• 沒有找到結果。

Linear Operator

N/A
N/A
Protected

Academic year: 2022

Share "Linear Operator"

Copied!
26
0
0

加載中.... (立即查看全文)

全文

(1)

大學線性代數再探

大學數學

(2)

大 學 線性代數 .

linear operator . 線性代數 , 性 .

linear transformation 性 , 再 . 代數

field 性 over field polynomial ring 代數 (

).

, ,

代. , .

, . , 性

, . , .

, 大 . 大

, . ,

.

v

(3)

Chapter 3

Linear Operator

V vector space , V V linear transformation, linear

operator on V . T : V → V linear operator ,

T◦2= T◦ T, T◦3= T◦ T◦2, . . . i∈ N T◦i= T◦ T◦i−1

(T◦0= id). V 代數 ( F[T ]-module),

T V . linear operator . 大

代數 , 代數 言, 大 (

, ) .

3.1. Basic Concept

linear operator linear transformation 前 .

vector space, ordered basis,

. T : V→ V linear operator, T representative

matrix, V ordered basisβ = (v1, . . . , vn), β, β[T ]β

n× n matrix. ordered basis , T representative matrix,

[T ]β ,

[T ]β =(

τβ(T (v1)), . . . ,τβ(T (vn))) .

T1, T2 V linear operator, Chapter 2 Proposition 2.4.5

[T2◦ T1]β= [T2]β· [T1]β. (3.1) , [id]β = In.

V linear operators vector space L (V,V) L (V).

n×n , Mn(F) over F n×n matrices.

, V ordered basisβ , Theorem 2.4.4

L (V) Mn(F) isomorphism, Φ : L (V) → Mn(F), T 7→ [T]β. [id]β = In, [T ]β= In T = id. [T ]β zero matrix T : V→ V zero 41

(4)

mapping, T (v) = OV,∀v ∈ V. , zero matrix zero mapping

O . .

Lemma 3.1.1. V finite dimensional vector space, dim(V ) = n β V ordered basis. T : V → V linear operator, :

[T ]β= In⇔ T = id and [T]β = O⇔ T = O.

前 linear operator , ordered

basis. , identity linear operator, id : V→ V. linear

operator ordered basis , representative matrix

, matrices , β[id]β change of basis matrix

. Proposition 2.4.6, .

Lemma 3.1.2. β,β V ordered bases, T : V → V linear operator, [T ]β=β[id]−1β · [T]β·β[id]β.

Proof. Proposition 2.4.6, [T ]β =β [id]β· [T]β·β[id]β. dim(V ) = n, (2.6)

β[id]β·β[id]β=β[id]β·β[id]β = In,

β[id]β=β[id]−1β , . 

A, B∈ Mn(F), P Mn(F) invertible matrix, B = P−1· A · P, A, B similar matrix, A∼ B . det(P−1) = det(P)−1

det(B) = det(P−1· A · P) = det(P−1) det(A) det(P) = det(A).

Lemma 3.1.2 [T ]β ∼ [T]β, det([T ]β) = det([T ]β).

ordered basis, T representative matrix determinant , T determinant, det(T ) = det([T ]β).

Lemma 3.1.2 ? A∼ [T]β, V ordered basis

β A = [T ]β ? , P invertible matrix A = P−1· [T]β· P, Proposition 2.4.7, V ordered basis β P =β [id]β, Lemma 3.1.2

A = P−1· [T]β· P =β [id]−1β · [T]β·β[id]β = [T ]β. .

Proposition 3.1.3. V finite dimensional vector space, dim(V ) = n β V ordered basis. T : V → V linear operator A∈ Mn(F), A∼ [T]β

V ordered basisβ A = [T ]β.

(5)

3.1. Basic Concept 43

探 linear operator 性 , ordered basis

square matrix , Proposition 3.1.3 性 similar matrices

, . .

Lemma 3.1.4. V finite dimensional vector space, β V ordered basis

T : V → V linear operator, :

(1) T isomorphism.

(2) [T ]β invertible matrix.

(3) det(T )̸= 0.

Proof. [T ]β invertible matrix det([T ]β)̸= 0, (1)⇔ (2).

dim(V ) = n, T isomorphism, T◦−1 linear operator, [T◦−1]β· [T]β = [id]β= [T ]β· [T◦−1]β [id]β = In

[T ]β invertible. , A· [T]β = In, Φ : L (V) → Mn(F), isomorphism, T: V → V Φ(T) = [T]β= A. [T◦ T]β = [T]β· [T]β = In Lemma 3.1.1 T◦ T = id, [T ]β· [T]β= In T◦ T= id, T isomorphism.  Question 3.1. Lemma 3.1.4 A∼ B A invertible B invertible.

linear operator 性 determinant,

determinant . A∈ Mn(F), aik∈ F A (i, k)-th entry (

A i-th row k-th column ), Aik∈ Mn−1(F) A i-th row

k-th column (n− 1) × (n − 1) matrix. det(A)

i-th row ,

det(A) =

n k=1

(−1)i+kaikdet(Aik), j-th column

det(A) =

n k=1

(−1)k+ jak jdet(Ak j).

n×n matrix adjoint matrix of A, adj(A) , adj(A) (i, j)-th entry

adj(A)i j= (−1)i+ jdet(Aji).

