• 沒有找到結果。

Linear Transformation of General Vector

N/A
N/A
Protected

Academic year: 2022

Share "Linear Transformation of General Vector"

Copied!
33
0
0

加載中.... (立即查看全文)

全文

(1)

大學數學

(2)

數學 大 學 線性代數 , 大

數 .

大 學 線性代數學 ,

學 線性代數 . 大學線性代數

. 學 大 大 ( ) 線性

代數 , . 大學 線性代數 , 大

學 數學 . 大 大 數學

, 學 , 線性代數

. , 線性代數

數學 . , .

, .

學 , 數學 學 , 線性

代數 . 線性代數 .

, . 學

. , (Question).

, 大

. , 線性代數 . ,

學 線性代數 學 線性代數 , .

, ,

代. , .

, . , 性

, . , .

v

(3)

Linear Transformation of General Vector

Space

, 前 vector space. vector space

vector space linear transformation. 前 , vector space

性 , Rn . 前 .

6.1. Vector Space and Subspace

Rm , 線性 Rm ,

Proposition 1.2.3 8 , vector space.

vector space vector space subspaces 性 .

V , V +, V u, v∈ V,

u + v V ( 性). R V

r∈ R v∈ V, r v rv V ( 數

性).

Definition 6.1.1. V +, R V 數 .

8 性 , V vector space.

(1) u, v∈ V, u + v = v + u.

(2) u, v, w∈ V, (u + v) + w = u + (v + w).

(3) O∈ V u∈ V O + u = u.

(4) u∈ V u∈ V u + u= O.

(5) r, s∈ R u∈ V, r(su) = (rs)u.

(6) r, s∈ R u∈ V, (r + s)u = ru + su.

111

(4)

(7) r∈ R u, v∈ V r(u + v) = ru + rv.

(8) u∈ V, 1u = u.

, vector space,

數 . vector space , V vector

space + , 數 數 ,

數 . vector space, Rn,

數 , 數 .

vector space , 數 . vector space

數 數 , “field” 數 . over

field vector space ( over field 大). 學

field 數 R ,

overR vector space, vector space .

Corollary 1.2.4 Rn , 性 (3) O (4)

u, u . Rn 數 ,

8 性 , vector space .

Proposition 6.1.2. V vector space, V O

u∈ V O + u = u. , u∈ V, u∈ V u + u= O.

O , O V O + u = u,∀u ∈ V

, V additive identity zero element. u∈ V,

u u + u= O, −u u,

u additive inverse.

, 性 (3) O u∈ V

O + u = u ( Proposition 6.1.2 u ),

u∈ V w + u = u, w = O. Proposition 6.1.2

, u∈ V, w + u = u, w = O . 性

O 性 . 數 r, rO = O.

性 (7) rO + rO = r(O + O) = rO. rO rO rO,

rO = O. , , Corollary 1.2.6

Corollary 1.2.7.

Proposition 6.1.3. V vector space, .

(1) w∈ V u∈ V w + u = u, w = O.

(2) v∈ V 0v = O.

(3) r∈ R rO = O.

(4) r∈ R,v ∈ V (−1)(rv) = −(rv) = r(−v).

(5)

Proposition 6.1.3 r = 0 v = O rv = O, r̸= 0 v̸= O,

rv = O ? . r̸= 0 v̸= O, 1/r rv

vector space 性 (5) 1r(rv) =rrv =1v, 性 (8) 1v = v, 1r(rv) = v̸= O.

rv = O, Proposition 6.1.3 (3) 1r(rv) = 1rO = O, . rv O.

Question 6.1. V vector space, v∈ V v̸= O, r, s∈ R r̸= s,

rv̸= sv, V vector space over R V , V

.

言 , vector space 數 8 性 , vector

space 數 . , 數 “ ” ,

w + (−v) w− v.

. 2u + v = w, 1/2 u = 12(w− v).

vector space .

Example 6.1.4. (A) Mm×n m× n matrices .

數 ( Definition 3.1.2), vector space

8 性 ( Proposition 3.1.3). 數 Mm×n

vector space.

(B) P(R) x 數 數 . 數 ,

P(R) vector space. f (x) = anxn+··· + a1x + a0, g(x) = bmxm+··· + b1x + b0∈ P(R), m≤ n, g(x) g(x) = bnxn+···+bmxm+···+b1x + b0,

bn = bn−1 =··· = bm+1= 0. 數 ,

數 . f (x) + g(x)

f (x) + g(x) =ni=0(ai+ bi)xi. r∈ R,r f (x) r f (x) =ni=0(rai)xi.

, 數 數 ,

P(R) . vectors

space 8 .

