore latent heat capacity will be melting or fusing in a short period of time, and the temperature difference of the average indoor temperature will be large around 8 K to 9 K. In fact the average indoor temperature will be sinusoidal cycle with relation to optimal SSPCM temperature. The temperature differences of the average indoor temperature of both energy stored cycle and energy released cycle will

around 2 K to 4 K. The analytical results have been reported by Xiao [22]. Therefore we can compare our numerical results with each other based upon hourly variation of outdoor air temperature in Hsin-Chu city on one day of July. (in here, indoor air temperature is simplified equal to outdoor air temperature). From Fig.

16 shows results of numerical and analytical are pretty consistent with each other.

V. Conclusions

The above numerical results coincide with each other.

The active ABE system; a building installed the ABE system wind, solar driven, bypass the windmill flow as a air flow, ambient temperature, is equal to 308 K and indoor air temperature, 301 K. Numerical results show the indoor air temperature will decrease 2 K when the ABE operating with heat sinks, without fan. As fan is opened, strong convective heat transfer indoor air temperature will decrease approximately 4 K to 5K.

Similarly, the hybrid system integrates the passive SSPCM system. The temperature differences of the average indoor temperature of both energy stored cycle and energy released cycle will around 2 K to 4 K. Hence the hybrid system will increase the function of ventilation. In comparison to natural convection, COP increases significantly, and it is quiet 、 clean 、 energy-saving and cost-saving. Therefore, this study established a closer to the actual physical situation in Hybrid system as a whole, including sub-systems in this new analysis. Several brief summary as:

(1) The Hybrid system’s BIPV、TE、SSPCM heat sink efficiency gains can achieve energy-efficiency and clean.

It can also reduce the CO2 emissions.

(2) The Hybrid system can reduce the total input power and achieve proactive approach to achieve energy saving goals.

(3) SSPCM consists of paraffin as dispersed PCM and high-density polyethylene (HDPE) or other materials as supporting material. The total stored energy is comparable with that of traditional PCMs.

(4) SSPCM of ceiling and floor can use the same material, temperature range between 297 K to 300 K start energy stored cycle, and temperature range between 289 K to 293 K start energy released cycle.

(5) Reduce the temperature gradient between ceiling and floor to under 4 K will increase the comfortableness of humans.

(6) 297 K is the most comfortable temperature.

VI. Acknowledgement

We hereby express our thanks to the National Science Council for the support of research project NSC98-2221-E-216-047.

VII. References

[1] Garg HP, Mullick SC, Bhargava AK, “ Solar thermal energy storage”, D. Reidel Publishing Co; 1985.

(9)

[2] Project Report. “Energy conservation through thermal energy storage”, An AICTE Project, 1997.

[3] Stefan J. Uber einge problem der theoric der warmeleitung, S. B. Wein, Acad. Mat. Natur.

1989;98:173–484.

[4] Inaba H, Tu P. Evaluation of thermophysical characteristics on shape-stabilized paraffin as a solid/liquid phase-change material. Heat Mass Transfer,1997;32(4)307-12

[5] Ye H, Ge XS. Preparation of polyethylene–paraffin compound as a form-stable solid–liquid phase change material. Solar Energy Mater Solar Cells 2000;64(1):37–44.

[6] Zhang YP, Yang R, Di HF, Lin KP, Xu X, Qin PH.

“Preparation, thermal performance and application of shape-stabilized PCM in energy efficient buildings.” ,Collection of technical papers—2nd International energy conversion engineering conference AIAA, vol. 1, 2004. p. 600–610.

[7] Xu X, Zhang YP, Lin KP, Di HF, Yang R.

“Modeling and simulation on the thermal performance of shape-stabilized phase change material floor used in passive solar buildings.”, Energy Build 2005;37:1084–91.

[8]Central Weather Bereau, Taipei, Taiwan:

http://www.cwb.gov.tw/, 2008.

[9]S. Van Dessel, A. Messac, R. Khire, Active building envelopes: a preliminary analysis, in: Asia International Renewable Energy Conference, Beijing, China, 2004.