.

Lemma 3.1.5. A n× n matrix, adj(A) A adjoint matrix, A· adj(A) = adj(A) · A = det(A)In.

(6)

Proof. det(A)In diagonal matrix, 線 det(A) 線 0. A· adj(A) (i, i)-th entry,

n k=1

aikadj(A)ki=

n k=1

(−1)k+iaikdet(Aik) = det(A).

i̸= j, A · adj(A) (i, j)-th entry,

n k=1

aikadj(A)k j=

n k=1

(−1)k+ jaikdet(Ajk).

A j-th row i-th row 代, A , A i-th row j-th

row , det(A) = 0. A ( j, k)-th entry ajk aik Ajk= Ajk, A j-th row ,

0 = det(A) =

n k=1

(−1)j+kajkdet(Ajk) =

n k=1

(−1)j+kaikdet(Ajk), i̸= j A· adj(A) (i, j)-th entry

n k=1

aikadj(A)k j=

n k=1

(−1)k+ jaikdet(Ajk) = 0.

A· adj(A) = det(A)In. , column determinant, adj(A)· A =

det(A)In. 

3.2. Characteristic Polynomial

前 linear operator , square matrix ,

n× n matrix, 再 linear operator .

F polynomial f (x) = cdxd+··· + c1x + c0 n× n matrix A,

f (A) = cdAd+··· + c1A + c0In.

, f (A) n× n matrix. , Ai f (A)

.

Ai· f (A) = Ai· (cdAd+··· + c1A + c0In)

= cdAd+i+··· + c1A1+i+ c0Ai= (cdAd+··· + c1A + c0In)· Ai= f (A)· Ai.

, .

Lemma 3.2.1. f (x), g(x), h(x)∈ F[x] f (x) = g(x)h(x). A∈ Mn(F), g(A)· h(A) = h(A) · g(A) = f (A).

A , g(x), h(x)∈ F[x]

A, B∈ Mn(F), g(A)· h(B) = h(B) · g(A).

A∼ B, f A)∼ f (B) ? P invertible,

(P−1· A · P)2= (P−1· A · P) · (P−1· A · P) = P−1· A2· P.

(7)

3.2. Characteristic Polynomial 45

數學

(P−1· A · P)i= P−1· Ai· P.

.

Lemma 3.2.2. f (x)∈ F[x] A, B∈ Mn(F). A∼ B, f (A)∼ f (B).

Proof. A∼ B P invertible B = P−1· A · P. f (x) = cdxd+··· + c1x + c0,

f (B) = cdBd+··· + c1B + c0In= cd(P−1· A · P)d+··· + c1(P−1· A · P) + c0In

= cd(P−1·Ad·P)+···+c1(P−1·A·P)+c0In= P−1·(cdAd+···+c1A + c0In)·P = P−1· f (A)·P,

f (A)∼ f (B). 

linear operator, f (x) = cdxd+··· + c1x + c0∈ F[x]

T : V → V linear operator, linear operators

( (3.1)),

f (T ) = cdT◦d+··· + c1T + c0id,

f (T ) V V linear operator. T◦i◦ f (T) = f (T) ◦ T◦i, .

Lemma 3.2.3. f (x), g(x), h(x)∈ F[x] f (x) = g(x)· h(x). T ∈ L (V), g(T )◦ h(T) = h(T) ◦ g(T) = f (T).

f (x) = g(x)· h(x) f (T ) = g(T )◦ h(T) g(h(T )).

g(T ) h(T ) linear operator f (T ) operator, h(T )

linear operator 代 g(x) .

V ordered basis β F(T ) representative matrix T

representative matrix . 再 3.1, [T◦2]β= [T ]2β, 數學

[T◦i]β= [T◦ T◦i−1]β= [T ]β· [T]iβ−1= [T ]iβ, .

Lemma 3.2.4. V finite dimensional F-space, β V ordered basis T : V → V linear operator. f (x) = cdxd+··· + c1x + c0∈ F[x],

[ f (T )]β = f ([T ]β) = cd[T ]dβ+··· + c1[T ]β+ c0In.

Proof. [ f (T )]β f (T ) representative matrix, Φ linear transformation,

[ f (T )]β= [cdT◦d+··· + c1T + c0id]β =

cd[T◦d]β+··· + c1[T ]β+ c0[id]β= cd[T ]dβ+··· + c1[T ]β+ c0In= f ([T ]β).

(8)

 n× n matrix . dim(Mn(F)) = n2, A∈ Mn(F), S = {In, A, A2, . . . , An2}. #(S) = n2+ 1 > dim(Mn(F)), S linearly dependent.

c0, c1, . . . , cn2 ∈ F 0

cn2An2+··· + c1A + c0In= O.

f (x) = cn2xn2+··· + c1x + c0, f (A) = O. : n× n matrix

A, 數 大 n2 f (x)∈ F[x] f (A) n× n zero matrix

O. cn2 0 deg( f (x)) = n2, cn2, . . . , c1, c0 0,

f (x) .