(1) f (x) =ni=0aixi, g(x) =ni=0bixi∈ P(R) f (x) + g(x) =

n i=0

(ai+ bi)xi=

n i=0

(bi+ ai)xi= g(x) + f (x).

(2) f (x) =ni=0aixi, g(x) =ni=0bixi, h(x) =ni=0cixi∈ P(R) ( f (x) + g(x)) + h(x) =

n i=0

(ai+ bi)xi+

n i=0

cixi=

n i=0

((ai+ bi) + ci)xi,

f (x) + (g(x) + h(x)) =

n i=0

aixi+

n i=0

(bi+ ci)xi=

n i=0

(ai+ (bi+ ci))xi.

(ai+ bi) + ci= ai+ (bi+ ci), ( f (x) + g(x)) + h(x) = f (x) + (g(x) + h(x)).

(6)

(3) g(x) = 0 =ni=0bixi∈ P(R), bi= 0, ∀i = 0,1,...,n.

f (x) =ni=0aixi∈ P(R), f (x) + g(x) =

n i=0

(ai+ bi)xi=

n i=0

aixi= f (x).

(4) f (x) =ni=0aixi∈ P(R), h(x) =ni=0(−ai)xi∈ P(R), f (x) + h(x) =

n i=0

(ai− ai)xi=

n i=0

0xi= 0.

(5) r, s∈ R f (x) =ni=0aixi∈ P(R), r(s f (x)) = r(

n i=0

(sai)xi) =

n i=0

(r(sai))xi=

n i=0

((rs)ai)xi= (rs)

n i=0

aixi= (rs) f (x).

(6) r, s∈ R f (x) =ni=0aixi∈ P(R), (r + s) f (x) =

n i=0

((r + s)ai)xi=

n i=0

(rai+ sai)xi=

n i=0

(rai)xi+

n i=0

(sai)xi= r f (x) + s f (x).

(7) r∈ R f (x) =ni=0aixi, g(x) =ni=0bixi∈ P(R) r( f (x) + g(x)) = r(

n i=0

(ai+ bi)xi) =

n i=0

(r(ai+ bi))xi=

n i=0

(rai+ rbi)xi= r f (x) + rg(x).

(8) f (x) =ni=0aixi∈ P(R), 1 f (x) =

n i=0

(1ai)xi=

n i=0

aixi= f (x).

P(R) 數 vector space 8 , 數

P(R) vector space.

(C) L (Rn,Rm) Rn Rm linear transformations .

L (Rn,Rm) 數 , 數 L (Rn,Rm) (

Proposition 5.1.6). linear transformation 數

代 , Rm vector space, L (Rn,Rm)

數 vector space 8 . (2), T1, T2, T3∈ L (Rn,Rm).

v∈ Rn,

((T1+ T2) + T3)(v) = (T1+ T2)(v) + T3(v) = (T1(v) + T2(v)) + T3(v),

(T1+ (T2+ T3))(v) = T1(v) + (T2+ T3)(v) = T1(v) + (T2(v) + T3(v)).

Rm , ((T1+ T2) + T3)(v) = (T1+ (T2+ T3))(v).

v∈ Rn , 數 (T1+ T2) + T3= T1+ (T2+ T3).

(3) zero element zero mapping, T :Rn→ Rm, T (v) = O,

∀v ∈ Rn linear transformation. L (Rn,Rm) 數 vector space

8 , 數 L (Rn,Rm) vector space.

(7)

Rn , Rn Rn 數 vector

space, Rn subspace. vector space ,

vector space 數 vector space, vector space

subspace.

Definition 6.1.5. V vector space, W V nonempty subset. V

W vector space, W V subspace.

vector space subspace vector space, subspace

vector space 8 . vector space 8

(3)(4) , ,

. Rn subspace 性 ( Proposition 4.1.2).

Proposition 6.1.6. V vector space W V . W V subspace O∈ W u, v∈ W, r ∈ R u + rv∈ W.

Proof. (⇒) : subspace , 數 性, u, v∈ W, r ∈ R

u + rv∈ W. W , w∈ W. 0w, 性 0w∈ W.

V vector space, 0w = O (Proposition 6.1.3(2)). O =0w∈ W.

(⇐) : O∈ W, W V . u, v∈ W, r ∈ R

u + rv∈ W, VW 性, W

數 . W V subspace, 數 W

vector space 8 . (3)(4) , V

. W V , W V , W

. O∈ W, (3) . w∈ W, 數 性 (−1)w ∈ W,

w + (−1)w = 0w = O, (4) . 

Proposition 6.1.6, vector space V W V

subspace, (1) O∈ V

(2) u, v∈ V, r ∈ R ⇒ u + rv ∈ V.

. .

Example 6.1.7. (A) Mn×n, n× n vector space.