[10] Tsai BJ, Lee JH, “Active Building Envelope System(ABE): Wind & Solar driven Ventilation 、 Electricity、Heat pump”, Proceeding of the 25th National Conference on Mechanical Engineering, The Chinese Society of Mechanical Engineers, Da-Yeh Univ. 2008.

(NSC 96-2221-E-216-015)

[11] Zhou GB, Yang YP, Wang X, Zhou SX,

“Numerical analysis of effect of shape-stabilized phase change material plates in a building combined with night ventilation”, Applied Energy, Vol. 86, 2009, pp.52-59.

[12] Comini G, et al. “Finite element of non-linear heat conduction problems with special reference to phase change.”, Int J Number Meth Eng 1974;8:613–24.

[13]Wen, Sheffled JW, O’Dell MP. “Analytical and experimental investigation of melting heat transfer.” , J Thermophys 1989;3:330–9.

[14] Swaminathan CR, Vollar VR. On the enthalpy method. Int J Num Meth Heat Fluid Flow 1993;3:233–44.

[15]Vollar VR, et al. An enthalpy method for convection, fusion phase change. Int J Numer Meth Eng 1987;24:271–84.

[16] Zhou GB, Yang YP, Lin KP, Xiao W, “Thermal analysis of a direct gain room of shape-stabilized PCM plates”, Renewable Energy, Vol. 33, 2008, pp.1228-36.

[17] ASHRAE. ASHRAE handbook – Fundamentals, Chapter 3: Heat transfer. Atlanta: ASHRAE; 2001.

[18] Oppenheim AK. Radiation analysis by network method. Trans; ASME195665:725–35.

[19] Holman JP. Heat transfer. 8th ed. New York:

McGraw-Hill; 1997.

[20] Wilkins CK, Kosonen R, Laine T. An analysis of office equipment load factors. ASHRAE J 1991;33:38–44.

[21]Zivkovic B, Fujii I. An analysis of isothermal phase change of phase change material within rectangular and cylindrical containers. Solar Energy 2001;70:51–61.

[22]Xiao W, Wang X. and Zhang Y.” Analytical optimization of interior PCM for energy storage in a lightweight passive solar room”. Applied Energy 2009;86:2013–2018.

Figures

Fig. 1. The photos of the shape-stabilized PCM: (a) photo of the PCM plate; (b) electronic microscopic picture by scanning electric microscope (SEM) [6]

Fig. 2. Active building envelope (ABE) system [9]

(10)

Fig. 3. Active building envelope (ABE) system with ventilation effect (Fan) [10]

Fig. 4. Schematic of the simulated room: (a) location of the simulated room A in the building and (b) profile of the room A with SSPCM.

Fig. 5. Schematic of the simulated room with Hybrid system: profile of the room A with SSPCM and ABE wall

Fig. 6 Exterior wall surface

Fig. 7 Schematic of the ceiling heat transfer

Fig.8 The floor

Fig. 9:Schematic diagram of computational domain means environments surrounding the model room。

Fig.10:Schematic diagram of the model room for analysis of a building。

(11)

Fig.11:Grid mesh of the model room and environments

Fig. 12 Comparison of temperature distribution of the active ABE system for the fan was on (above) and off (below)

Fig. 13 the PMV value when turning on (above) and off (below) the fan

(a) 1 minute

(b) 5 minutes

(c)10 minutes

(d) 20 minutes

(e) 30 minutes

(12)

(f) 60 minutes

Fig. 14 (a~f) Simulated indoor air temperature vs. time

(g) 1 minute

(h) 5 minutes

(i) 10 minutes

(j) 20minutes

(k) 30 minutes

(l) 60 minutes

Fig. 15 (g~l) Simulated indoor air temperature vs. time

Fig. 16 hourly variation of outdoor air temperature in Hsin-Chu City。

Table 1:Material properties of the building

Materials Ρ (kgm-3)

Cp

(kJkg-1-1) K (Wm-1-1)

