• 沒有找到結果。

Improvement on the long-term stability of flexible plastic dye-sensitized solar cells

N/A
N/A
Protected

Academic year: 2021

Share "Improvement on the long-term stability of flexible plastic dye-sensitized solar cells"

Copied!
7
0
0

加載中.... (立即查看全文)

全文

(1)

ContentslistsavailableatScienceDirect

Journal

of

Power

Sources

j ou rn a l h o m e pa g e :w w w . e l s e v i e r . c o m / l o c a t e / j p o w s o u r

Improvement

on

the

long-term

stability

of

flexible

plastic

dye-sensitized

solar

cells

Kun-Mu

Lee

a,∗

,

Wei-Hao

Chiu

b

,

Ming-De

Lu

a

,

Wen-Feng

Hsieh

b,c,∗∗

aGreenEnergy&EnvironmentResearchLaboratories,IndustrialTechnologyResearchInstitute,Hsinchu31040,Taiwan

bDepartmentofPhotonics&InstituteofElectro-OpticalEngineering,NationalChiaoTungUniversity,1001TahsuehRoad,Hsinchu30050,Taiwan

cDepartmentofPhotonics&InstituteofElectro-OpticalScienceandEngineering,NationalChengKungUniversity,1UniversityRoad,Tainan701,Taiwan

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received28January2011

Receivedinrevisedform6May2011

Accepted15June2011

Available online 22 June 2011

Keywords:

Plasticdye-sensitizedsolarcell

Long-termstability

Organiciodide

Flexible

a

b

s

t

r

a

c

t

Weinvestigatethelong-termstabilityofperformanceforplasticdye-sensitizedsolarcells(DSSCs)based onorganiciodides(TBAIorPMII)inmethoxypropionitrile-basedelectrolytes.PlasticDSSCscontaining TBAImaintain96.9%ofbaselineefficiencyundermorethan1000hprolongedonesunlightirradiation andthermalstress(60◦C)aging.Thefactorsofdevicelong-termstability,suchastheeffectsoforganic iodides,cell-sealingconditions,andthesheetresistanceofindiumtinoxidecoatedpolyethylene naphtha-latesubstrate(ITO/PEN)arediscussedviausingelectrochemicalimpedancespectroscopyandelectrical resistancemeasurement.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Researchershavestudiedthephotovoltaicapplicationsof dye-sensitizedsolarcells(DSSCs)duetotheirhighconversionefficiency andlowcost[1].ADSSCgeneratesphotocurrentthroughultra-fast injectionofelectronsfromphoto-exciteddyemoleculesintothe conductionbandofasemiconductorsuchasTiO2orZnO.This

pro-cessis followedbydyeregenerationand holetransportationto thecounterelectrode.Currently, oneofDSSC researchhasbeen focusedonthedevelopmentofflexibleplasticsubstrates.The low-temperature (<150◦C) treatment of semiconductor materials is acrucialtechnologyinthemanufactureofplasticDSSCsdueto thelowmeltingpointsofthesubstrates.Severallow-temperature techniqueshavebeendevelopedtoaddressthisissue,including chemicalsintering[2],hydrothermalnecking[3,4],microwave sin-tering[5,6],electrophoreticdeposition(EPD)[7],andmechanical compressing[8–11].Recently,wehavemadeahighqualityTiO2

electrodebyamultipleEPDprocesswithbinder-freeTiO2

nanopar-ticles (NPs) solution and applied it to a plastic DSSC withthe conversionefficiencyofca.6.6%atanilluminationof100mWcm−2 [12].

∗ Correspondingauthor.Tel.:+88635913135;fax:+88635834389.

∗∗ Correspondingauthor.Tel.:+88635712121x56316;fax:+88635716631.

E-mailaddresses:kunmulee@itri.org.tw(K.-M.Lee),wfhsieh@mail.nctu.edu.tw

(W.-F.Hsieh).

