• 沒有找到結果。

微波吸波與頻蔽材料之電磁特性分析 林鈺川、林明星 ; 許崇宜

N/A
N/A
Protected

Academic year: 2022

Share "微波吸波與頻蔽材料之電磁特性分析 林鈺川、林明星 ; 許崇宜"

Copied!
2
0
0

加載中.... (立即查看全文)

全文

(1)

微波吸波與頻蔽材料之電磁特性分析 林鈺川、林明星 ; 許崇宜

E-mail: 9223691@mail.dyu.edu.tw

摘 要

本論文主要是探討平板材料的電磁屏蔽與吸波特性,研究中建立了兩種理論模型,第一種為正向模型,第二種為逆向模型

。在正向模型的部分中,我們針對多層介質已知的電磁參數( 、 )與厚度來分析其電磁屏蔽與吸波特性。在逆向模型的部分 中,我們針對單層介質材料量測其電磁屏蔽與吸波特性,再利用所推導出的解析方程式來計算此材料的電磁參數;在此逆 向模型中,所需要的參數為介質的厚度與所量測的散射參數大小及相位。正向模型的部分,我們建立了頻域分析方法,進 行了多層介質材料的電磁屏蔽與吸波特性的分析。在逆向模型的部分,散射參數的大小及相位必須很準確,則反推出的電 磁參數就很準確。

關鍵詞 : 電磁屏蔽 ; 屏蔽材料 ; 吸波材料 ; 正向模型 ; 逆向模型 目錄

目錄 封面內頁 簽名頁 授權書...iii 中文摘要...v 英文摘 要...vi 誌謝...vii 目錄...viii 圖目 錄...x 表目錄...xvi 第一章 緒論 1.1研究動機及目

標...1 1.2文獻回顧及研究方法...2 1.3章節概要...3 第二章 材 料電磁屏蔽與吸波特性量測方法 2.1電磁屏蔽與吸波理論...5 2.2同軸傳輸線(Coaxial TL)方

法...8 2.3雙橫向電磁腔(DTEM Cell)方法...12 2.4自由空間(free-space)量測法...14 2.5材 料電磁屏蔽量測之量測不確定度...16 第三章 材料電磁屏蔽與吸波特性理論分析模型 3.1正向分析模

型...18 3.2逆向分析模型...22 3.2.1 A方法...22 3.2.2 B方 法...24 第四章 數值模擬與量測結果...27 第五章 結論...66 參 考文獻...67 附錄A 正向分析理論模型推導...70 附錄B 逆向分析理論模型推導(A方 法)...80 附錄C 逆向分析理論模型推導(B方法)...88

參考文獻

[1] R. B. Schulz, V. C. Plantz, and D. R. Brush, “Shielding theory and practice,” IEEE Trans. on EMC, Vol.30, NO.3, pp.187-201,Aug.1988.

[2] J. K. Bridges, “An update on the circuit approach to calculate shielding effectiveness,” IEEE Trans. on EMC, Vol.30, NO.3, pp.211-221, Aug. 1988.

[3] M. S. Lin and C. H. Chen, “Plane-wave shielding characteristics of anisotropic laminated composites,” IEEE Trans. on Electromagn.

Compat., Vol.35, pp.21-27, Feb. 1993.

[4] M. S. Lin, C. M. Lin, R. B. Wu and C. H. Chen, “Transient propagation in anisotropic laminated composites,” IEEE Trans. on Electromagn. Compat., Vol.35, pp.357-365, Aug. 1993.

[5] H. K. Chiu, M. S. Lin, C. H. Chen, “Near-field shielding and reflection characteristics of anisotropic laminated planar composites,” IEEE Trans. on Electromagn. Compat., Vol.39, pp.332-339, Nov. 1997.

[6] C. N. Chiu and C. H. Chen, “Plane-wave shielding properties of anisotropic laminated composite cylindrical shells,” IEEE Trans. on EMC, Vol.37, No.1, pp109-113, Feb. 1995.

[7] H. C. Chu and C. H. Chen, “Shielding and reflecting properties of periodic fiber-matrix composite structures,” IEEE Trans. on EMC, Vol.38, No.1, pp.1-6, Feb. 1996.