Mn×n symmetric matrices ( ) Mn×n subspace.

A∈ Mn×n symmetric matrix, AT= A. n× n O

symmetric matrix. A, B∈ Mn×n AT = A, BT = B, r ∈ R,

(A + rB)T = AT+ (rB)T= A + rB ( Proposition 3.2.4). A + rB symmetric

matrix, Mn×n symmetric matrices Mn×n subspace.

(8)

Mn×n invertible matrices ( ) Mn×n subspace

? . O invertible, O

Mn×n invertible matrices Mn×n subspace.

invertible matrices {O} , Mn×n subspace.

O , invertible matrices invertible. 2× 2

,

[ 1 0 0 1

] [

0 1 1 0

]

invertible,

[ 1 0 0 1

] +

[ 0 1 1 0

]

=

[ 1 1 1 1

]

invertible.

(B) P(R), x 數 數 vector space.

數 n∈ N,n Pn(R) P(R) subspace.

Pn(R) Pn(R) = {∑ni=0aixi| ai∈ R}. Pn(R)

( 數學 數 −∞, 0. 代數

, ). f (x) =ni=0aixi, g(x) =ni=0bixi∈ Pn(R), r∈ R, f (x) + rg(x) =ni=0(ai+ rbi)xi∈ Pn(R). Pn(R) P(R) subspace. ,

n , P(R) subspace .

. , 數 n

, (x2+ x + 1) + (−x2+ x + 1) = 2x + 2. ,

vector space.

(C) L (Rn,Rm) Rn Rm linear transformations vector space.

Rn subspace V ,

N(V ) ={T ∈ L (Rn,Rm)| V ⊆ ker(T)}.

N(V ) v∈ V, T(v) = O linear transformation T .

, L (Rn,Rm) additive identity, zero mapping, kernel Rn V ⊆ Rn

zero mapping N(V ). T1, T2∈ N(V), r∈ R, v∈ V

(T1+ rT2)(v) = T1(v) + r(T2(v)) = O + rO = O.

V ⊆ ker(T1+ rT2), T1+ rT2∈ N(V). N(V ) L (Rn,Rm) subspace.

Question 6.2. L (Rn,Rm) Rn Rm linear transformations vector

space. Rn subspace V ,

S(V ) ={T ∈ L (Rn,Rm)| ker(T) ⊆ V}.

S(V ) L (Rn,Rm) subspace?

Rm subspace W ,

R(W ) ={T ∈ L (Rn,Rm)| T(Rn)⊆ W}.

R(W ) L (Rn,Rm) subspace?

I(W ) ={T ∈ L (Rn,Rm)| W ⊆ T(Rn)}.

I(W ) L (Rn,Rm) subspace?

(9)

6.2. Basis and Dimension

, vector space basis , finitely generated vector

space dimension 性 .

Rn subspace , basis . basis, subspace

, basis 線性 . basis subspace

spanning vectors linearly independent ( Proposition 4.1.8).

vector space.

Definition 6.2.1. V vector space v1, . . . , vn∈ V. c1, . . . , cn∈ R, c1v1+···+cnvn v1, . . . , vn linear combination. v1, . . . , vn linear combination

, Span(v1, . . . , vn) , Span(v1, . . . , vn) ={∑ni=1civi| c1, . . . , cn∈ R}.

Span(v1, . . . , vn) V subspace ( Proposition 1.3.2).

v1, . . . , vn subspace. W V subspace v1, . . . , vn∈ W, subspace 數 性 Span(v1, . . . , vn)⊆ W. , Span(v1, . . . , vn) = V

, .

Definition 6.2.2. V vector space. v1, . . . , vn∈ V Span(v1, . . . , vn) = V , {v1, . . . , vn} V spanning set. V finitely generated vector space.

finitely generated vector space ? vector space

線性 . Rn finitely generated ( e1, . . . en

). 初 Rn subspaces, finitely generated vector space

. vector space, finitely generated,

, .

Example 6.2.3. 前 vector space finitely generated vector space.

(A) Mm×n finitely generated. Mi, j∈ Mm×n, (i, j)-th entry 1,

entry 0 m× n matrix. m× n matrix Mi, j 1≤ i ≤ m,

1≤ j ≤ n linear combination. {Mi, j| 1 ≤ i ≤ m,1 ≤ j ≤ n} Mm×n spanning set, Mm×n finitely generated vector space.

(B) P(R) finitely generated vector space. { f1(x), . . . , fn(x)} P(R) spanning set, f1(x), . . . , fn(x) m, f1(x), . . . , fn(x) linear combi- nation c1f1(x) +··· + cnfn(x) 數 大 m. Span( f1(x), . . . , fn(x))

數大 m . { f1(x), . . . , fn(x)} P(R) spanning set ,

P(R) finitely generated. 數 n Pn(R)

finitely generated vector space. {xn, . . . , x, 1} Pn(R) spanning set.