Forcommercialapplications,aDSSCmustpassdurabilitytest inacceleratedconditionssuchas60–80◦Cfor1000hand expo-sure to continuous solar irradiation of 100mWcm−2. In many cases,thedurabilityofDSSCisrelated totheleakageand dete-rioration of the electrolyte due to imperfections in thesealing materialandprocess[13].SeveralDSSCdesignshavebeenmadeto replaceorganicliquidelectrolytewithgelelectrolytesorsolid-state electrolytes [14–17]. However,liquid electrolytes withsolvents having high boiling temperature are still a better solution for DSSCswithmesoporousTiO2electrodes.Researchersarecurrently

investigatingthelong-termstabilityofsmallcellsandlarge-area DSSC modules undersimulated solarlight. Thesedesigns show good long-term stability under continuous irradiation of more than1000h,especiallyintheabsenceofUVlight[18–22]. How-ever,onlyfewstudiesreportedflexibleDSSCs[13,23].Therefore, inthisstudywedevelopafabricationmethodofTiO2 electrode

atroomtemperature(RT)combiningtheEPDandcompress pro-cesses for plastic DSSCs. We alsoinvestigate theeffects of ITO propertiesanddifferentiodidesonphotovoltaicperformanceand long-termstability.Finally,wereportelectrochemicalimpedance spectroscopy(EIS)analysisofvariationsintheelectrontransport resistanceoftheTiO2 electrode (Rw), charge-transfer resistance

related to electroncombination (Rk), effective electron lifetime

(eff), electrondiffusion coefficient(Deff)and electron diffusion

length(Ln)ofdevicesduringlight-irradiationandthermalaging

processes.

0378-7753/$–seefrontmatter © 2011 Elsevier B.V. All rights reserved.

(2)

A Kethley2400 SourceMeter served as a powersupply for EPDprovidingdifferentcurrentsanddepositiondurationsin con-stantcurrentmode,whichismoreeffectiveandcontrollablethan constant voltagemode[24].Fig.1 presents sketchplots of the electrophoreticcell,thepreparation of TiO2 electrodes, andthe

parametersusedinthisprocess.Inaddition,ascatteredlayermade ofTiO2NPs(approximately100nmindiameter,denotedby100nm

TiO2) was introduced on top of the light-absorbing layer. The

opticallyscattering100nmTiO2NPsweresynthesizedinabasic

solutionusingthesol–gelmethod.Acolloidalsuspensionwasmade bymixing58.6gtitaniumisopropoxidewith290mLdistilledwater. Themixturewasthenfilteredandplacedinanautoclave contain-ing20mLtetramethylammoniumhydroxide(TMAH)at250◦Cfor 12h.Finally,thesolutionintheautoclavewaswashedbyDIwater andcentrifugedtoobtainthe100nmTiO2 powder.Afterdrying

TiO2-depositedITO/PENsubstrateatRTandoneatmospheric

pres-sure,apressuretreatmentwasappliedtoimprovetheadhesionof TiO2onthesubstrateandtoenhancethephotovoltaicperformance

ofthedevice.

The mesoporous TiO2 film was immersed in a solution of

0.5mM N719 dye (cis-bis(isothiocyanato)bis(2,2-bipyridyl-4,4 -dicarboxylato)-ruthenium(II)bis-tetrabutylammonium,Solaronix, Aubonne, Switzerland) in acetonitrile (AN, HPLC grade, J.T. Baker)/tert-butyl alcohol (t-BuOH) (v/v=1/1) binary solvent at 40◦Cfor4htoabsorbsufficientN719dyeforlightharvesting.The dye-sensitizedTiO2electrodewasthenrinsedwithANtoremove

theremaining dye,and dried under standard atmosphere con-ditionsatRT.A platinum-sputteredITO/PEN filmserved asthe counterelectrode.Atwo-electrodesandwichcellwasseparatedby a60␮mhot-melttypespacerandfilledwiththeelectrolyte.The effectiveworkingareaofthedevicewaslimitedtoapproximately 0.28cm2byusingablackmask.

The electrolyte used for the high conversion efficiency test consistedof0.4MLiI(Merck),0.4Mtetrabutylammoniumiodide (TBAI,Aldrich),0.04MI2and0.5MN-methylbenzimidazole(NMBI,

Aldrich) in AN/methoxypropionitrile (MPN Alfa Aesar) mixture (v/v=1/1).Low-volatilityelectrolyteswithacompositionof0.8M TBAI,0.1MI2(99.8%),and0.5MNMBIinMPN(electrolyteA)or

0.8M1-methyl3-propylimidazoliumiodide(PMII),0.1MI2,and

0.5MNMBIinMPN(electrolyteB)wereusedtotestthe durabil-ityofplasticDSSCs.Theabove-mentionedchemicalswereusedas receivedwithoutfurtherpurification.