U (Wm-2-1)

SSPCM 850 1.0 0.2 -

Concrete 2500 0.92 1.75 - Window /

Glass

1400 1.05 0.58 3.01 Door

/Wood

500 2.5 0.14 0.875

Table 2:Weather data of Hsin-Chu City Season Temperature

(℃)

Wind speed (ms-1)

Pressure (Pa) Summer 29.6 6 (Southern wind) 1044.8

Winter 15.9 6.6 (Northern wind) 1017

(13)

Table 3: Convergence criteria continuity x-

velocity y-

velocity z-

velocity energy 0.001 0.001 0.001 0.001 1e-06 Table 4: Average indoor air temperature vs. time for

SSPCM storage energy, absorption heat

Time

min concret

e indoor- air floor-

wood floor-

air door-

wood Windo- w glass 1 302.97 302.35 302.97 298.00 302.99 302.99 5 302.88 300.27 302.85 297.91 302.96 302.95 10 302.78 298.60 302.71 297.82 302.91 302.90 20 302.60 296.99 302.42 297.66 302.81 302.80 30 302.45 296.38 302.14 297.51 302.70 302.69 60 302.08 295.93 301.37 297.12 302.40 302.40

Table 5: Average indoor air temperature vs. time for SSPCM release energy, removal heat

Time min

concret e

inside- air

floor- wood

floor- air

door- wood

Windo- w glass 1 289.03 289.83 289.03 296.00 289.00 289.01 5 289.16 292.78 289.19 296.06 289.05 289.06 10 289.30 295.09 289.40 296.17 289.12 289.13 20 289.55 297.28 289.83 296.41 289.26 289.28 30 289.76 298.12 289.27 296.63 289.40 289.43 60 290.29 298.80 291.47 297.25 289.82 289.84

數值分析建築物整合鋪設穩態形狀相變材料板 (SSPCM)及主動式外表帷幕系統(ABE)之空調效應

蔡博章1、楊位盛2、潘俊良3

1中華大學機械與航太工程研究所教授

2,3中華大學機械與航太工程研究所研究生

國科會計畫編號. : NSC-98-2221-E-216-047 摘要

建築物在牆壁、天花板及地板鋪設穩態形狀相變材料 板(SSPCM)以及整合主動式外表帷幕系統(ABE)形成 混成系統,再以一棟位於台灣新竹地區沒有空調的建 物為探討對象,來數值分析仲夏夜晚通風及空調情 況,為完成對這創新觀念的混成系統可行性作分析評 估,以及其在不同操作情況下之空調效能與室內溫度 變化進行研究。每一系統及次系統元件都要非常小心 的發展其數學模型,並利用數值方法進行求解,利用 新竹地區七月份的一天或夏季氣候為條件,使用驗證 過的焓模型(verified enthalpy model)暫態模擬進行分

析解,同時用 Fluent 準確地計算出具有 SSPCM 與

ABE 系統混成建築物的空調系統之性能,本研究即

是在地板、天花板及牆壁安裝 SSPCM,在白天吸收

太陽輻射熱及ABE 的 TE 熱,然後在夜晚或凌晨放

熱,而對於被動式熱傳結合主動式熱傳的建築物系 統,做出有效預測相變材料成份的溶解/硬化速率及

溫度分佈,對普遍使用 PCM 當內能儲存系統(latent

heat storage system)都是舉足輕重地重要。提高建築物 的空調系統熱效率即是使用白天熱能提供晚上暖氣 或提供節能省能的冷氣等本研究成果,相信可促成人 們有健康、舒適地居住環境的美夢成真。

關鍵字:穩態形狀相變材料,主動式外表帷幕系統、

空調系統、再生能源。

三、參考文獻 本研究所引用之文獻參考已載明於二、報

告內容之第七項文獻參考。另本研究成果及 參與人員之衍生成果著作於文獻的有:

國際期刊有二:

1. Bor-Jang Tsai 、Koo-David Huang and Chien-Ho Lee , “Hybrid Structural Systems of An Active Building

Envelope System(ABE)”, Advanced material research, in press. NSC-98-2221-E-216-047 ( EI:

ISTP)

2. Bor-Jang Tsai and Yu-Chun Fu, “Design and aerodynamic analysis of a flapping-wing micro aerial vehicle”, Aerospace science and technology , Vol. 13, No.7, pp.383-392. NSC-94-2212-E-216-004 (SCI: EI: IF:0.674)

國外研討會有一:

3. Bor-Jang Tsai and Chien-Ho Lee,” Active Building Envelope System(ABE):Wind & Solar driven Ventilation、Electricity、Heat Pump”, ESD2010, 2-4 June 2010 at The Empress Hotel, Chiang Mai, Thailand.

國內研討會有三、碩士論文有一:

4.奈米UV噴墨在螢光薄膜噴塗作業影響之研究,中華

大學機械工程研究所碩士論文,臺灣新竹市,2010.

5. Bor-Jang Tsai(蔡博章),Pang-Wei Wu(伍邦維),

“圓柱型金屬氫化物(MH)儲氫罐系統之模擬研

(14)

究”,中國機械工程學會第二十六屆全國學術研討 會論文集,中華民國九十八年十一月二十日、二 十一日,成功大學 台南市。

6. Peng-Yu Chen(陳鵬宇)、Bor-Jang Tsai(蔡博章)、

Chun-Mu Chen(陳俊沐),”摻雜Na與PbI2元素之 PbTe材料熱電性質” 中國機械工程學會第二十六 屆全國學術研討會論文集,中華民國九十八年十 一月二十日、二十一日,成功大學 台南市。

四、計畫成果自評

本研究承蒙國科會經費贊助,非常感

謝,也在參與人員努力下,有不錯成果。

研究內容預期達成目標情況為:

預期完成工作項目

(1)Develop physical/ mathematic models for Hybrid system (OK)

(2)Enthalpy formulation, PCM solid-liquid fraction model (OK)

(3)Finite difference-Fortran program code - Hybrid-HVAC programming (OK)

(4)Numerical solutions of building with SSPCM and ABE model (OK)

(5)Heating/cooling, COP, ACH and HVAC performance of the Hybrid system (OK)

本研究之主要成果:

(1) The Hybrid system’s BIPV、TE、SSPCM heat sink efficiency gains can achieve energy-efficiency and clean.

It can also reduce the CO2 emissions.

(2) The Hybrid system can reduce the total input power and achieve proactive approach to achieve energy saving goals.

(3) SSPCM consists of paraffin as dispersed PCM and high-density polyethylene (HDPE) or other materials as supporting material. The total stored energy is comparable with that of traditional PCMs.

(4) SSPCM of ceiling and floor can use the same material, temperature range between 297 K to 300 K start energy stored cycle, and temperature range between 289 K to 293 K start energy released cycle.

(5) Reduce the temperature gradient between ceiling and floor to under 4 K will increase the comfortableness of humans.

(6) 297 K is the most comfortable temperature.

相 關 成 果 數 據 正 準 備 投 稿J. of Applied Thermal Engineering or J. of Building and Environments。

合計有研討會4篇,期刊2篇(一篇準備中),

畢業碩士研究生1位。

真實體建造及實驗數據的驗證尚未周全,所 以在申請專利過程尚需資源、經費及努力, 但太陽能及風力等再生能源分析設計、系統 規畫、建物之節能省能技術及熱流分析技術 等,應可技轉到建築或營造及節能省能科 技,Green Housing等行業上,希望更多資 源、經費相信ABE與SSPCM系統會快應用到 人類生活。

(15)

國科會補助計畫衍生研發成果推廣資料表

日期:99 年 10 月 25 日

國科會補助計畫

計畫名稱:數值分析建築物整合鋪設穩態形狀相變材料板(SSPCM)及主動式 外表帷幕系統(ABE)之空調效應

計畫主持人: 蔡博章

計畫編號:NSC-98-2221-E-216-047 領域:能源科技 建築物系統整合技術:氣、電、熱及綠建材之整合規劃技術

研發成果名稱

System integrated technique of building

成果歸屬機構

中華大學

發明人

(創作人)