(10)

大 finite generated vector space subspace finitely gener-

ated. , (大 ).

linearly independence , .

Spanning set linear combination 性, linear independence

linear combination 性. Rn linearly independent

vector space.

Definition 6.2.4. V vector space v1, . . . , vn∈ V. c1, . . . , cn∈ R 0 c1v1+···+cnvn= O, v1, . . . , vn linearly dependent. , c1, . . . , cn

0 c1v1+··· + cnvn= O, v1, . . . , vn linearly independent.

Rn , v1, . . . , vn linearly independent, c1, . . . , cn c1v1+··· + cnvn. v1, . . . , vn linear combination

. , v1, . . . , vn linearly dependent, d1, . . . , dn 0 d1v1+···+cnvn= O. c1, . . . , cn∈ R, c1v1+···+cnvn (c1+ d1)v1+···+(cn+ dn)vn

v1, . . . , vn linear combination, .

(c1+ d1)v1+··· + (cn+ dn)vn=

(c1v1+··· + cnvn) + (d1v1+··· + dnvn) = c1v1+··· + cnvn+ O = c1v1+··· + cnvn. Example 6.2.5. P(R) xn, xn−1, . . . , x, 1 linearly independent.

cn, . . . , c1, c0 ∈ R cnxn+··· + c1x + c01 , ,

cn, . . . , c1, c0 0. P(R) linearly independent

, Lagrange interpolation polynomials. , 大

.

a, b, c 數, p1(x), p2(x), p3(x)

p1(a) = 1, p1(b) = p1(c) = 0, p2(b) = 1, p2(a) = p2(c) = 0 and p3(c) = 1, p3(a) = p3(b) = 0.

p1(b) = p1(c) = 0, p1(x) (x− b)(x − c) , 數 r p1(x) = r(x− b)(x − c). p1(a) = 1,x = a r = 1/(a− b)(a − c).

p2(x), p3(x)

p1(x) = (x− b)(x − c)

(a− b)(a − c), p2(x) = (x− a)(x − c)

(b− a)(b − c) and p3(x) = (x− a)(x − b) (c− a)(c − b).

p1(x), p2(x), p3(x) linearly independent. , f (x) = c1p1(x) + c2p2(x) + c3p3(x),x = a p1(a) = 1, p2(a) = p3(a) = 0, f (a) = c1.

f (b) = c2, f (c) = c3. f (x) , f (a) = f (b) = f (c) = 0, c1= c2= c3= 0. c1= c2= c3= 0 c1p1(x) + c2p2(x) + c3p3(x)

, p1(x), p2(x), p3(x) linearly independent.

. n 數 a1, . . . , an, n

n− 1 p1(x), . . . , pn(x) pi(ai) = 1 j̸= i , pi(aj) = 0. 前 , p1(x), . . . , pn(x) linearly independent.

(11)

Spanning set linearly independent 性 ,

. .

Lemma 6.2.6. V vector space v1, . . . , vn∈ V.

(1) Span(v1, . . . , vn−1)̸= Span(v1, . . . , vn−1, vn) vn+1̸∈ Span(v1, . . . , vn).

(2) v1, . . . , vn−1 linearly independent, v1, . . . , vn−1, vn linearly indepen- dent vn̸∈ Span(v1, . . . , vn−1).

(3) w1, . . . , wm∈ V. w1, . . . , wm∈ Span(v1, . . . , vn) m > n, w1, . . . , wm linearly dependent.

Proof. (1), (2), (3) Lemma 4.2.1, Lemma 4.2.4 Lemma 4.2.5 vector space . (1), (2) Lemma 4.2.1, Lemma 4.2.4 .

(3) . Lemma 4.2.5 Rm ,

vector space, .

w1, . . . , wm∈ Span(v1, . . . , vn), j = 1, . . . , m, wj v1, . . . , vn

linear combination. , a1, j, . . . , ai, j, . . . , an, j∈ R wj= a1, jv1+··· + ai, jvi+··· + an, jvn.

c1, . . . , cm∈ R 0 c1w1+··· + cmwm= O, w1, . . . , wm linearly dependent. c1w1+···+cmwm wj v1, . . . , vn linear combination

(c1a1,1+··· + cma1,m)v1+··· + (c1ai,1+··· + cmai,m)vi+··· + (c1am,1+··· + cmam,m)vm. (6.1)

c1, . . . , cm ∈ R (6.1) vi 數 0,

c1w1+··· + cmwm= O.















a1,1x1+··· + a1,mxm = 0 ...

ai,1x1+··· + ai,mxm = 0 ...

an,1x1+··· + an,mxm = 0

x1= c1, . . . , xm= cm, c1w1+··· + cmwm= O. homogeneous

linear system 數 n數 m, Corollary 3.4.7

0 c1, . . . , cm∈ R x1= c1, . . . , xm= cm . w1, . . . , wm linearly

dependent. 

finitely generated vector space subspace finitely generated.