Question 3.2. A∼ B f (x)∈ F[x] f (A) = O, f (B) = O?

Question 3.3. dim(V ) = n T : V→ V linear operator, nonzero polynomial f (x)∈ F[x] deg( f (x))≤ n2 f (T ) = O?

n f (x) f (A) = O, characteristic

polynomial.

Definition 3.2.5. A∈ Mn(F), χA(x) = det(xIn−A) ∈ F[x], A characteristic polynomial.

det(A−xIn) A characteristic polynomial, det(xIn−A)

χA(x) monic polynomial ( 數 1). determinant

數學 , A n×n matrix ,χA(x)n 數 1.

χA(x) ( xn−1 ) 數 −tr(A) ( : tr(A) A trace, 線 ). x = 0 代 χA(x) χA(x) 數 χA(0) = det(−A) = (−1)ndet(A).

Example 3.2.6. xIn− In= (x− 1)In, χIn(x) = det((x− 1)In) = (x− 1)n. 2× 2 matrix characteristic polynomial.

A1=

( 1 −1 1 −1

) , A2=

( 1 −1 0 −1

) , A3=

( 1 −1 2 −1

) ,

χA1 = det

( x− 1 1

−1 x + 1 )

= (x− 1)(x + 1) + 1 = x2, χA2 = det

( x− 1 1 0 x + 1

)

= (x− 1)(x + 1) = x2− 1, χA3 = det

( x− 1 1

−2 x + 1 )

= (x− 1)(x + 1) + 2 = x2+ 1.

Question 3.4. χI2(I2), χA1(A1), χA2(A2), χA3(A3) .

similar matrices characteristic polynomial .

(9)

3.2. Characteristic Polynomial 47

Proposition 3.2.7. A, B∈ Mn(F) A∼ B, χA(x) =χB(x).

Proof. A∼ B invertible matrix P B = P−1· A · P. xIn diagonal matrix, xIn· P = P · xIn, P−1· xIn· P = xIn.

xIn− B = xIn− P−1· A · P = P−1· xIn· P − P−1· A · P = P−1· (xIn− A) · P.

χB(x) = det(xIn− B) = det(P−1· (xIn− A) · P) = det(P)−1det(xIn− A)det(P) =χA(x).

 , T : V→ V linear operator, β,β V ordered bases, [T ]β [T ]β, Proposition 3.2.7 χ[T ]β(x) =χ[T ]β(x). linear operator characteristic polynomial.

Definition 3.2.8. V finite dimensional F-space. V linear operator T : V→ V , V ordered basis β, T characteristic polynomial χ[T ]β(x), χT(x) .

A characteristic polynomial xIn− A ,

entry , 探 . ,

xdAd+··· + xA1+ A0, Ai∈ Mn(F) . ( 5x2+ 3 4x− 1

7 x3− 2x2+ x )

= x3

( 0 0 0 1

) + x2

( 5 0 0 −2

) + x

( 0 4 0 1

) +

( 3 −1 7 0

) .

Fx, xA 數 x A.

A, B∈ Mn(F), (rA)· (sB) = (rs)A · B,

(xiA)· (xjB) = xi+ jA· B.

,

(A + xB)2= (A + xB)· (A + xB) = A2+ A· (xB) + xB · A + (xB)2= A2+ x(A· B + B · A) + x2B2, , (A + xB)2 A2+ 2x(A· B) + x2B2.

entry square matrices ,

. x , .

, . .

Example 3.2.9.

( 5x2+ 3 4x− 1

7 x

)

= x2

( 5 0 0 0

) + x

( 0 4 0 1

) +

( 3 −1 7 0

) . ( x− 1 1

−x x + 2 )

= x

( 1 0

−1 1 )

+

( −1 1

0 2

) .

(10)

( 5x2+ 3 4x− 1

7 x

)

·

( x− 1 1

−x x + 2 )

=

( 5x3− 9x2+ 4x− 3 9x2+ 7x + 1

−x2+ 7x− 7 x2+ 2x + 7 )

,

( x2

( 5 0 0 0

) + x

( 0 4 0 1

) +

( 3 −1

7 0

))

· (

x

( 1 0

−1 1 )

+

( −1 1

0 2

))

= x3

( 5 0 0 0

)( 1 0

−1 1 )

+ x2

(( 5 0 0 0

)( −1 1

0 2

) +

( 0 4 0 1

)( 1 0

−1 1 ))

+ x

(( 0 4 0 1

)( −1 1

0 2

) +

( 3 −1

7 0

)( 1 0

−1 1 ))

+

( 3 −1

7 0

)( −1 1 0 2

)

= x3

( 5 0 0 0

) + x2

( −9 9

−1 1 )

+ x

( 4 7 7 2

) +

( −3 1

−7 7 )

.

xdAd+··· + xA1+ A0= xdBd+··· + xB1+ B0, Ai, Bi∈ Mn(F),

Ai= Bi,∀i = 0,1,...,d. Ai̸= Bi, entry xi

數 , . , characteristic polynomial

性 .