Thedurabilitytestinthisstudyincluding100mWcm−2 light irradiationwiththerangefromUVtoIRandthermalstress(60◦C) agingofhermeticallysealedcellswasperformedwithasuntest xenonarc lamp(ATLASCi3000xenonFadeometer).Followinga periodofcontinuouslightirradiation,photoelectrochemical mea-surementsweretakenafterthecellscooledtoRT.AnUV-cutfilter wascommonlyputontoDSSC toavoid thedegradationofdye, butwasnotusedinDSSCwithPENpolymersubstratesduetothe cut-offincidentlightofabout380nmbyPENsubstrates.

loidparticleswithaporousstructure.TheP-90NPssizeisabout 15nmandtheopticallyscatteringTiO2NPsisabout100nm(also

denotedby100nmTiO2).The100nmTiO2waswell-depositedon

thetransparentfilmcomposedbyP-90NPswithoutanylagerpin holesandthesethreekindsofTiO2filmswerepreparedtodevice

assembling. Fig. 2b shows the typical monochromatic incident photon-to-electronconversionefficiency(IPCE)spectra,whichis toscalethespectralresponseofthephotovoltaicdevices.Around thedistinctpeakat540nmattributedtothemetal-to-ligandcharge transferabsorptionbandoftheN719dye,theDSSCswithonlyP-90 NPswereobtainedtheIPCEvalueabout54%whichwasgreaterthan theoneswithonly100nmNPs(IPCEvalueabout47%)becauseof thegreateramountoftheN719dyeonTiO2film.TheDSSCs

consist-ingofbothP-90and100nmNPsshowedthegreatestIPCEvalue of60%duetoenoughsurfaceareafordyeabsorptionwithgood lightscattering.TheinsetfigureinFig.2bpresentedthenormalized IPCEofthreekindsofDSSCs.TheshapesofthethreeIPCEcurves arealmostthesameinthewavelengthrangeof400–600nmOnthe otherhands,inthewavelengthrangeabove600nm,theIPCEcurves shapeswithDSSCsconsistingof100nmTiO2NPsweregreaterthan

theP-90one,meaningofthelackofthelight-scatteringeffectfor P-90NPs.It suggeststhatthehighIPCEin DSSCsbasedon rel-ativelythinfilmscanbeimprovedbyenhancedlightabsorption withenoughsurfaceareafordyeabsorptionandgoodlight scat-teringlayerwithlargersizeNPs,whichwasconsistentwiththe workreportedbyArakawaetal.in2004[25].Ontheotherhand,a goodqualityfilmwithnocrackisnecessaryforelectroncollection thatmayalsoleadtoanimprovementinIPCE(Table1).

Althoughthepresstreatmenthasbeenusedonflexible sub-strateDSSCs[8–11],thecorrelationbetweenappliedpressureand deviceperformanceshouldalsobeclarifiedinthiswork.Therefore, adetailedexperimentalwasperformedunderdifferentcompress pressureconditionstoobtaintheperformanceoftheassembled DSSCsdevices, and theresultsareshown in Fig.3a. The thick-nessofelectrophoreticdepositedTiO2 filmis about20␮m,and

reducesto6–8␮mviadifferentappliedpressures.Betweena non-pressedanda 100MPa-pressed TiO2 films, JSC increasedrapidly

from1.7to11mAcm−2,respectively.Whentheexternalpressure appliedonTiO2filmsisfrom100to500MPa,JSCbecamea

con-stant.Itisbelievedthatthehighexternalpressure(over100MPa) notonlymeltthesurfaceofTiO2NPstoformagoodporous

pho-toanodeforelectrontransporting,butalsoincreasetheadhesion strengthbetweentheTiO2 filmandITO/PENsubstrate[26].The

slightchangesofVOCwithdifferentpressurefromnon-pressedto

400MPawerenotsignificantbutrelatedtothefilmthickness.The fillfactor(FF)wasobservedalmostaconstantabout0.7intherange 0(non-pressed)to400MPa,butFFoftheDSSCswith500MPa pres-suredroppedto0.4duetotheoccurringofcrackintheITOfilm. Consequently,the6%overallconversionefficiencywith100MPa pressuretreatmentwasachieved.Fig.3bshowstherelationship betweenthetimeofthepressureappliedforpressingtheTiO2film

(3)

Fig.1. Sketchplotsoftheelectrophoreticcell,thepreparationofTiO2electrodes,andthesignificantparametersinthisprocess.