Proposition 6.2.7. V finitely generated vector space. W V subspace, W finitely generated vector space.

(12)

Proof. V finitely generated , v1, . . . , vn∈ V Span(v1, . . . , vn) = V .

{O} = Span(O) finitely generated, W̸= {O} . ,

W finitely generated. w1∈ W w1̸= O. W finitely generated, Span(w1)̸= W, w2∈ W w2̸∈ Span(w1). Lemma 6.2.6 (2) w1, w2 linearly independent. , W finitely generated, Span(w1, w2)̸= W

w3∈ W w3̸∈ Span(w1, w2). Lemma 6.2.6 (2) w1, w2, w3 linearly independent.

, 數學 w1, . . . , wk∈ W linearly independent.

Span(w1, . . . , wk)̸= W, wk+1∈ W wk+1̸∈ Span(w1, . . . , wk). Lemma 6.2.6 (2) w1, . . . , wk, wk+ linearly independent. 數學 , W finitely generated, m∈ N, w1, . . . , wm∈ W linearly independent. m > n

. w1, . . . , wm∈ W ⊆ V = Span(v1, . . . , vn), Lemma 6.2.6 (3) w1, . . . , wm linearly dependent. W finitely generated vector space.  Question 6.3. P(R) n∈ N, xn, xn−1, . . . , x, 1 linearly independent,

P(R) finitely generated vector space.

spanning set 性 linearly independent 性, {v1, . . . , vn} vector space V spanning set linearly independent, V

v1, . . . , vn linear combination, .

Definition 6.2.8. V vector space. {v1, . . . , vn} V spanning set linearly independent, v1, . . . , vn V basis.

finitely generated vector space basis. 性 finitely generated vector space ,

vector space finitely generated, .

Theorem 6.2.9. V ̸= {O} finitely generated vector space. v1, . . . , vn∈ V V basis. w1, . . . , wm∈ V V basis, m = n.

Proof. Theorem 4.3.1 Theorem 4.3.2 vector space .

Theorem 4.3.1 basis 性. finitely generated

性 , 數學 .

vector space spanning set 數 數學 . V

. V = Span(u). V ̸= {O}, u̸= O. u linearly

independent {u} V spanning set u V basis. vector

space k , basis . V k + 1 vector

space, V = Span(u1, . . . , uk, uk+1). W = Span(u1, . . . , uk). W

k vector space, v1, . . . , vn∈ W W basis.

Span(v1, . . . , vn) = W v1, . . . , vn linearly independent. W = V , v1, . . . , vn

V basis. W̸= V, uk+1̸∈ W ( V = Span(u1, . . . , uk, uk+1)⊆ W

(13)

). uk+1̸∈ W = Span(v1, . . . , vn) Lemma 6.2.6 (2) v1, . . . , vn, uk+1 linearly independent. V = Span(u1, . . . , uk, uk+1) Span(u1, . . . , uk) = W = Span(v1, . . . , vn)

V = Span(v1, . . . , vn, uk+1). v1, . . . , vn, uk+1 V basis.

basis 數 , Lemma 4.2.5 Theorem 4.3.2

vector space , Rm . ,

. 

Theorem 6.2.9 V basis 數 . n

V basis, V basis n .

.

Definition 6.2.10. V finitely generated vector space. V basis

V dimension ( ), dim(V ) .

finitely generated vector space basis 數 ,

finitely generated vector space finite dimensional vector space.

Example 6.2.11. Example 6.2.3 finite dimensional vector space .

(A) Example 6.2.3 (A) {Mi, j∈ Mm×n| 1 ≤ i ≤ m,1 ≤ j ≤ n} Mm×n

spanning set. linearly independent, {Mi, j| 1 ≤ i ≤ m,1 ≤ j ≤ n}

Mm×n basis. dim(Mm×n) = m× n.

(B) {xn, . . . , x, 1} Pn(R) spanning set linearly independent.

xn, . . . , x, 1 Pn(R) basis, dim(Pn(R)) = n + 1.

finite dimensional vector space dimension 性 , .

Proposition 4.3.4, Corollary 4.3.6.

Proposition 6.2.12. V finite dimensional vector space.

(1) {v1, . . . , vn} V spanning set, dim(V )≤ n. , v1, . . . , vn linearly dependent, dim(V ) < n.

