• 沒有找到結果。

A Random Walk Algorithm for φ in CNF Form

N/A
N/A
Protected

Academic year: 2022

Share "A Random Walk Algorithm for φ in CNF Form"

Copied!
60
0
0

加載中.... (立即查看全文)

全文

(1)

The Markov Inequality

a

Lemma 62 Let x be a random variable taking nonnegative integer values. Then for any k > 0,

prob[x ≥ kE[ x ] ] ≤ 1/k.

• Let pi denote the probability that x = i.

E[ x ] = 

i

ipi = 

i<kE[ x ]

ipi + 

i≥kE[ x ]

ipi



i≥kE[ x ]

ipi ≥ kE[ x ] 

i≥kE[ x ]

pi

≥ kE[ x ] × prob[x ≥ kE[ x ]].

aAndrei Andreyevich Markov (1856–1922).

(2)

Andrei Andreyevich Markov (1856–1922)

(3)

fsat for k-sat Formulas (p. 484)

• Let φ(x1, x2, . . . , xn) be a k-sat formula.

• If φ is satisfiable, then return a satisfying truth assignment.

• Otherwise, return “no.”

• We next propose a randomized algorithm for this problem.

(4)

A Random Walk Algorithm for φ in CNF Form

1: Start with an arbitrary truth assignment T ;

2: for i = 1, 2, . . . , r do

3: if T |= φ then

4: return “φ is satisfiable with T ”;

5: else

6: Let c be an unsatisfied clause in φ under T ; {All of its literals are false under T .}

7: Pick any x of these literals at random;

8: Modify T to make x true;

9: end if

10: end for

11: return “φ is unsatisfiable”;

(5)

3sat vs. 2sat Again

• Note that if φ is unsatisfiable, the algorithm will answer

“unsatisfiable.”

• The random walk algorithm needs expected exponential time for 3sat.

– In fact, it runs in expected O((1.333 · · · + )n) time with r = 3n,a much better than O(2n).b

• We will show immediately that it works well for 2sat.

• The state of the art as of 2006 is expected O(1.322n) time for 3sat and expected O(1.474n) time for 4sat.c

aUse this setting per run of the algorithm.

bSch¨oning (1999).

cKwama and Tamaki (2004); Rolf (2006).

(6)

Random Walk Works for 2sat

a

Theorem 63 Suppose the random walk algorithm with r = 2n2 is applied to any satisfiable 2sat problem with n variables. Then a satisfying truth assignment will be

discovered with probability at least 0.5.

• Let ˆT be a truth assignment such that ˆT |= φ.

• Assume our starting T differs from ˆT in i values.

– Their Hamming distance is i.

– Recall T is arbitrary.

aPapadimitriou (1991).

(7)

The Proof

• Let t(i) denote the expected number of repetitions of the flipping stepa until a satisfying truth assignment is

found.

• It can be shown that t(i) is finite.

• t(0) = 0 because it means that T = ˆT and hence T |= φ.

• If T = ˆT or any other satisfying truth assignment, then we need to flip the coin at least once.

• We flip a coin to pick among the 2 literals of a clause not satisfied by the present T .

• At least one of the 2 literals is true under ˆT because ˆT satisfies all clauses.

aThat is, Statement 7.

(8)

The Proof (continued)

• So we have at least 0.5 chance of moving closer to ˆT .

• Thus

t(i) ≤ t(i − 1) + t(i + 1)

2 + 1

for 0 < i < n.

– Inequality is used because, for example, T may differ from ˆT in both literals.

• It must also hold that

t(n) ≤ t(n − 1) + 1 because at i = n, we can only decrease i.

(9)

The Proof (continued)

• Now, put the necessary relations together:

t(0) = 0, (9)

t(i) ≤ t(i − 1) + t(i + 1)

2 + 1, 0 < i < n, (10)

t(n) ≤ t(n − 1) + 1. (11)

• Technically, this is a one-dimensional random walk with an absorbing barrier at i = 0 and a reflecting barrier at i = n (if we replace “≤” with “=”).a

aThe proof in the textbook does exactly that. But a student pointed out difficulties with this proof technique on December 8, 2004. So our proof here uses the original inequalities.