Fig.2. (a)Cross-sectionSEMimageofanEPDfilmfor(I)100nmTiO2;(II)P-90TiO2and(III)P-90TiO2and100nmTiO2asdouble-layerfilmonITO/PENsubstrate.(b)IPCE

spectraandnormalizedIPCEspectra(insetfigure)ofDSSCswiththesethreekindsofnanocrystallineTiO2film.

Table1

Physic-chemicalpropertyofTiO2particlesusedinthisstudy.

Material Specificsurfacearea(BET)(m2g−1) Averageprimaryparticlesize(nm) Crystalphase

P-90TiO2 90±20 ca.14 Anatase

(4)

Fig.3.(a)Thecorrelationbetweenthecompressionpressureoftheelectrophoretic depositedTiO2 thinfilmanddeviceperformance.Theparametersofthe

non-pressurephotoanodewereplottedatthe0MPaposition.(b)Thecorrelationbetween thecompressiontimeoftheelectrophoreticdepositedTiO2thinfilmandthecurrent

densityandconversionefficiency,respectively.

andtheperformanceoftheassembledDSSCs.Afterthe100MPa

compressing,thethicknessoftheTiO2photoanodesusedforthis

measurementwere7–8␮m.JSCandtheconversionefficiencywere

observedtobelowintheabsenceofpressuretreatment(0s),and

tobealmostconstantforarapidpressuretreatment(1s)toa

con-tinuedpressuretreatment(60s).Itissuggestedthattheelectron

transportinginthephotoanodeandtheadhesionstrengthbetween

theTiO2filmandITO/PENsubstratecanbesignificantlyimproved

inarapidtime.Astheresults,itopensupthepossibilityof

develop-ingacontinuousrolltorollprocessformassproductionofflexible

DSSCs.

BeforeinvestigatingthedurabilityofplasticDSSC,itisimportant

totestthestabilityofITO/PENinelectrolyteandtocheckthesealing

materialandconditionintheplasticcell.Fig.3ashowsthe

varia-tionofsheetresistanceofITO/PENimmersedintwoelectrolytes for1000hwhichareelectrolyteI(0.5MPMII/0.05MI2 inMPN)

andelectrolyteII(0.5MLiI/0.05MI2inMPN).Thesheetresistance

ofITO/PENimmersedinelectrolyteIincreasesslightlyfrom11.2to 12.2ohmsq−1;however,thatinelectrolyteIIincreasessignificantly from11.1to18.6ohmsq−1.TheOMimagesofITO/PENsurfaceare alsoshowedinFig.3b,whichclearlyobservedbycracking phe-nomenonofITOfilmafterimmersinginelectrolyteIIfor1000h.

after100hasshownin Fig.5.The apparentincrease inJSCand

conversionefficiencymaybeduetoimprovementinelectrolyte penetrationintothemesoporousTiO2 film,loweringoftheTiO2

conductionbandboundaryandactivationofthePt-coatedcounter electrodeasreportedpreviously[27].Notethatdevicesexhibit dif-ferentconversionefficiencyimprovementswithdifferentcation iodides.InFig.5aandb,JSCandconversionefficiencyofthedevice

withelectrolyteIincreasedsignificantlyfrom3.81to6.89mAcm−2 and from 1.85% to 3.14%, respectively, under 100hcontinuous lightirradiation.On theotherhand,thedevicewithelectrolyte IIachievesanefficiencyvalueof2.38%fromtheinitialvalueof 1.84%,whichJSConlyslightlyincreasesfrom4.03to4.81mAcm−2

inFig.5b.ThisimprovementresultsfromTBA+ ontheTiO

2 film

surface thatprotected thevoids in thedye-coatedTiO2 film in

turnblockedundesirableinterfacialchargerecombinationand sup-pressedsurfaceprotonation.Thegradualdecreaseinconversion efficiencyofcellafter100hinFig.5bsuggeststhat the confor-mation,dyealignment, andintermolecularinteractionsofN719 onthesurfaceofTiO2filmshouldchangeduringtheaging

pro-cess.