(2) v1, . . . , vn∈V linearly independent, dim(V )≥ n. , {v1, . . . , vn} V spanning set, dim(V ) > n.

(3) W V subspace, dim(W )≤ dim(V). dim(W ) = dim(V ) V = W .

(4) v1, . . . , vn∈ V. .

(a) v1, . . . , vn V basis.

(b) dim(V ) = n {v1, . . . , vn} V spanning set.

(c) dim(V ) = n v1, . . . , vn linearly independent.

(14)

, Proposition 6.2.12 (4) v1, . . . , vn V basis ,

dim(V ) n, spanning set linearly independent

.

Example 6.2.13. Example 6.2.5 a, b, c 數, p1(x) = (x− b)(x − c)

(a− b)(a − c), p2(x) = (x− a)(x − c)

(b− a)(b − c) and p3(x) = (x− a)(x − b) (c− a)(c − b).

p1(a) = 1, p1(b) = p1(c) = 0; p2(b) = 1, p2(a) = p2(c) = 0; p3(c) = 1, p3(a) = p3(b) = 0.

p1(x), p2(x), p3(x)∈ P2(R) linearly independent dim(P2(R)) = 3, Propo- sition 6.2.12 (4) p1(x), p2(x), p3(x) P2(R) basis.

n 數 a1, . . . , an, n n−1 p1(x), . . . , pn(x) pi(ai) = 1 j̸= i , pi(aj) = 0. p1(x), . . . , pn(x)∈ Pn−1(R) linearly independent,

dim(Pn−1(R)) = n p1(x), . . . , pn(x) Pn−1(R) basis.

6.3. Linear Transformation

vector space linear transformation 性 . Rn

, vector spaces , 數 vector space

數 , .

Definition 6.3.1. V,W vector spaces, T : V → W 數. T v1, . . . , vk∈ V c1, . . . , ck∈ R

T (c1v1+··· + ckvk) = c1T (v1) +··· + ckT (vk).

T linear transformation. T linear.

c1v1+··· + cnv1 V linear combination, c1T (v1) +··· + ckT (vk)

W linear combination, . O∈ V V zero element ,

linear transformation , T (O) = T (O + O) = T (O) + T (O). T (O)

, T (O) W zero element. linear transformation

T : V→ W, V zero element W zero element. V̸= W ,

zero element , O , .

T (O) = O .

T : V→ W linear transformation, V linear

combination 代 T linear transformation . Rn (

Proposition 5.1.3), linear combination .

Proposition 6.3.2. V,W vector spaces T : V → W 數. T linear transformation u, v∈ V, r ∈ R T (u + rv) = T (u) + rT (v).

(15)

T1, T2 V W linear transformation , T1, T2

T1+ T2: V → W, (T1+ T2)(v) = T1(v) + T2(v), ∀v ∈ V. linear transformation T : V → W 數 . r∈ R, rT : V → W (rT )(v) = r(T (v)), ∀v ∈ V.

T1+ T2 rT V W linear transformation ( Proposition 5.1.6).

數 vector space 8 , (3) additive

identity V W zero mapping ( V W O).

( ).

Proposition 6.3.3. V,W vector spaces, L (V,W) V W linear

transformation . 數 數 , L (V,W) vector

space.

linear transformation “ 數”. U,V,W vector

spaces, T : V → W T: W → U linear transformations, T◦ T : V → U T◦ T(v) = T(T (v)), ∀v ∈ V. ( Proposition 5.1.7).

Proposition 6.3.4. U,V,W vector spaces. T : V → W T: W → U linear transformations, T◦ T : V → U linear transformation.

Rn Rm linear transformation standard matrix representation

linear transformation basis . linear

transformation ( Theorem 5.1.8).

Theorem 6.3.5. V,W vector spaces v1, . . . , vn∈ V, V basis.

w1, . . . , wn∈ W, linear transformation T : V → W, i = 1, . . . , n T (vi) = wi.

linear transformation 數 性, subspace .

T : V → W linear transformation , V subspace V T (V) ={T(v) ∈ W | v ∈ V} = {w ∈ W | w = T(v), for some v ∈ V}.

W W subspace,

T−1(W) ={v ∈ V | T(v) ∈ W}.

( Proposition 5.2.1).

Proposition 6.3.6. V,W vector spaces T : V → W linear transformation.

V V subspaces, T (V) W subspace. , W W subspaces,

T−1(W) V subspace.

, V= V W={O} ,

T (V ) ={w ∈ W | w = T(v) for some v ∈ V} and T−1({O}) = {v ∈ V | T(v) = O}

(16)

subspaces, T linear transformation . Rn .