(10)

The Proof (continued)

• Add up the relations for

2t(1), 2t(2), 2t(3), . . . , 2t(n − 1), t(n) to obtaina 2t(1) + 2t(2) + · · · + 2t(n − 1) + t(n)

≤ t(0) + t(1) + 2t(2) + · · · + 2t(n − 2) + 2t(n − 1) + t(n) +2(n − 1) + 1.

• Simplify it to yield

t(1) ≤ 2n − 1. (12)

aAdding up the relations for t(1), t(2), t(3), . . . , t(n−1) will also work, thanks to Mr. Yen-Wu Ti (D91922010).

(11)

The Proof (continued)

• Add up the relations for 2t(2), 2t(3), . . . , 2t(n − 1), t(n) to obtain

2t(2) + · · · + 2t(n − 1) + t(n)

≤ t(1) + t(2) + 2t(3) + · · · + 2t(n − 2) + 2t(n − 1) + t(n) +2(n − 2) + 1.

• Simplify it to yield

t(2) ≤ t(1) + 2n − 3 ≤ 2n − 1 + 2n − 3 = 4n − 4 by Eq. (12) on p. 528.

(12)

The Proof (continued)

• Continuing the process, we shall obtain t(i) ≤ 2in − i2.

• The worst upper bound happens when i = n, in which case

t(n) ≤ n2.

• We conclude that

t(i) ≤ t(n) ≤ n2 for 0 ≤ i ≤ n.

(13)

The Proof (concluded)

• So the expected number of steps is at most n2.

• The algorithm picks r = 2n2.

– This amounts to invoking the Markov inequality

(p. 519) with k = 2, resulting in a probability of 0.5.

• The proof does not yield a polynomial bound for 3sat.a

aContributed by Mr. Cheng-Yu Lee (R95922035) on November 8, 2006.

(14)

Boosting the Performance

• We can pick r = 2mn2 to have an error probability of

1 2m by Markov’s inequality.

• Alternatively, with the same running time, we can run the “r = 2n2” algorithm m times.

• The error probability is now reduced to

≤ 2−m.

(15)

Primality Tests

• primes asks if a number N is a prime.

• The classic algorithm tests if k | N for k = 2, 3, . . . ,√ N .

• But it runs in Ω(2(log2 N)/2) steps.

(16)

Primality Tests (concluded)

• Suppose N = P Q is a product of 2 distinct primes.

• The probability of success of the density attack (p. 468) is

2

√N when P ≈ Q.

• This probability is exponentially small in terms of the input length log2 N.

(17)

The Fermat Test for Primality

Fermat’s “little” theorem (p. 471) suggests the following primality test for any given number N:

1: Pick a number a randomly from { 1, 2, . . . , N − 1 };

2: if aN−1 ≡ 1 mod N then

3: return “N is composite”;

4: else

5: return “N is (probably) a prime”;

6: end if

(18)

The Fermat Test for Primality (concluded)

• Carmichael numbers are composite numbers that will pass the Fermat test for all a ∈ { 1, 2, . . . , N − 1 }.a

– The Fermat test will return “N is a prime” for all Carmichael numbers N.

• Unfortunately, there are infinitely many Carmichael numbers.b

• In fact, the number of Carmichael numbers less than N exceeds N2/7 for N large enough.

• So the Fermat test is an incorrect algorithm for primes.

aCarmichael (1910). Lo (1994) mentions an investment strategy based on such numbers!

bAlford, Granville, and Pomerance (1992).

(19)

Square Roots Modulo a Prime

• Equation x2 ≡ a mod p has at most two (distinct) roots by Lemma 59 (p. 476).

– The roots are called square roots.

– Numbers a with square roots and gcd(a, p) = 1 are called quadratic residues.

∗ They are

12 mod p, 22 mod p, . . . , (p − 1)2 mod p.

• We shall show that a number either has two roots or has none, and testing which is the case is trivial.a

aBut no efficient deterministic general-purpose square-root-extracting algorithms are known yet.

(20)

Euler’s Test

Lemma 64 (Euler) Let p be an odd prime and a = 0 mod p.

1. If

a(p−1)/2 ≡ 1 mod p, then x2 ≡ a mod p has two roots.

2. If

a(p−1)/2 ≡ 1 mod p, then

a(p−1)/2 ≡ −1 mod p and x2 ≡ a mod p has no roots.

(21)

The Proof (continued)

• Let r be a primitive root of p.