Theorem 3.2.10 (Cayley-Hamilton Theorem). A∈ Mn(F), χA(x) A characteristic polynomial, χA(A) = O.

Proof. χA(x) = xn+··· + c1x + c0. xIn− A adjoint matrix, Lemma 3.1.5

adj(xIn− A) · (xIn− A) = det(xIn− A)InA(x)In= xnIn+··· + xc1In+ c0In.

xIn−A i-th row k-th column , (n−1)×(n−1) matrix determinant

n , adjoint matrix adj(A− xIn) entry 數

n , adj(A− xIn) = xn−1Bn−1+··· + xB1+ B0, Bi∈ Mn(F).

(xn−1Bn−1+ xn−2Bn−2+··· + xB1+ B0)· (xIn− A) = xnIn+ xn−1cn−1In+··· + xc1In+ c0In (3.2)

(3.2) ,

(xn−1Bn−1+ xn−2Bn−2+··· + xB1+ B0)· (xIn− A)

= xn(Bn−1· In) + xn−1(Bn−2· In− Bn−1· A+) + ··· + x(B0· In− B1· A+) − B0· A

(11)

3.3. Minimal Polynomial 49

(3.2) , 數

−B0· A = c0In B0· In− B1· A = c1In

...

Bn−2· In− Bn−1· A = cn−1In Bn−1· In = In

, A, A2, . . . , An,

−B0· A = c0In B0· A − B1· A2 = c1A

...

Bn−2· An−1− Bn−1· An = cn−1An−1 Bn−1· An = An

,

O = An+ cn−1An−1+··· + c1A + c0InA(A).

 β V ordered basis, T : V→ V linear operator, χT(x) =χ[T ]β(x).

χT(T ) linear operator, β representative matrix , Lemma 3.2.4 [χ[T ]β(T )]β[T ]β([T ]β).

Theorem 3.2.10 [χT(T )]β = O, Lemma 3.1.1 χT(T ) = O.

linear operator Cayley-Hamilton Theorem.

Corollary 3.2.11 (Cayley-Hamilton Theorem). V finite dimensional F-space, T : V → V linear operator, χT(T ) = O.

3.3. Minimal Polynomial

A n× n matrix, A characteristic polynomial, 數 n

f (X )∈ F[x] f (A) = O. 數 ?

, A = In , χIn(x) = (x− 1)n, f (x) = x− 1, f (In) = In− In= O.

f (X )∈ F[x] f (A) = O.

Definition 3.3.1. A∈ Mn(F), f (x)∈ F[x] f (A) = O, 數 monic polynomial ( 數 1) A minimal polynomial, µA(x) .

(12)

f (x)∈ F[x] f (A) = O, monic

性. f (x), g(x)∈ F[x] 數 monic polynomial

f (A) = g(A) = O,deg( f ) = deg(g), f (x), g(x) monic, deg( f (x)− g(x)) < deg( f (x)). f (A)− g(A) = O − O = O,

f (x)− g(x) , f (x) = g(x), minimal polynomialµA(x) . A∼ B, minimal polynomial µA(x),µB(x) . minimal polynomial 性 .

Lemma 3.3.2. A∈ Mn(F) f (x)∈ F[x]. f (A) = O µA(x)| f (x).

Proof. f (x)|µA(x), h(x)∈ F[x] f (x) =µA(x)h(x), µA(A) = O,

Lemma 3.2.1 f (A) =µA(A)·h(A) = O·h(A). ,

f (A) = O.

, F field, f (x) =µA(x)h(x) + r(x), h(x), r(x)∈ F[x] deg(r(x)) < deg(µA(x)). f (A) = O

O = f (A) =µA(A)· h(A) + r(A) = O · h(A) + r(A) = r(A).

r(x)∈ F[x] 數 µA(x) r(A) = O . µA(x) A minimal

polynomial r(x) , f (x) µA(x) , µA(x)| f (x). 

A∼ B, Lemma 3.2.2 µA(B)∼µA(A) = O, similar

( invertible matrix P, P−1·O·P = O), µA(B) = O. Lemma 3.3.2 µB(x)|µA(x). µB(A)∼µB(B) = O, µA(x)|µB(x). µA(x),µB(x) monic,

µA(x) =µB(x). .

Proposition 3.3.3. A, B∈ Mn(F) A∼ B, µA(x) =µB(x).

linear operator minimal polynomial.

Definition 3.3.4. V finite dimensional F-space, T : V→V linear operator.

f (x)∈ F[x] f (T ) = O, 數 monic polynomial T

minimal polynomial, µT(x) .

matrix , T minimal polynomial . Lemma 3.3.2

( 數 數 數) .

Lemma 3.3.5. V finite dimensional F-space, T : V→V linear operator.

f (T ) = O µT(x)| f (x).

Question 3.5. Lemma 3.3.5 ?

β V ordered basis, T characteristic polynomialχT(x) T representative matrix [T ]β characteristic polynomial χ[T ]β(x) . T minimal polynomial

µT(x) µ[T ]β , 探 .