Tofairlyevaluatedevicedurability,thephotovoltaicparameters ofthedevicesatthesteadystateobtainedafter100hagingwere usedasabaseline.Aftercontinuousagingfor1000h,thedevices withelectrolytesIandIIstillmaintained96.9%and72.3%ofthe baselineefficiencymeasuredat100h.Thisperformanceisbetter thanthatofpreviouslyreported[13,23].Themajorfactorof degra-dationintheefficiencyofthedevicesisduetoadecreaseofVoc

(∼0.13V)(seeFig.5c)thatiscausedbysurfaceprotonationunder theacceleratedagingtest[28–30].

Tounderstandtheeffectsofdifferentcationiodides,TBAIand PMII,onchargetransportationanddevicedurability,the electro-chemical impedance spectra (EIS) of the devices aged for 100, 500, and 1000h were measured under open-circuit condition and illuminationof 100mWcm−2. Fig.6a–cshows the Nyquist plots of theimpedance data,and the equivalentcircuit model ofDSSC isshowedin Fig.6d [31].TheTiO2 workingelectrodes

arecharacterizedbythechemicalcapacitanceC␮,thetransport resistanceRwandtheTiO2/electrolyteinterfacialcharge-transfer

resistanceRk. Theterms Rs and ZN represent thecharge

trans-portresistanceof ITO(includingexternal circuit)and thefinite Warburgimpedanceintheelectrolyte.RPtandCPtrepresentthe

charge-transferresistanceandcapacitanceatthePtsurface;RITO

andCITOrepresentthecharge-transfer resistanceand the

inter-facialcapacitanceattheITO/electrolyteinterface;finally,RFand

CF representtheresistanceandthecapacitanceat theITO/TiO2

interface.

TheEIS-fittingdatafromthesedevices are listedin Table2. The Rw values increase with light soaking time for electrolyte

containing eitherTBAI or PMII that lowersthe estimated elec-trondiffusioncoefficient(Deff)andshortensthediffusionlength,

(5)

Fig.4.(a)TherelationshipbetweenthesheetresistanceofITO/PENandtheimmersiontimeinelectrolyteat60◦C(electrolyteI:0.5MPMIIand0.05MI2inMPN;electrolyte

II:0.5MLiIand0.05MI2inMPN).(b)TheOMimagesofITO/PENfilmafterimmersioninelectrolyteIIat60◦C.(c)Thesealingtestcellandtheweightlossofcellduring

thermaltreatmentat60◦Cinthedark.

theeffectiveelectronlifetime,eff,increaseswiththelightsoaking

time.Itimpliesthattherecombinationofelectronswithtriiodide attheinterfaceofTiO2NPsandtheelectrolytehasinhibited

dur-ingtheprolongedstabilitytestresultinginastablephotocurrent output.Furthermore,thedevice withelectrolyte Ihasa higher

resistanceofcharge transferatthePt/electrolyteinterfacethan thatwithelectrolyteIIasshowninFig.6.Thismeansthatthe elec-trolytecontainingTBAIhadalowertriiodidereductionrateatthe Pt/electrolyteinterfacethatleadstothelowerFFvalueasshown inFig.5.

(6)

Fig.5.PhotovoltaicparametersforplasticDSSCwithTBAIorPMIIaftervisiblelightsoaking(1sun)at60◦C.(a)Shortcircuitcurrentdensity,JSC;(b)Energyconversion

efficiency,;(c)Opencircuitvoltage,VOCand(d)Fillfactor,FF.

Fig.6.EISresultsofplasticDSSCswithdifferentiodidesafter1sunlightsoakingfor(a)100,(b)500and(c)1000h.(d)Theequivalentcircuitmodelemployedforfittingthe

(7)

Table2

ParametersdeterminedfromfittingEISdataofplasticDSSCwithelectrolytescontainingTBAIandPMII,respectively.