• Fermat’s “little” theorem says rp−1 ≡ 1 mod p, so r(p−1)/2

is a square root of 1.

• In particular,

r(p−1)/2 ≡ 1 or −1 mod p.

• But as r is a primitive root, r(p−1)/2 ≡ 1 mod p.

• Hence r(p−1)/2 ≡ −1 mod p.

(22)

The Proof (continued)

• Let a = rk mod p for some k.

• Then

1 ≡ a(p−1)/2 ≡ rk(p−1)/2 

r(p−1)/2 k

≡ (−1)k mod p.

• So k must be even.

(23)

The Proof (continued)

• Suppose a = r2j mod p for some 1 ≤ j ≤ (p − 1)/2.

• Then

a(p−1)/2 ≡ rj(p−1) ≡ 1 mod p.

• The two distinct roots of a are

rj, −rj(≡ rj+(p−1)/2 mod p).

– If rj ≡ −rj mod p, then 2rj ≡ 0 mod p, which implies rj ≡ 0 mod p, a contradiction as r is a primitive root.

(24)

The Proof (continued)

• As 1 ≤ j ≤ (p − 1)/2, there are (p − 1)/2 such a’s.

• Each such a ≡ r2j mod p has 2 distinct square roots.

• The square roots of all these a’s are distinct.

– The square roots of different a’s must be different.

• Hence the set of square roots is { 1, 2, . . . , p − 1 }.

• As a result,

a = r2j mod p, 1 ≤ j ≤ (p − 1)/2, exhaust all the quadratic residues.

(25)

The Proof (concluded)

• Suppose a = r2j+1 mod p now.

• Then it has no square roots because all the square roots have been taken.

• Finally,

a(p−1)/2 

r(p−1)/2 2j+1

≡ (−1)2j+1 ≡ −1 mod p.

(26)

The Legendre Symbola and Quadratic Residuacity Test

• By Lemma 64 (p. 538),

a(p−1)/2 mod p = ±1 for a ≡ 0 mod p.

• For odd prime p, define the Legendre symbol (a | p) as

(a | p) =

0 if p | a,

1 if a is a quadratic residue modulo p,

−1 if a is a quadratic nonresidue modulo p.

• It is sometimes pronounced “a over p.”

aAndrien-Marie Legendre (1752–1833).

(27)

The Legendre Symbol and Quadratic Residuacity Test (concluded)

• Euler’s test (p. 538) implies

a(p−1)/2 ≡ (a | p) mod p for any odd prime p and any integer a.

• Note that (ab | p) = (a | p)(b | p).

(28)

Gauss’s Lemma

Lemma 65 (Gauss) Let p and q be two distinct odd primes. Then (q | p) = (−1)m, where m is the number of residues in R = { iq mod p : 1 ≤ i ≤ (p − 1)/2 } that are greater than (p − 1)/2.

• All residues in R are distinct.

– If iq = jq mod p, then p | (j − i) or p | q.

– But neither is possible.

• No two elements of R add up to p.

– If iq + jq ≡ 0 mod p, then p | (i + j) or p | q.

– But neither is possible.

(29)

The Proof (continued)

• Replace each of the m elements a ∈ R such that a > (p − 1)/2 by p − a.

– This is equivalent to performing −a mod p.

• Call the resulting set of residues R.

• All numbers in R are at most (p − 1)/2.

• In fact, R = { 1, 2, . . . , (p − 1)/2 } (see illustration next page).

– Otherwise, two elements of R would add up to p,a which has been shown to be impossible.

aBecause iq ≡ −jq mod p for some i = j.

(30)

5 1 2 3 4

6 5

1 2 3 4

6

p = 7 and q = 5.

(31)

The Proof (concluded)

• Alternatively, R = { ±iq mod p : 1 ≤ i ≤ (p − 1)/2 }, where exactly m of the elements have the minus sign.

• Take the product of all elements in the two representations of R.

• So

[(p − 1)/2]! = (−1)mq(p−1)/2[(p − 1)/2]! mod p.

• Because gcd([(p − 1)/2]!, p) = 1, the above implies 1 = (−1)mq(p−1)/2 mod p.

(32)

Legendre’s Law of Quadratic Reciprocity

a

• Let p and q be two distinct odd primes.

• The next result says (p | q) and (q | p) are distinct if and only if both p and q are 3 mod 4.