Definition 6.3.7. V,W vector spaces T : V → W linear transformation.

W subspace T (V ) T range ( image). V subspace T−1({O})

T kernel, ker(T ) .

, linear transformation T : V → W onto range T (V ) W .

T range ? ( Proposition 5.2.4).

Proposition 6.3.8. V,W vector spaces T : V → W linear transformation.

{v1, . . . , vn} V spanning set.

T (V ) = Span(T (v1), . . . , T (vn)).

, T onto W = Span(T (v1), . . . , T (vn)).

kernel one-to-one . Proposition 5.2.6

.

Proposition 6.3.9. V,W vector spaces T : V → W linear transformation.

T one-to-one ker(T ) ={O}.

Proposition 6.3.8 T : V→ W onto spanning set. T

V spanning set W spanning set. linear transformation

linearly independent ? .

Proposition 6.3.10. V,W vector spaces T : V → W one-to-one linear transformation. v1, . . . , vn∈ V linearly independent T (v1), . . . , T (vn)∈ W linearly independent.

Proof. (⇒) v1, . . . , vn∈ V linearly independent, T (v1), . . . , T (vn)∈ W linearly independent. , T (v1), . . . , T (vn)∈ W linearly dependent,

c1, . . . , cn∈ R 0 c1T (v1) +··· + cnT (vn) = O. T linear, O = c1T (v1) +··· + cnT (vn) = T (c1v1+··· + cnvn). T one-to-one, c1v1+··· + cnvn= O T (c1v1+··· + cnvn) = O. v1, . . . , vn∈ V linearly independent c1=··· = cn= 0. c1, . . . , cn∈ R 0 ,

T (v1), . . . , T (vn)∈ W linearly independent.

(⇐) T one-to-one, T linear transformation.

T (v1), . . . , T (vn)∈ W linearly independent. v1, . . . , vn∈ V linearly dependent, c1, . . . , cn∈ R 0 c1v1+···+cnvn= O. T linear,

c1T (v1) +··· + cnT (vn) = T (c1v1+··· + cnvn) = T (O) = O. T (v1), . . . , T (vn)∈ W linearly independent, c1=··· = cn= 0 . v1, . . . , vn∈ V linearly

independent. 

(17)

T : V → W one-to-one onto , invertible, T−1: W→ V, v∈ V T−1◦ T(v) = T−1(T (v)) = v w∈ W T◦ T−1(w) =

T (T−1(w)) = w. T−1 T inverse. Theorem 5.3.12 Rn

linear transformation invertible, inverse linear transformation.

, Theorem 5.3.12 standard matrix representation

. matrix representation, .

Theorem 6.3.11. V,W vector spaces T : V→ W linear transformation.

T invertible, T inverse T−1: W → V linear transformation.

Proof. w∈ W, T one-to-one onto, v∈ V T (v) = w.

T−1(w) = v. T−1 W V 數.

T−1: W → V linear transformation. w1, w2∈ V, r ∈ R,

T−1(w1+ rw2) = T−1(w1) + rT−1(w2). T−1(w1) = v1, T−1(w2) = v2. T (v1) = w1

T (v2) = w2. T−1(w1+ rw2) T−1(w1) + rT−1(w2) = v1+ rv2

T (v1+ rv2) = w1+ rw2. T linear transformation, T (v1+ rv2) = T (v1) + rT (v2) = w1+ rw2. T−1(w1+ rw2) = v1+ rv2= T−1(w1) + rT−1(w2),

T−1 linear transformation. 

T : V→ W invertible linear transformation , T isomor-

phism. V W vector space T

數. T onto, T V W spanning set, T one-to-one

T linearly independent , .

Theorem 6.3.12. V,W vector spaces T : V → W isomorphism. v1, . . . , vn V basis T (v1), . . . , T (vn) W basis.

Proof. (⇒) v1, . . . , vn V basis. T onto {v1, . . . , vn} V spanning set, Proposition 6.3.8 {T(v1), . . . , T (vn)} W spanning set.

T one-to-one v1, . . . , vn ∈ V linearly independent, Proposition 6.3.10 T (v1), . . . , T (vn)∈ W linearly independent. T (v1), . . . , T (vn) W basis.

(⇐) T (v1), . . . , T (vn) W basis. T−1: W→ V linear transformation (Theorem 6.3.11), T : V → W inverse, T−1 one-to-one onto,

T−1: W → V isomorphism. T (v1), . . . , T (vn) W basis, 前

T−1(T (v1)), . . . , T−1(T (vn)) V basis. i = 1, . . . , n T−1(T (vi)) = vi,

v1, . . . , vn V basis. 