(13)

3.3. Minimal Polynomial 51

Proposition 3.3.6. V finite dimensional F-space, β V ordered basis T : V → V linear operator.

µT(x) =µ[T ]β(x).

Proof. , f (x)∈ F[x], Lemma 3.2.4 Lemma 3.1.1 f (T ) = O⇔ [ f (T)]β= O⇔ f ([T]β) = O.

µT(T ) = O µT([T ]β) = O, Lemma 3.3.2 µ[T ]β(x)|µT(x).

µ[T ]β([T ]β) = O, µ[T ]β(T ) = O, µT(x)|µ[T ]β(x). µT(x),µ[T ]β(x) monic

polynomial, µT(x) =µ[T ]β(x). 

探 minimal polynomial characteristic polynomial . Theorem 3.3.7.

(1) A∈ Mn(F), µA(x)|χA(x). λ ∈ F χA(λ) = 0 µA(λ) = 0.

(2) V finite dimensional F-space, T : V→V linear operator, µT(x)|χT(x).

λ ∈ F χT(λ) = 0 µT(λ) = 0.

Proof.

(1) χA(A) = O, Lemma 3.3.2 µA(x)|χA(x). µA(λ) = 0 χA(λ) = 0.

, χA(λ) = 0, det(λIn− A) = 0 λIn− A invertible matrix.

µA(x) x−λ, µA(x) = (x−λ)h(x) + r, h(x)∈ F[x] r∈ F. 代 A, O =µA(A) = (A−λIn)· h(A) + rIn. r̸= 0, (λIn− A) · h(A) = rIn

(λIn− A) · r−1h(A) = In. 代 r−1h(A) λIn− A inverse, λIn− A invertible matrix , r = 0, x−λ | µA(x). µA(λ) = 0.

(2) linear operator T : V→V, V ordered basisβ, χT(x) =χ[T ]β(x) µT(x) =µ[T ]β(x). (1) [T ]β, µT(x)|χT(x)

χT(λ) = 0 ⇔ µT(λ) = 0.

 Example 3.3.8. 前 Example 3.2.6 characteristic polynomial

minimal polynomial. χA1(x) = x2, Theorem 3.3.7 µA1(x) x x2. A1̸= O, A1 minimal polynomial x, µA1(x) = x2.

χA2(x) = x2−1, Theorem 3.3.7 x−1 x + 1 µA2(x) , µA2(x)| x2−1 µA2(x) = x2− 1.

χA3(x) = x2+ 1, Theorem 3.3.7 µA3(x)| x2+ 1. F =R, x2+ 1 monic factor ( ) 1 x2+ 1, minimal polynomial 數 , µA3(x)| x2+ 1.

F =C, i,−i x2+ 1 = 0 , Theorem 3.3.7 µA3(x) = x2+ 1.

Question 3.6. A∈ M2(R), µA(x)̸=χA(x) ?

(14)

Question 3.7. A∈ Mn(F) χA(x) = (x−λ1)···(x −λn) λi∈ F λi̸=λj for i̸= j, µA(x) ?

Theorem 3.3.7 , 學 代 數.

p(x)∈ F[x] irreducible polynomial, F finite extension ˜F,

p(x) = 0 F˜ . λ ∈ ˜F ( p(λ) = 0), f (x)∈ F[x],

f (λ) = 0, p(x) irreducible, p(x)| f (x). A∈ Mn(F), A Mn( ˜F) .

A characteristic polynomial A , det(xIn− A),

A Mn(F) Mn( ˜F) matrix . minimal polynomial field

. A Mn( ˜F) , minimal polynomial ( µ˜A(x) ),

F[x]˜ 數 monic polynomial f (x) f (A) = O. µA(x)∈ F[x] ⊆ ˜F[x],

Lemma 3.3.2 µ˜A(x)|µA(x). , .

Theorem 3.3.9.

(1) A∈ Mn(F) p(x)∈ F[x] irreducible polynomial. p(x)|χA(x) p(x)|µA(x).

(2) V finite dimensional F-space, T : V→ V linear operator, p(x)∈ F[x]

irreducible polynomial. p(x)|χT(x) p(x)|µT(x).

Proof.

(1) Theorem 3.3.7 µA(x)|χA(x), p(x)|µA(x) p(x)|χA(x).

, p(x)∈ F[x] irreducible p(x)|χA(x). F˜ F finite extension,

p(x) = 0 F˜ λ. A Mn( ˜F) µ˜A(x)∈ ˜F[x]

A∈ Mn( ˜F) F[x]˜ minimal polynomial. p(x)|χA(x), χA(λ) = 0.

Theorem 3.3.7 F˜ , µ˜A(λ) = 0. µ˜A(x)|µA(x), µA(λ) = 0. µA(x)∈ F[x] p(x)∈ F[x] irreducible, p(x)|µA(x).

(2) linear operator T : V→V, V ordered basisβ, χT(x) =χ[T ]β(x) µT(x) =µ[T ]β(x). (1) [T ]β,

p(x)|χT(x)⇔ p(x) |χ[T ]β(x)⇔ p(x) |µ[T ]β(x)⇔ p(x) |µT(x).