Lemma 66 (Legendre (1785), Gauss)

(p | q)(q | p) = (−1)p−12 q−12 .

aFirst stated by Euler in 1751. Legendre (1785) did not give a cor- rect proof. Gauss proved the theorem when he was 19. He gave at least 8 different proofs during his life. The 152nd proof appeared in 1963. A computer-generated formal proof was given in Russinoff (1990).

As of 2008, there have been 4 such proofs. Wiedijk (2008), “the Law of Quadratic Reciprocity is the first nontrivial theorem that a student encounters in the mathematics curriculum.”

(33)

The Proof (continued)

• Sum the elements of R in the previous proof in mod2.

• On one hand, this is just (p−1)/2

i=1 i mod 2.

• On the other hand, the sum equals mp +

(p−1)/2

i=1



iq − p

iq p



mod 2

= mp +

⎝q (p−1)/2

i=1

i − p

(p−1)/2

i=1

iq p

⎞⎠ mod 2.

m of the iq mod p are replaced by p − iq mod p.

– But signs are irrelevant under mod2.

m is as in Lemma 65 (p. 546).

(34)

The Proof (continued)

• Ignore odd multipliers to make the sum equal

m +

(p−1)/2

i=1

i −

(p−1)/2

i=1

iq p

⎞⎠ mod 2.

• Equate the above with (p−1)/2

i=1 i modulo 2 and simplify to obtain

m ≡

(p−1)/2

i=1

iq p



mod 2.

(35)

The Proof (continued)

(p−1)/2

i=1 iqp is the number of integral points below the line

y = (q/p) x for 1 ≤ x ≤ (p − 1)/2.

• Gauss’s lemma (p. 546) says (q | p) = (−1)m.

• Repeat the proof with p and q reversed.

• Then (p | q) = (−1)m, where m is the number of integral points above the line y = (q/p) x for

1 ≤ y ≤ (q − 1)/2.

(36)

The Proof (concluded)

• As a result,

(p | q)(q | p) = (−1)m+m.

• But m + m is the total number of integral points in the [1, p−12 ] × [1, q−12 ] rectangle, which is

p − 1 2

q − 1 2 .

(37)

Eisenstein’s Rectangle

(p,q)

(p - 1)/2 (q - 1)/2

Above, p = 11, q = 7, m = 7, m = 8.

(38)

The Jacobi Symbol

a

• The Legendre symbol only works for odd prime moduli.

• The Jacobi symbol (a | m) extends it to cases where m is not prime.

a is sometimes called the numerator and m the denominator.

• Define (a | 1) = 1.

aCarl Jacobi (1804–1851).

(39)

The Jacobi Symbol (concluded)

• Let m = p1p2 · · · pk be the prime factorization of m.

• When m > 1 is odd and gcd(a, m) = 1, then

(a | m) =

k i=1

(a | pi).

– Note that the Jacobi symbol equals ±1.

– It reduces to the Legendre symbol when m is a prime.

(40)

Properties of the Jacobi Symbol

The Jacobi symbol has the following properties when it is defined.

1. (ab | m) = (a | m)(b | m).

2. (a | m1m2) = (a | m1)(a | m2).

3. If a ≡ b mod m, then (a | m) = (b | m).

4. (−1 | m) = (−1)(m−1)/2 (by Lemma 65 on p. 546).

5. (2 | m) = (−1)(m2−1)/8.a

6. If a and m are both odd, then (a | m)(m | a) = (−1)(a−1)(m−1)/4.

aBy Lemma 65 (p. 546) and some parity arguments.

(41)

Properties of the Jacobi Symbol (concluded)

• These properties allow us to calculate the Jacobi symbol without factorization.

– It will also yield the same result as Euler’s test (p.

538) when m is an odd prime.

• This situation is similar to the Euclidean algorithm.

• Note also that (a | m) = 1/(a | m) because (a | m) = ±1.a

aContributed by Mr. Huang, Kuan-Lin (B96902079, R00922018) on December 6, 2011.

(42)

Calculation of (2200 | 999)

(2200| 999) = (202 | 999)

= (2 | 999)(101 | 999)

= (−1)(9992−1)/8(101| 999)

= (−1)124750(101| 999) = (101 | 999)

= (−1)(100)(998)/4(999| 101) = (−1)24950(999| 101)

= (999| 101) = (90 | 101) = (−1)(1012−1)/8(45| 101)

= (−1)1275(45| 101) = −(45 | 101)

= −(−1)(44)(100)/4(101| 45) = −(101 | 45) = −(11 | 45)

= −(−1)(10)(44)/4(45| 11) = −(45 | 11)

= −(1 | 11) = −1.