V,W finite dimensional vector space , Theorem 6.3.12, T : V → W

isomorphism, V W basis 數 , dim(V ) = dim(W ).

dim(V )̸= dim(W), V W isomorphism. 性

, .

(18)

Corollary 6.3.13. V,W finite dimensional vector spaces. T : V → W isomorphism dim(V ) = dim(W ).

Proof. (⇒) v1, . . . , vn V basis, dim(V ) = n. T : V → W isomorphism Theorem 6.3.12 T (v1), . . . , T (vn) W basis. dim(W ) = n = dim(V ).

(⇐) dim(V ) = dim(W ), v1, . . . , vn w1, . . . , wn V basis W basis. linear transformation T : V→W T (vi) = wi,∀i = 1,...,n ( Theo- rem 6.3.5). T isomorphism. 6.3.8 T (V ) = Span(T (v1), . . . , T (vn)) = Span(w1, . . . , wn). w1, . . . , wn W basis Span(w1, . . . , wn) = W .

T (V ) = W , T onto. v∈ ker(T). v1, . . . , vn V basis, c1, . . . , cn∈ R v = c1v1+··· + cnvn. T (v) = O,

O = T (c1v1+··· + cnvn) = c1T (v1) +··· + cnT (vn) = c1w1+··· + cnwn.

w1, . . . , wn linearly independent, c1=··· = cn= 0. v = c1v1+···+cnvn= O.

ker(T ) ={O}, Proposition 6.3.9 T one-to-one, T isomorphism.



6.4. Coordinatization

, linear transformation, vector space

. vector space , Rn

.

V finite dimensional vector space, V basis, basis

, , basis, ordered

basis. , basis , ordered

basis.([ ordered basis , (v1, . . . , vn) , .

1 0 ]

, [0

1

]) ([

0 1 ]

, [1

0 ])

R2 ordered basis.

, ordered basis , ordered

basis. B = (v1, . . . , vn) V ordered basis, B

ordered basis (v1, . . . , vn). Rn standard basis, E (e1, . . . , en) ordered basis.

vector space V ordered basis B = (v1, . . . , vn) , V

” (coordinatization). v∈ V, B ordered basis

v v = c1v1+··· + cnvn ,

 c1

... cn

 B v .

, B[v] B v . ,

(19)

B[v] Rn . vector space ,

Rn .

Example 6.4.1. 前 vector space .

(A) M2×2 ordered basis E =

([ 1 0 0 0

] ,

[ 0 1 0 0

] ,

[ 0 0 1 0

] ,

[ 0 0 0 1

])

( basis M2×2 standard basis). M2×2

[ a b c d

] , [ a b

c d ]

= a [ 1 0

0 0 ]

+ b [ 0 1

0 0 ]

+ c [ 0 0

1 0 ]

+ d [ 0 0

0 1 ]

, [ a b

c d ]

E

E

[ a b c d

]

=



a b c d



.

E

[ 1 −2

−3 4

]

=



 1

−2−3 4



.

(B) P2(R) x2, x, 1 basis standard basis. E = (x2, x, 1) ordered basis. 2x2− 3x + 4 E

 2

−3 4

,

E[2x2− 3x + 4] =

 2

−3 4

.

ordered basis B = (p1(x), p2(x), p3(x))

p1(x) =−(x − 1)(x + 1), p2(x) = (1/2)x(x + 1) and p3(x) = (1/2)x(x− 1) ( Example 6.2.5, Example 6.2.13).

p1(0) = 1, p1(1) = p1(−1) = 0; p2(1) = 1, p2(0) = p2(−1) = 0; p3(−1) = 1, p3(0) = p3(1) = 0, 2x2−3x+4 = c1p1(x) + c2p2(x) + c3p3(x), 代 x = 0, 1,−1, c1= 4, c2= 3, c3= 9.

B[2x2− 3x + 4] =

4 3 9

.

參考文獻

相關文件

2 Distributed classification algorithms Kernel support vector machines Linear support vector machines Parallel tree learning?. 3 Distributed clustering

The best way to picture a vector field is to draw the arrow representing the vector F(x, y) starting at the point (x, y).. Of course, it’s impossible to do this for all points (x, y),

The t-submodule theorem says that all linear relations satisfied by a logarithmic vector of an algebraic point on t-module should come from algebraic relations inside the t-module

Theorem 1.5.9 finite dimensional vector space linearly independent set 大 basis; spanning

vector space subspaces internal direct sum, 再 external direct. sum, 再 internal

minimal element; vector space linearly independent set

vector space finite dimensional inner product space over field C R, 再.

利用這種說法一個 vector space 的 一組 basis 利用 Proposition 1.5.4 便可以說成就是該 vector space 中所有 spanning set 的 minimal element; 也可以說是該 vector