 Question 3.8. A∈ Mn(F) χA(x) = pc11(x)··· pckk(x) ci∈ N, pi(x)∈ F[x] monic irreducible polynomial pi(x)̸= pj(x) for i̸= j, µA(x) ?

Example 3.3.10. linear operator T : P2(R) → P2(R)

T (1) = 2x2− 1,T(x + 1) = 3x2+ 2x + 2, T (−x2+ x + 1) = 4x2+ 2x + 2.

T minimal polynomialµT(x).

P2(R) ordered basisβ = (−x2+ x + 1, x + 1, 1).

(15)

3.4. Internal Direct Sum 53

T (−x2+ x + 1) = (−4)(−x2+ x + 1) + 6(x + 1) T (x + 1) = (−3)(−x2+ x + 1) + 5(x + 1)

T (1) = (−2)(−x2+ x + 1) + 2(x + 1) + (−1)1 [T ]β=

−4 −3 −2

6 5 2

0 0 −1

. χT(x) =χ[T ]β(x) = (x + 1)2(x− 2).

([T ]β+ I3)· ([T]β− 2I3) =

−3 −3 −2

6 6 2

0 0 0

 ·

−6 −3 −2

6 3 2

0 0 −3

 =

 0 0 6

0 0 −6

0 0 0

,

µT(x) =µ[T ]β(x)̸= (x + 1)(x − 2), µT(x) =µ[T ]β(x) = (x + 1)2(x− 2).

([T ]β+ I3)2· ([T]β− 2I3) =

−3 −3 −2

6 6 2

0 0 0

 ·

 0 0 6

0 0 −6

0 0 0

 = O.

Question 3.9. ordered basis (x2, x, 1) Question 3.3.10. ? 3.4. Internal Direct Sum

linear operator T : V → V, ordered basis, T representative

matrix matrix. V internal direct sum of

T -invariant subspaces. linear operator, 探 internal direct sum

性 .

Chapter 1 direct sum external direct sum,

vector space , vector space. vector space ,

探 internal direct sum .

U,W V subspace. 數 T : U⊕W → U +W,

T ((u, w)) = u + w, ∀u ∈ U,w ∈ W.

T well-defined function, T onto linear transforma- tion. Ker(T ) ? (u, w)∈ Ker(T), T ((u, w)) = u + w = OV, u =−w. u∈U,w ∈W, u =−w ∈U ∩W. , u∈U ∩W, (u,−u) ∈U ⊕W,

T ((u,−u)) = OV. Ker(T ) ={(u,−u) | u ∈ U ∩W}.

Question 3.10. T : U⊕W → U +WU,W V subspace

?

Question 3.11. {(u,−u) | u ∈ U ∩W} ≃ U ∩W. the First Isomorphism Theo-

rem, (U⊕W)/(U ∩W) ≃ U +W?

, U∩W = {OV} , (OV, OV) = OU⊕W, Ker(T ) = OU⊕W. T

one-to-one, .

(16)

Proposition 3.4.1. U,W V subspace, U∩W = {OV}, U⊕W ≃ U +W.

, U,W V subspace U∩W = {OV} , U + W

U⊕W . U⊕W V subspace U +W ,

vector space. U⊕W U∩W = {OV}. ,

U,W internal direct sum. , U,W V subspace U∩W ̸= {OV}

U⊕W 代 external direct sum. U,W V subspace,

U⊕W ⊆ V internal direct sum, U∩W = {OV}. U,W

, U⊕W external direct sum.

V finite dimensional vector space, U V subspace.

V subspace W V = U⊕W. U basis S ={u1, . . . , um}, SV basis{u1, . . . , um, w1, . . . , wn}. W = Span({w1, . . . , wn}), {u1, . . . , um, w1, . . . , wn} linearly independent, U∩W = {OV}. U⊕W

U,W internal direct sum. V = Span({u1, . . . , um, w1, . . . , wn}),

U⊕W = V. linearly independent basis ,

V subspace U, V U⊕W W .

Example 3.4.2. F2={(x,y) | x,y ∈ F}, U ={(x,0) | x ∈ F}, W1={(0,y) | y ∈ F}

W2={(y,y) | y ∈ F} F2= U⊕W1 F2= U⊕W2.

V internal direct sum V = U⊕W v∈ V, u∈ U

w∈ W v = u + w. V subspaces internal direct sum 性

.

Proposition 3.4.3. U,W V subspaces.

(1) V = U⊕W.

(2) v∈ V, u∈ U,w ∈ W v = u + w.

(3) U,W basis S1, S2, S1∩ S2= /0 S1∪ S2 V basis.

Proof. (1)⇒ (2): V = U +W , v∈ V, u∈ U,w ∈ W v = u + w.

u∈ U,w∈ W v + w = u+ w, u−u= w−w ∈ U ∩W = {OV}, u = u w = w.