蔡博章

建築物在牆壁、天花板及地板鋪設穩態形狀相變材料板(SSPCM)以及整合主動 式外表帷幕系統(ABE)形成混成系統,再以一棟位於台灣新竹地區沒有空調的 建物為探討對象,來數值分析仲夏夜晚通風及空調情況,為完成對這創新觀念 的混成系統可行性作分析評估,以及其在不同操作情況下之空調效能與室內溫 度變化進行研究。每一系統及次系統元件都要非常小心的發展其數學模型,並 利用數值方法進行求解,利用新竹地區七月份的一天或夏季氣候為條件,使用 驗證過的焓模型(verified enthalpy model)暫態模擬進行分析解,同時用 Fluent 準 確地計算出具有 SSPCM 與 ABE 系統混成建築物的空調系統之性能,本研究即 是在地板、天花板及牆壁安裝 SSPCM,在白天吸收太陽輻射熱及 ABE 的 TE 熱,然後在夜晚或凌晨放熱,而對於被動式熱傳結合主動式熱傳的建築物系統,

做出有效預測相變材料成份的溶解/硬化速率及溫度分佈,對普遍使用 PCM 當 內能儲存系統(latent heat storage system)都是舉足輕重地重要。提高建築物的空 調系統熱效率即是使用白天熱能提供晚上暖氣或提供節能省能的冷氣等本研究 成果,相信可促成人們有健康、舒適地居住環境的美夢成真。

技術說明

Effect of shape-stabilized phase change material (SSPCM) plates combined with night ventilation in summer is investigated numerically. A building in Hsinchu, Taiwan without active air-conditioning is considered for analysis, which includes SSPCM plates as inner linings of walls、 the ceiling and floor, and an active building envelope system (ABE) is installed as well in the room becomes the Hybrid system.

Unsteady simulation is performed using a verified enthalpy model, with time period covering the summer season. In the present study, a kind of floor with SSPCM is put forward which can absorb the solar radiation energy in the daytime or in summer and release the heat at night or in winter. In the present paper, the thermal performance of a room using such floor、wall and ceiling were numerically studied. Results show that the average indoor air temperature of a room with the SSPCM floor was about 2 K to 4 K higher than that of the room without SSPCM floor, and the indoor air temperature swing range was narrowed greatly. This manifests that applying SSPCM in room suitably can increase the thermal comfort degree and save space heating energy in winter.

附件三

(16)

產業別

建築營造、房地產、節能省能及能源科技業、建築材料。

技術/產品應用範圍

節能省能 能源材料 環保 氣電熱整合/

建築物帷幕系統、建築物節能省能系統規畫

技術移轉可行性及預期 效益

Green Housing

Shape-stabilized Phase Change Materials Save Energy and Protect Environment

技術移轉如是符合上述行業且需有研發能力則效益才能彰顯

註:本項研發成果若尚未申請專利,請勿揭露可申請專利之主要內容。

(17)

國科會補助專題研究計畫項下赴國外(或大陸地區)出差或研習心得報告

日期: 99 年 10 月 01 日

一、國外(大陸)研究過程

1. 出差行程規畫: 原來計畫書核定;國外或大陸地區差旅費計畫書原來核定(20000 元): 2009/9/24 – 2009/9/30 第五屆魯台科技交流與 2010 年世界太陽能學會, 大陸山東德州市(原因:作業不及), 3 月變 更申請為: 2010/04/09 – 2010/04/12 中國低碳經濟論壇-大陸北京市(原因:總費用七萬元,經費不足), 因此才申請第二次變更為:

2010/05/05 – 2010/05/08 SNEC 4th (2010) International Solar Photovoltaic Power Generation Conference

& Exhibition (Expo)及世博會- 大陸上海市. 預計 5/6 出發, 5/9 日返國.