(43)

A Result Generalizing Proposition 10.3 in the Textbook

Theorem 67 The group of set Φ(n) under multiplication mod n has a primitive root if and only if n is either 1, 2, 4, pk, or 2pk for some nonnegative integer k and an odd prime p.

This result is essential in the proof of the next lemma.

(44)

The Jacobi Symbol and Primality Test

a

Lemma 68 If (M | N) ≡ M(N−1)/2 mod N for all M ∈ Φ(N), then N is a prime. (Assume N is odd.)

• Assume N = mp, where p is an odd prime, gcd(m, p) = 1, and m > 1 (not necessarily prime).

• Let r ∈ Φ(p) such that (r | p) = −1.

• The Chinese remainder theorem says that there is an M ∈ Φ(N) such that

M = r mod p, M = 1 mod m.

aMr. Clement Hsiao (B4506061, R88526067) pointed out that the text- book’s proof for Lemma 11.8 is incorrect in January 1999 while he was a senior.

(45)

The Proof (continued)

• By the hypothesis,

M(N−1)/2 = (M | N) = (M | p)(M | m) = −1 mod N.

• Hence

M(N−1)/2 = −1 mod m.

• But because M = 1 mod m,

M(N−1)/2 = 1 mod m, a contradiction.

(46)

The Proof (continued)

• Second, assume that N = pa, where p is an odd prime and a ≥ 2.

• By Theorem 67 (p. 561), there exists a primitive root r modulo pa.

• From the assumption, MN−1 =

M(N−1)/2 2

= (M|N)2 = 1 mod N for all M ∈ Φ(N).

(47)

The Proof (continued)

• As r ∈ Φ(N) (prove it), we have

rN−1 = 1 mod N.

• As r’s exponent modulo N = pa is φ(N) = pa−1(p − 1), pa−1(p − 1) | (N − 1),

which implies that p | (N − 1).

• But this is impossible given that p | N.

(48)

The Proof (continued)

• Third, assume that N = mpa, where p is an odd prime, gcd(m, p) = 1, m > 1 (not necessarily prime), and a is even.

• The proof mimics that of the second case.

• By Theorem 67 (p. 561), there exists a primitive root r modulo pa.

• From the assumption, MN−1 =

M(N−1)/2 2

= (M|N)2 = 1 mod N for all M ∈ Φ(N).

(49)

The Proof (continued)

• In particular,

MN−1 = 1 mod pa (13)

for all M ∈ Φ(N).

• The Chinese remainder theorem says that there is an M ∈ Φ(N) such that

M = r mod pa, M = 1 mod m.

• Because M = r mod pa and Eq. (13), rN−1 = 1 mod pa.

(50)

The Proof (concluded)

• As r’s exponent modulo N = pa is φ(N) = pa−1(p − 1), pa−1(p − 1) | (N − 1),

which implies that p | (N − 1).

• But this is impossible given that p | N.

(51)

The Number of Witnesses to Compositeness

Theorem 69 (Solovay and Strassen (1977)) If N is an odd composite, then (M | N) ≡ M(N−1)/2 mod N for at most half of M ∈ Φ(N).

• By Lemma 68 (p. 562) there is at least one a ∈ Φ(N) such that (a | N) ≡ a(N−1)/2 mod N.

• Let B = { b1, b2, . . . , bk } ⊆ Φ(N) be the set of all

distinct residues such that (bi | N) ≡ b(N−1)/2i mod N.

• Let aB = { abi mod N : i = 1, 2, . . . , k }.

• Clearly, aB ⊆ Φ(N), too.

(52)

The Proof (concluded)

• | aB | = k.

abi ≡ abj mod N implies N | a(bi − bj), which is

impossible because gcd(a, N) = 1 and N > | bi − bj |.

• aB ∩ B = ∅ because

(abi)(N−1)/2 ≡ a(N−1)/2b(N−1)/2i ≡ (a | N)(bi | N) ≡ (abi | N).

• Combining the above two results, we know

| B |

φ(N) | B |

| B ∪ aB | = 0.5.