(2)⇒ (3): v∈ S1∩ S2, v∈ U ∩W. v = v + OV = OV + v v

U , v W OV W , OV U ,

性 v = OV. v∈ S1, S1 linearly independent , S1∩ S2= /0.

v∈ V, u∈ U,w ∈ W v = u + w, S1, S2 U,W basis,

u1, . . . , um∈ S1, w1, . . . , wn∈ S2 c1, . . . , cm, d1, . . . , dn∈ F u = c1u1+··· + cmum, w = d1w1+··· + dnwn. v = c1u1+··· + cmum+ d1w1+··· + dnwn, S1∪ S2 V

(17)

3.4. Internal Direct Sum 55

spanning set. S1∪ S2 linearly independent, Corollary 1.4.4 v̸= OV v∈ Span(S1)∩ Span(S2) = U∩W.S1∩ S2= /0 , v

U , W 性 . S1∪ S2 linearly independent.

(3)⇒ (1): S1∪ S2 V basis, V = Span(S1) + Span(S2) = U +W .

U∩W = {OV}. S1∩S2= /0 (S1∪S2)\S1= S2, Corollary 1.4.4 S1∪S2

linearly independent Span(S1)∩ Span(S2) ={OV}, U∩W = {OV}.  subspaces internal direct sum subspaces internal

direct sum. V = U⊕W, W W subspaces W1,W2 direct

sum, W = W1⊕W2, V = U⊕W1⊕W2. W = W1⊕W2, W1∩W2={OV}, V = U⊕W, U∩W1⊆ U ∩W = {OV}, U ∩W2⊆ U ∩W = {OV}.

( W1∩W2={OV}, U ∩W1={OV} U∩W2={OV}) Proposition 3.4.3 性 ( v u∈ U,w1∈ W1, w2∈ W2 v = u + w1+ w2),

.

Example 3.4.4. Example 3.4.2 U∩ W1 = W1∩ W2 = U∩ W2={(0,0)}, (x, y)∈ F2, y̸= 0, (x, y) = (x, 0) + (0, y) + (0, 0) = (x− y,0) + (0,0) + (y,y), ((0, 0)∈ W1 (0, 0)̸= (0,y) ∈ W1. , (0, 0)̸= (y,y) ∈ W2. F2

U,W1,W2 .

internal direct sum ? external direct sum . V1,V2,V3 V subspace, external direct sum V1⊕V2⊕V3 V1+ V2+ V3 linear transformation T , T (v1, v2, v3) = v1+ v2+ v3. T onto. T one- to-one, Ker(T ) ={(OV, OV, OV)} v1∈ V1, v2∈ V2, v3∈ V3 v1+ v2+ v3= OV,

v1= v2= v3= OV. v1+ v2+ v3= OV, v1=−(v2+ v3)∈ V1∩ (V2+ V3),

v2∈ V2∩(V1+V3), v3∈ V3∩(V1+V2). V1∩(V2+V3) = V2∩(V1+V3) = V3∩(V1+V2) = {OV}, Ker(T ) ={(OV, OV, OV)}. , v1∈V1∩(V2+V3), v1∈V2, v3∈V3

v1= v2+ v3, (v1,−v2,−v3)∈ Ker(T). Ker(T ) ={(OV, OV, OV)} v1= OV, V1∩ (V2+ V3) = OV. V2∩ (V1+ V3) = V3∩ (V1+ V2) = OV.

subspaces, .

Definition 3.4.5. V1, . . . ,Vk V subspaces, Vi∩ (

j̸=i

Vj) ={OV}, ∀i = 1,...,k

V subspace V1+··· +Vk V1, . . . ,Vk internal direct sum, V1⊕ ··· ⊕Vk . 再 , V subspaces V1, . . . ,Vk, V1+··· +Vk subspace.

V1⊕···⊕Vk⊆ V internal direct sum, V1, . . . ,Vk Vi∩(∑j̸=iVj) =

{OV}, ∀i = 1,...,k . , decomposition theorem,

vector space subspaces internal direct sum, 再 external direct

sum, 再 internal direct sum.

(18)

vector space subspaces direct sum, subspaces direct sum

性 . Proposition 3.4.3 , 再 .

Proposition 3.4.6. V1, . . . ,Vk V subspace.

(1) V = V1⊕ ··· ⊕Vk.

(2) v∈ V, i = 1, . . . , k vi∈ Vi v = v1+··· + vk. (3) Vi basis Si, S1∩ ··· ∩ Sk= /0 S1∪ ··· ∪ Sk V basis.

Question 3.12. V finite dimensional vector space V1, . . . ,Vk V subspaces V = V1⊕ ··· ⊕Vk, dim(V ) dim(V1) +··· + dim(Vk) ?

U,W V subspaces V = U⊕W, W1, . . . ,Wk W subspaces W =

W1⊕ ··· ⊕ Wk, V = U⊕ W1⊕ ··· ⊕ Wk ? .

v∈ V, V = U⊕W u∈ U,w ∈ W v = u + w. W = W1⊕ ··· ⊕Wk, wi ∈ Wi, w = w1+··· + wk. v∈ V, u∈ U,w1 W1, . . . , wk∈ Wk v = u + w1+···+wk ( 性). u∈ U,w1∈ W1, . . . , wk∈ Wk

v = u+ w1+··· + wk, u, u∈ U w1+··· + wk, w1+··· + wk∈ W, V = U⊕W u = u w1+···+wk= w1+···+wk. wi, wi∈ Wi, W = W1⊕···⊕Wk wi= wi

( 性), Proposition 3.4.6 .