出差活動日程: 四天三夜

2010/05/06 桃園國際機場 Æ 上海市 浦東機場 搭乘長榮航空 BR0702 班機

2010/05/07 上海市五角場快捷假日酒店 Æ 上海國際展覽館 上海 SNEC 4th (2010) International Solar Photovoltaic Power Generation Conference & Exhibition 上海 SNEC 第四屆國際太陽能光伏展 2010/05/08 上海市五角場快捷假日酒店 Æ 上海世界博覽會

2010/05/09 上海市五角場快捷假日酒店 Æ 桃園國際機場 搭乘長榮航空 BR0701 班機

2. 出差預期目標與歷程

(1) 上海 SNEC 第四屆國際太陽能光電展的預期目標:

a. 亞洲最大太陽能展—產業概況、展覽規模、參展廠商及重要特色。

b. 展示之最—最有值得記載或討論事項,最新活動事件和最新研究、技術及應用。

c. 太陽能光電與綠建築的進展。

d. 新綠色建築材料,尤其相變化材料 (SSPCM) 的資訊資料收集。

e. 其他相關研究議題之收集。

(2) 上海 SNEC 第四屆國際太陽能光電展的歷程:

由於僅一天行程,為了要有效率參觀,事先整理及研究展訊如下

計畫編號 NSC-98-2221- E - 216- 047

計畫名稱

數值分析建築物整合鋪設穩態形狀相變材料板(SSPCM)及主動是外表帷幕系統 (ABE)之空調效應

出國人員

姓名 蔡博章 服務機構

及職稱 中華大學機械工程學系教授 出國時間 2010 年 5 月 6 至

2010 年 5 月 9 日 出國地點 中國大陸,上海市

附件五

(18)

圖 1. 展場展位圖

比利時、西班牙、瑞士、新加坡及台灣等 66 個國家地區總共 1408 家光電企業廠商參加,展 覽的面積達到 8.5 萬平方公尺,總共觀展專業人士達 10 萬人次,為亞洲最大太陽能光電展。

參展廠商分類為 A~G 類,展覽會場從W1 ~W4 和 E1 ~ E5共9大區,上千個展覽攤位。

A、生產設備類:矽棒、矽塊、矽錠、矽片晶圓、電池、電池板組件、薄膜電池板等生產設備。

B、電池類:光伏電池、電池組件及電池組件安裝商。

C、相關零配件類:蓄電池、充電器、控制器、轉換器、記錄儀、逆變器、監視器、支架系統、

追踪系統、太陽電纜等。

D、光電原材料類:矽料,矽錠/矽塊,矽片,封裝玻璃,封裝薄膜,其他原料。

E、應用產品類:工程及系統應用、太陽能熱水器、太陽能電池、電動車、綠建築節能。

F、光電系統集成類:太陽能空氣調節系統、農村光伏發電系統、太陽能檢測及控制系統、太 陽能取暖系統工程、太陽能光伏工程程序控制和工程管理及軟件編制系統。

G、其他。

圖 2. 展場廠商類別百分比

2010 年 5 月 7 日--上海新能源行業協會常務副會長米月主持開幕式,中國可再生能源學會副 理事長兼光電專業委員會主任趙玉文代表各主辦單位宣讀熱情洋溢的開幕詞;英利綠色能源 控股有限公司副總裁趙志恆代表 1400 多家參展單位在會上致辭,十點正,準時上海新能源行 業協會會長朱元昊莊重宣布展覽會開幕。

(19)

圖 3. 開幕儀式

個人就從 W1 展區進入開始參觀: 尋找展覽之最有特色的地方,以及收集本次參訪預期目標的 答案。並且到臺灣投資的攤位拜訪,還有到我國經濟部育成中心聯盟的展場有國內三所大學 研究成果。

(3) 2010 年上海世界博覽會的預期目標:

a. 國際大展覽會—展覽規模、參展國家、廠商及其重要特色。

b. 上海世博展示之最—最有值得記載或討論事項。

c. 新綠色建築材料與綠建築的進展。

d. 其他相關研究議題之收集。

(4) 2010 年上海世界博覽會的歷程:

由於僅有一天行程,為了要有效率參訪也是在旅館先收集資訊,一大早即”打的”到另一旅館 虹口世紀大酒店與大陸的旅行團併團,其中整輛巴士五、六十人,只有一對香港來的年青人 和我,全部都是大陸浙江省來的旅行團,因為 5 月 8 日是上海世博開幕的第一個週末,而且 大陸全國總動員,真正讓人體會什麼是”馬蟻雄兵",因為當日是很難自行前往的,世博展區 是有管制進入,還好我有跟團,於是順利的進入世博會的展區,規模很大,也展開我一天重 要而且驚豔的上海世界博覽會的”綠色科技,綠色建築及未來生活”的歷程。因剛開幕所以軟 體服務部份就比較薄弱,我就想先到”臺灣館”看看,但一天只開放三千人所以根本排不到票,

於是就首先從映入眼簾的是「一軸四館」部份,就先從”世博軸”開始,進入 A 片區,參觀的 國家館有: 烏茲別克斯坦館、巴基斯坦館、以色列館、印度館、卡達館及尼泊爾館、亞洲聯 合一館六個國家的展覽館、亞洲聯合二館六個國家的展覽館、亞洲聯合三館三個國家的展覽 館、朝鮮館、韓國館、安曼館、黎巴嫩館、摩洛哥館及”中國館”是下午 6:00 的梯次。而其中 又以阿拉伯館的鯨魚館的經歷最為驚悚,我辛苦排了三個多小時的隊,眼見將可進入阿拉伯 館內參觀,確在入口前因為上海副市長的蒞臨,館方人員表演”酋長舞”而造成秩序大亂,有點 危險,我的數位相機也不見了,只有沿著大柱旁逃走,放棄參觀,這期中也下起雨來,參 觀”中國館”後,本想坐園區電動車到其他 B、 C 、D 片區,確下起大雨來,我雖腳力好、

耐性好及觀察力好,但還是得晚上 9:00 回到河邊 3 號的停車場集合。這次能參觀世博是難忘

、值得且有收穫的。

上海世博會

上海世博會佔地 5.28 平方公里,大約有永和市這麼大,分為 A、B、C、D、E 五片展區;A、

B、C 片在浦東 D、E 片在浦西,園區中有免費的公交車、和 13 號地鐵、及五線渡輪可以連 接浦東和浦西;整個世博園區有九處入口,園內近兩百家餐館,各國各省風味的餐廳、料理、

(20)

一軸四館

「一軸」指的是主要交通軸線「世博軸」,「四館」就是中國館、主題館、世博中心和世博 文化中心。也是世博會後唯一不拆除的永久建築。

﹝世博軸﹞長一公里,分為地上、地下兩層,擁有六個形如鐘形的「陽光谷」,由六十九塊 巨大的白色膜布拼裝組成,宣稱是世界上最大的繩索布膜結構。可將陽光和空氣引入地下,

行人走在底下不感覺熱且有類似「雨水收集器」環保功能是一個高科技與藝術的建築。

﹝中國國家館﹞其建築以倒金字塔造形“東方之冠、鼎盛中華、天下糧 倉、富庶百姓"為構 思主題中國館。

﹝主題館﹞上海世博的主題是「城市,讓生活更美好」。呼應這個主題,世博設立五個主題 館:城市人館、城市生命館、城市星球館、城市文明館和城市未來館。

﹝世博中心﹞是世博最重要的工作場所,包括新聞中心、演講、論壇都在此舉行。

﹝世博文化中心﹞則是舉行演唱會、音樂會和大型科技秀的主要舞台。很漂亮的飛碟形建築 可以隔成可容納 18000 個座位的劇場演藝空間。

圖 4. 世博軸

圖 5. 中國國家館

圖 6. 主題館

(21)

圖 7. 世博中心

圖 8. 世博文化中心

二、研究成果

1. 上海 SNEC 第四屆國際太陽能光電展的研究成果:

(1) 找出商用相變化蓄熱材料的性質與製作廠商

材料 凝固溫度/C 熔化熱/(kJ.kg-1) 潛熱/(Mj.m-3)

MgCl2.6H2O 117 168.6 242

石腊 50 265.4 205

Mg (NO3)2.6H2O 58 132.2 201 (2) 展示之最—最有值得記載或討論事項,最新活動事件和最新研究、技術及應用。

最大參展廠商——史密德

234 平方米——本屆 SNEC 上海國際光伏展覽會面積最大的“狀元”桂冠,被德國著名的光 伏設備生產企業史密德集團奪得。

史密德集團的產品品目繁多,包括矽片、太陽電池、組件等貫穿光電產品全流程的機械設備。

該公司德國總部決定,要藉本次中國規模最大的光電展會來擴大影響。 他們不惜成本,從德 國總部空運大批專業設備至現場展示,又投重金請名家進行展位設計,還特地派出 15 位資深 工程師專門赴上海現場指導。展會期間,他們以最出色的展品,加上最地道的德國啤酒和咖 啡,與各路來賓進行互動交流。

效率最高的太陽電池—尚德 Pluto 技術

(22)

最大的電池板—美國應用材料公司

應用材料公司是全球領先的奈米製造技術企業。 公司產品包括創新的設備、服務和軟體,它 們被應用於半導體芯片、平板顯示器、太陽能電池、柔性電子產品和節能玻璃的製造。 他們 製造的太陽能電池組長 2.6 米,寬 2.2 米,總面積 5.7 平方米。 是世界最大的太陽能電池模組。

亞洲最大的光電系統集成商--中環光電系統有限公司

中環光電系統有限公司是中國最大的光電系統集成商之一,產量排名亞洲第一、世界第三。 據 統計,2009 年中環公司生產的原材料在中國市場的佔有率達百分之五十以上。中環公司的生 產方式更是企業模範,全程採用全封閉循環模式,確保整個生產過程環保無污染,可謂是中 國光電產業名副其實的“綠色生產”第一名。

(3) 探討其他相關研究議題之收集—探討現在技術與組件的水準是否有機會做以下之研究。

Proposal of a new topic research for the new coming year Where Do Solar Collectors Be Installed?

Panels and solar cells have to face sun light directly.

They occupy certain areas on roofs and grounds.

To collect more sun light, panels, mirrors and solar cells need to move to follow sun.

USING OPTICAL FIBERS TO COLLECT SUNLIGHTÆ new idea

In heating systems

In solar cells

(23)

OPTICAL FIBERS SOLAR HEATING SYSTEM (OFSHS)

Aims of the study

Comparing our OFSHS with classic solar water heating system.

Study the relationship between efficiency of OFSHS with each of length of fibers,

Fibers density and the angle between fibers and sun rays.

Optical fibers solar cells (OFSC)

參考文獻

相關文件

The major qualitative benefits identified include: (1) increase of the firms intellectual assets—during the process of organizational knowledge creation, all participants

This research is to integrate PID type fuzzy controller with the Dynamic Sliding Mode Control (DSMC) to make the system more robust to the dead-band as well as the hysteresis

This paper integrates the mechatronics such as: a balance with stylus probe, force actuator, LVT, LVDT, load cell, personal computer, as well as XYZ-stages into a contact-

This project integrates class storage, order batching and routing to do the best planning, and try to compare the performance of routing policy of the Particle Swarm

由於本計畫之主要目的在於依據 ITeS 傳遞模式建構 IPTV 之服務品質評估量表,並藉由決

As for current situation and characteristics of coastal area in Hisn-Chu City, the coefficients of every objective function are derived, and the objective functions of

Subsequently, the relationship study about quality management culture, quality consciousness, service behavior and two type performances (subjective performance and relative

Ogus, A.,2001, Regulatory Institutions and Structure, working paper No.4, Centre on Regulation and Competition, Institute for Development Policy and Management, University