[8] H. C. Chu, S. K. Jeng, and C. H. Chen, “Reflection and transmission characteristics of lossy periodic composite structures,” IEEE Trans. on AP, Vol.44, No.4, pp.580- 587, Apr. 1996.

[9] H. C. Chu, S. K. Jeng, and C. H. Chen, “Reflection and transmission characteristics of single-layer periodic composite structures for TE case,

” IEEE Trans. on AP, Vol.45, No.7, pp.1065-1070, July. 1997 [10] H. K. Chiu, H. C. Chu and C. H. Chen, “Propagation Modeling of periodic laminated composite structures,” IEEE Trans. on EMC, Vol.40, No.3, pp.218-224, Aug. 1998.

[11] M. S. Lin, C. H. Tan, and T. F. Lee, “Measurement techniques for shielding properties of laminated composite materials,” Proceeding of the Annual Conference of the Aeronautical and Astronautical Society of the ROC, Chung-Li, pp.531-539, Nov. 1993.

(2)

[12] A. R. Ondrejka and J. W. Adams, “Shielding effectiveness measurement techniques,” IEEE International Symp. on EMC, pp.249-253, 1984.

[13] P. F. Wilson, M. T. Ma, and J. W. Adams, “Techniques for measuring electromagnetic shielding effectiveness of material ,” IEEE Trans. on EMC, Vol.30, No.3, pp.239- 259, Aug. 1988.

[14] M. S. Lin and C. H. Chen, “Evaluation of plane-wave shielding properties of anisotropic laminated composites using GTEM,” IEEE International Symp. on EMC, pp.548- 550, Atlanta, 1995.

[15] ASTM Standard for Measuring the Electromagnetic Shielding Effectiveness of Planner Materials, ASTM D 4935,1999.

[16] R. L. Fante and M. T. McCormack, “Reflection properties of the Salisbury screen,” IEEE Trans. Antennas Propagat., Vol.36, pp.1143-1454, Oct. 1988.

[17] M. L. Crawford, “Generation of standard EM field using TEM transmission cells”, IEEE Trans. On Electromagn. Compat., Vol.16, pp.189-195, Nov. 1974.

[18] M. L. Crawford, J. L. Workman,and C. L. Thomas, “Expanding the bandwidth of TEM cells for EMC measurements’’, IEEE Trans. on Electromagn. Compat., Vol.20, pp.368-375, Aug. 1974.

[19] ISO/IEC Guide 17025 , General requirements for the competence of testing and calibration laboratories, 1999.

[20] ISO Guide to the Expression of Uncertainty in Measurement,1995.

[21] W. Barry, ‘‘A broad-band, automated, stripline technique for the simultaneous measurement of complex permittivity and permeability’

’, IEEE Trans. on microwave theory and techniques, Vol. MTT-34, NO. 1, Jan. 1986.

[22] W. B. Weir, ‘‘Automatic measurement of complex dielectric constant and permeability at microwave frequencies’’, Proc. IEEE, Vol.

62, pp33-36, Jan. 1974.

參考文獻

相關文件

Results for such increasing stability phenomena in the inverse source problems for the acoustic, electromagnetic, and elastic waves can be found in [ABF02, BLT10, BHKY18, BLZ20,

Chen, The semismooth-related properties of a merit function and a descent method for the nonlinear complementarity problem, Journal of Global Optimization, vol.. Soares, A new

 The nanostructure with anisotropic transmission characteristics on ITO films induced by fs laser can be used for the alignment layer , polarizer and conducting layer in LCD cell.

Helical Majorana fermions in TRI topological SCs show peculiar anisotropic magnetic response.. Under Zeeman fields, the helical MF shows

A diamagnetic material placed in an external magnetic field B ext develops a magnetic dipole moment directed opposite B ext.. If the field is nonuniform, the diamagnetic material

10 Magnetism of Matter 磁 性 Electromagnetic Waves 電磁 波. How can a clay-walled kiln reveal

Chen, Properties of circular cone and spectral factorization associated with circular cone, to appear in Journal of Nonlinear and Convex Analysis, 2013.

Chen, “Alternative proofs for some results of vector- valued functions associated with second-order cone,” Journal of Nonlinear and Convex Analysis, vol.. Chen, “The convex and