Iodide Lightagingtime(h) Rw() Rk() Rk/Rw eff(ms) Deff(10−5cm2s−1) Ln(␮m)

TBAI 100 12.9 13.5 1.05 36.8 1.02 6.2 500 12.6 13.2 1.05 44.2 0.85 6.1 1000 18.8 14.4 0.77 48.4 0.57 5.3 PMII 100 28.9 13.2 0.46 16.6 0.99 4.1 500 37.4 14.3 0.38 15.3 0.90 3.7 1000 41.4 14.4 0.35 14.5 0.86 3.5 4. Conclusions

Wehaveinvestigatedthedurabilityofflexibledeviceswith

dif-ferentcation iodides.Underprolongedone-sunlight-irradiation

and60◦C-thermalstressaging,ourplasticDSSCdevicesshowed

aninitialimprovement inperformanceof 96.9%followedbyan

extendedsteady-stateperiodofmorethan1000h.Thepresence

ofTBAIintheelectrolyteprovideshigherphotocurrentandbetter

durability.ThisimprovementisaresultofTBA+ontheTiO

2film

surface,whichstericallyprotectsthevoidsinthedye-coatedTiO2

filminturnblocksundesirableinterfacialchargerecombinationto

suppresssurfaceprotonation.

Acknowledgements

WegratefullyacknowledgethefinancialsupportofIndustrial

Technology Research Institute (ITRI) and the National Science

Council of Taiwan(NSC-99-2112-M-006-017-MY3 and

NSC-99-2221-E-009-095-MY3).

References

[1]M.Grätzel,Nature414(2001)338–344.

[2]N.G.Park,K.M.Kim,M.G.Kang,K.S.Ryu,S.H.Chang,Y.J.Shin,Adv.Mater.17 (2005)2349–2353.

[3]D.S.Zhang,T.Yoshida,K.Furuta,H.Minoura,J.Photochem.Photobiol.A164 (2004)159–166.

[4]D.S.Zhang,T.Yoshida,H.Minoura,Adv.Mater.15(2003)814–817. [5]S.Uchida,M.Tomiha,H.Takizawa,M.Kawaraya,J.Photochem.Photobiol.A

164(2004)93–96.

[6]S.Uchida,M.Tomiha,N.Masaki,A.Miyazawa,H.Takizawa,Sol.EnergyMater. Sol.Cells81(2004)135–139.

[7]T.Miyasaka,Y.Kijitori,J.Electrochem.Soc.151(2004)A1767–A1773. [8] H.Lindström,A.Holmberg,E.Magnusson,L.Malmqvist,A.Hagfeldt,J.

Pho-tochem.Photobiol.A145(2001)107–112.

[9]H.Lindström,A.Holmberg,E.Magnusson,S.E.Lindquist,L.Malmqvist,A. Hagfeldt,NanoLett.1(2001)97–100.

[10]G.Boschloo,H.Lindstrom,E.Magnusson,A.Holmberg,A.Hagfeldt,J. Pho-tochem.Photobiol.A148(2002)11–15.

[11]S.A.Haques,E.Palomares,H.M.Upadhyaya,L.Otley,R.J.Potter,A.B.Holmes, J.R.Durrant,Chem.Commun.(2003)3008–3009.

[12]W.H.Chiu,K.M.Lee,W.F.Hsieh,J.PowerSources198(2011)3683–3687. [13] M.Ikegami,J.Suzuki,K.Teshima,M.Kawaraya,T.Miyasaka,Sol.EnergyMater.

Sol.Cells93(2009)836–839.

[14]P.Wang,S.M.Zakeeruddin,P.Comte,I.Exnar,M.Grätzel,J.Am.Chem.Soc.125 (2003)1166–1167.

[15]P.Wang, S.M.Zakeeruddin, I.Exnar,M.Grätzel, Chem.Commun. (2002) 2972–2973.

[16]N.Ikeda,K.Teshima,T.Miyasaka,Chem.Commun.(2006)1733–1735. [17]N.Ikeda,T.Miyasaka,Chem.Lett.36(2007)466–467.

[18]O. Kohle,M.Grätzel,A.F. Meyer,T.B. Meyer,Adv.Mater.9 (1997)904– 906.

[19]R.Kern,N.vanderBurg,G.Chmiel,J.Ferber,G.Hasenhindl,A.Hinsch,R. Kin-derman,J.Kroon,A.Meyer,T.Meyer,R.Niepmann,J.vanRoosmalen,C.Schill, M.Sommeling,M.Späth,I.Uhlendorf,Opto-Electron.Rev.8(2000)284–288. [20] M.Sommeling,M.Späth,H.J.P.Smit,N.J.Bakker,J.M.Kroon,J.Photochem.