Corollary 3.4.7. U,W V subspaces V = U⊕ W, W1, . . . ,Wk W subspaces W = W1⊕ ··· ⊕Wk, V = U⊕W1⊕ ··· ⊕Wk.

3.5. Primary Decomposition

linear operator. T : V→ V linear operator, V

subspaces direct sum, subspaces ordered basis V ordered basis

T representative matrix . , T

subspaces ( linear operator), .

Definition 3.5.1. T : V → V linear operator. W V subspace T (W )⊆ W ( w∈ W T (w)∈ W), W T -invariant.

Question 3.13. T : V→V linear operator. subspaces T -invariant?

(1) V. (2){OV}. (3) Im(T ). (4) Ker(T ).

, T : V → V linear operator, f (x) = adxd+··· + a1x + a0∈ F[x], linear operator f (T ) = adT◦d+··· + a1T + a0id.

Lemma 3.5.2. V F-space, T : V → V linear operator. W T -invariant, f (x)∈ F[x], W f (T )-invariant

(19)

3.5. Primary Decomposition 57

Proof. W T -invariant, w∈ W, T (w)∈ W T◦2(w) = T (T (w))∈ W.

數學 T◦i(w)∈ W, ∀i ∈ N. f (x) = adxd+··· + a1x + a0∈ F[x], W subspace, f (T )(w) = adT◦d(w) +··· + a1T (w) + a0w∈ W, ∀w ∈ W. W f (T )-

invariant. 

Im(T ) Ker(T ) T -invariant. f (x)∈ F[x]

T -invariant subspaces.

Lemma 3.5.3. V F-space, T : V→ V linear operator f (x)∈ F[x]. Im( f (T )) Ker( f (T )) T -invariant subspaces.

Proof. w∈ Im( f (T)), v∈ V w = f (T )(v). Lemma 3.2.3 T◦ f (T) = f (T) ◦ T,

T (w) = T ( f (T )(v)) = (T◦ f (T))(v) = ( f (T) ◦ T)(v) = f (T)(T(v)) ∈ Im( f (T)), Im( f (T )) T -invariant.

v∈ Ker( f (T)), f (T )(v) = OV. f (T )(T (v)) = T ( f (T )(v)) = T (OV) = OV,

T (v)∈ Ker( f (T)), Ker( f (T )) T -invariant. 

linear operator T : V→ V, V subspace W , T

W , T|W: W → V, T|W(w) = T (w),∀w ∈ W. W V

linear transformation, the restriction on W . W T -invariant , T (w)∈ W,

∀w ∈ W, T|W : W → W, W linear operator. 探 T|W

T minimal polynomial . f (x)∈ F[x], W f (T )-invariant (Lemma 3.5.2), f (T )|W f (T|W) W linear operator

. w∈ W,

T◦2|W(w) = T◦2(w) = T (T (w)) = T|W(T|W(w)) = T|W◦2(w),

T◦2|W T|W◦2 W linear operator. 數學 T◦i|W =

T|W◦i,∀i ∈ N. f (x) = adxd+··· + a1x + a0∈ F[x], w∈ W, f (T )|W(w) = f (T )(w) = adT◦d|W(w) +··· + a1T|W(w) + a0id|W(w)

= adT|W◦d(w) +··· + a1T|W(w) + a0id|W(w) = f (T|W)(w).

f (T )|W f (T|W) W linear operator,

f (T )|W = f (T|W). (3.3)

, Lemma.

Lemma 3.5.4. T : V → V linear operator, W T -invariant subspace, T restriction on W , T|W: W→ W W linear operator, minimal polynomialµT|W(x)

µT|W(x)|µT(x).

參考文獻

相關文件

既然每一個 finite abelian group 都可 寫成一些 abelian p-groups 的 direct product, 而每一個 abelian p-group 也都可寫 成一些 cyclic groups 的 direct

• When a system undergoes any chemical or physical change, the accompanying change in internal energy, ΔE, is the sum of the heat added to or liberated from the system, q, and the

vector space finite dimensional inner product space over field C R, 再.

(Updated in September 2022)

另外, 以後我們要談的 decomposition theorem, 都是將一個 vector space 拆解成一些 subspaces 的 internal direct sum, 我們不會再去談 external direct sum,

In order to facilitate school personnel of DSS schools in operating their schools smoothly and effectively and to provide new DSS schools a quick reference on the

where L is lower triangular and U is upper triangular, then the operation counts can be reduced to O(2n 2 )!.. The results are shown in the following table... 113) in

Since the subsequent steps of Gaussian elimination mimic the first, except for being applied to submatrices of smaller size, it suffices to conclude that Gaussian elimination