(53)

1: if N is even but N = 2 then

2: return “N is composite”;

3: else if N = 2 then

4: return “N is a prime”;

5: end if

6: Pick M ∈ { 2, 3, . . . , N − 1 } randomly;

7: if gcd(M, N ) > 1 then

8: return “N is composite”;

9: else

10: if (M | N ) ≡ M(N−1)/2 mod N then

11: return “N is (probably) a prime”;

12: else

13: return “N is composite”;

14: end if

15: end if

(54)

Analysis

• The algorithm certainly runs in polynomial time.

• There are no false positives (for compositeness).

– When the algorithm says the number is composite, it is always correct.

(55)

Analysis (concluded)

• The probability of a false negative (again, for compositeness) is at most one half.

– Suppose the input is composite.

– By Theorem 69 (p. 569),

prob[ algorithm answers “no”| N is composite ] ≤ 0.5.

– Note that we are not referring to the probability that N is composite when the algorithm says “no.”

• So it is a Monte Carlo algorithm for compositeness.a

aNot primes.

(56)

The Improved Density Attack for compositeness

All numbers < N

Witnesses to compositeness of

N via Jacobi Witnesses to

compositeness of N via common

factor

(57)

Randomized Complexity Classes; RP

• Let N be a polynomial-time precise NTM that runs in time p(n) and has 2 nondeterministic choices at each step.

• N is a polynomial Monte Carlo Turing machine for a language L if the following conditions hold:

– If x ∈ L, then at least half of the 2p(n) computation paths of N on x halt with “yes” where n = | x |.

– If x ∈ L, then all computation paths halt with “no.”

• The class of all languages with polynomial Monte Carlo TMs is denoted RP (randomized polynomial time).a

aAdleman and Manders (1977).

(58)

Comments on RP

• In analogy to Proposition 36 (p. 312), a “yes” instance of an RP problem has many certificates (witnesses).

• There are no false positives.

• If we associate nondeterministic steps with flipping fair coins, then we can phrase RP in the language of

probability.

– If x ∈ L, then N(x) halts with “yes” with probability at least 0.5 .

– If x ∈ L, then N(x) halts with “no.”

(59)

Comments on RP (concluded)

• The probability of false negatives is  ≤ 0.5.

• But any constant between 0 and 1 can replace 0.5.

– Repeat the algorithm k = −log12  times and answer

“no” only if all the runs answer “no.”

– The probability of false negatives becomes k ≤ 0.5.

(60)

Where RP Fits

• P ⊆ RP ⊆ NP.

– A deterministic TM is like a Monte Carlo TM except that all the coin flips are ignored.

– A Monte Carlo TM is an NTM with more demands on the number of accepting paths.

• compositeness ∈ RP;a primes ∈ coRP;

primes ∈ RP.b

– In fact, primes ∈ P.c

• RP ∪ coRP is an alternative “plausible” notion of efficient computation.

aRabin (1976) and Solovay and Strassen (1977).

bAdleman and Huang (1987).

cAgrawal, Kayal, and Saxena (2002).

參考文獻

相關文件

Al atoms are larger than N atoms because as you trace the path between N and Al on the periodic table, you move down a column (atomic size increases) and then to the left across

• ‘ content teachers need to support support the learning of those parts of language knowledge that students are missing and that may be preventing them mastering the

• helps teachers collect learning evidence to provide timely feedback &amp; refine teaching strategies.. AaL • engages students in reflecting on &amp; monitoring their progress

Robinson Crusoe is an Englishman from the 1) t_______ of York in the seventeenth century, the youngest son of a merchant of German origin. This trip is financially successful,

Then, we tested the influence of θ for the rate of convergence of Algorithm 4.1, by using this algorithm with α = 15 and four different θ to solve a test ex- ample generated as

Particularly, combining the numerical results of the two papers, we may obtain such a conclusion that the merit function method based on ϕ p has a better a global convergence and

Then, it is easy to see that there are 9 problems for which the iterative numbers of the algorithm using ψ α,θ,p in the case of θ = 1 and p = 3 are less than the one of the

volume suppressed mass: (TeV) 2 /M P ∼ 10 −4 eV → mm range can be experimentally tested for any number of extra dimensions - Light U(1) gauge bosons: no derivative couplings. =&gt;