Photobiol.A164(2004)137–144.

[21]T.Toyoda,T.Sano,J.Nakajima,S.Doi,S.Fukumoto,A.Ito,T.Tohyama,M. Yoshida,T.Kanagawa,T.Motohiro,T.Shiga,K.Higuchi,H.Tanaka,Y.Takeda,T. Fukano,N.Katoh,A.Takeichi,K.Takechi,M.Shiozawa,J.Photochem.Photobiol. A164(2004)203–207.

[22]D.Kuang, S.Ito,B. Wenger,C.Klein,J.E. Moser,R. Humphry-Baker,S.M. Zakeeruddin,M.Grätzel,J.Am.Chem.Soc.128(2006)4146–4154.

[23] K.M.Lee,S.J.Wu,C.Y.Chen,C.G.Wu,M.Ikegami,K.Miyoshi,T.Miyasaka,K.C. Ho,J.Mater.Chem.19(2009)5009–5015.

[24]L.Grinis,S.Dor,A.Ofir,A.Zaban,J.Photochem.Photobiol.A198(2008)52–59. [25]Z.S.Wang,H.Kawauchi,T.Kashima,H.Arakawa,Coord.Chem.Rev.248(2004)

1381–1389.

[26] T.Yamaguchi,N.Tobe,D.Matsumoto,T.Nagai,H.Arakawa,Sol.EnergyMater. Sol.Cells94(2010)812–816.

[27]Z.Zhang,S.Ito,J.E.Moser,S.M.Zakeeruddin,M.Grätzel,ChemPhysChem10 (2009)1834–1838.

[28] C.Y.Chen,M.Wang,J.Y.Li,N.Pootrakulchote,L.Alibabaei,C.H.Ngoc-le,J.D. Decoppet,J.H.Tsai,C.Grätzel,C.G.Wu,S.M.Zakeeruddin,M.Grätzel,ACSNano 3(2009)3103–3109.

[29] M.Wang,X.Li,H.Lin,P.Pechy,S.M.Zakeeruddin,M.Grätzel,DaltonTrans. (2009)10015–10020.

[30]C.Y.Chen,N.Pootrakulchote,S.J.Wu,M.Wang,J.Y.Li,J.H.Tsai,C.G.Wu,S.M. Zakeeruddin,M.Grätzel,J.Phys.Chem.C113(2009)20752–20757. [31]M.Adachi,M.Sakamoto,J.Jiu,Y.Ogata,S.Isoda,J.Phys.Chem.B110(2006)

數據

Fig. 1. Sketch plots of the electrophoretic cell, the preparation of TiO 2 electrodes, and the significant parameters in this process.
Fig. 3. (a) The correlation between the compression pressure of the electrophoretic deposited TiO 2 thin film and device performance
Fig. 4. (a) The relationship between the sheet resistance of ITO/PEN and the immersion time in electrolyte at 60 ◦ C (electrolyte I: 0.5 M PMII and 0.05 M I 2 in MPN; electrolyte
Fig. 5. Photovoltaic parameters for plastic DSSC with TBAI or PMII after visible light soaking (1 sun) at 60 ◦ C

參考文獻

相關文件

You are given the wavelength and total energy of a light pulse and asked to find the number of photons it

Wang, Solving pseudomonotone variational inequalities and pseudocon- vex optimization problems using the projection neural network, IEEE Transactions on Neural Networks 17

Define instead the imaginary.. potential, magnetic field, lattice…) Dirac-BdG Hamiltonian:. with small, and matrix

incapable to extract any quantities from QCD, nor to tackle the most interesting physics, namely, the spontaneously chiral symmetry breaking and the color confinement.. 

Microphone and 600 ohm line conduits shall be mechanically and electrically connected to receptacle boxes and electrically grounded to the audio system ground point.. Lines in

™ ™ When ready to eat a bite of your bread, place the spoon on the When ready to eat a bite of your bread, place the spoon on the under plate, then use the same hand to take the

“Polysilicon Thin Film Transistors Fabricated at 100℃ on a Flexible Plastic Substrate,” IEEE Electron Device Meeting, p. “Polysilicon Thin Film Transistors

Gratzel, “Low cost photovoltaic modules based on dye sensitized nano-crystalline titanium dioxide and carbon power,” Solar Energy Materials and Solar Cells, Vol.