• 沒有找到結果。

1-1 均勻介質中的光波

N/A
N/A
Protected

Academic year: 2022

Share "1-1 均勻介質中的光波"

Copied!
109
0
0

加載中.... (立即查看全文)

全文

(1)

第一章

光的波性質

(2)

目錄

‡ 1-1 均勻介質中的光波

‡ 1-2 折射率

‡ 1-3 群速度和群折射率

‡ 1-4 磁場、輻照度和波印亭向量

‡ 1-5 斯涅耳定理和內部全反射 (TIR)

‡ 1-6 菲涅耳方程式

‡ 1-7 多重干涉與光學共振器

(3)

1-1 均勻介質中的光波

(4)

平面電磁波

‡

最簡單的行進波為正弦波;對沿方向傳播的 波,其數學一般式表示為

)

(1)

cos(

0

0

ω − + φ

= E t kz

E

x

(5)

E

x

z

Direction of Propagation

B

y

z x

y

k

An electromagnetic wave is a travelling wave which has time

varying electric and magnetic fields which are perpendicular to each other and the direction of propagation, z.

?1999 S.O. Kasap, Optoelectronics (Prentice Hall)

圖1.1 一個電磁波為一個具有時變電場及磁場的行進波,且二者相 互垂直並垂直傳播方向。

(6)

z Ex = Eosin(ωt z)

Ex

z

Propagation E

B

k

E and B have constant phase in this xy plane; a wavefront

E

A plane EM wave travelling along z, has the same Ex (or By) at any point in a

given xy plane. All electric field vectors in a given xy plane are therefore in phase.

(7)

‡

我們也可用指數符號來表示一個行進場,因

,其中 Re 代表實部,因此我們 需擷取計算結束時之任何複數結果的實部。所 以,我們可將寫成

(2) 或

(3)

)]

[exp(

cos

φ

=Re j

φ

)]

( exp )

exp(

[ )

,

( z t E

0

j

0

j t kz

E

x

= Re φ ω −

)]

( exp [

) ,

( z t E j t kz

E

x

= Re

c

ω −

(8)

‡

當電磁波沿著某任意方向 k 傳播時,則在垂直 於 k 之平面上的點 r 的電場E (r , t)為

)

(4)

cos(

) ,

( r t = E

0

ω tkr + φ

0

E

(9)

‡

在一個時段 中,此恆定的相位 ( 因而此極大 場 ) 將移動一段距離 ,此波的相速度因此 為 ,故相速度 (phase velocity)應為

(5)

‡

其中V為頻率 。

δ t

δ z t

z δ δ /

ω = υλ

=

= dt k v dz

) 2

( ω = πυ

(10)

y

z

k

Direction of propagation

r O

θ

E(r,t)

r′

(11)

馬克斯威波方程與發散波

‡

在一個各向同性且線性的介質中,即在所有方 向的相對介電係數 都相同而與電場無關,則 此電場 E必須遵守馬克斯威爾的電磁波方程 (Maxwell’s EM wave equation),式中 為絕 對導磁率 (absolute permeability), 為

(6)

ε

r

µ

0

ε

0 2

2 0 2 0

2 2

2 2

2

t E z

E y

E x

E

r

= ∂

∂ + ∂

∂ + ∂

∂ ε ε µ

(12)

k

Wave fronts

r

E k Wave fronts

(constant phase surfaces)

z λ

λ

λ

Wave fronts

P

O P

A perfect spherical wave

A perfect plane wave A divergent beam

(a) (b) (c)

(13)

‡

離波源為 r 之任何點的電場可表示為

(7)

)

cos( t kr r

E = A ω −

(14)

‡

光束直徑 2w 隨 z 之增加在 O 點形成一個角 度 ,此狀況稱為光束發散 (beam

divergence)。腰部越大,發散角越窄,兩者的 關係為

(8)

θ

2

) 2

( 2 4

w

0

π

θ = λ

(15)

y

x Wave fronts

z Beam axis

r Intensity

(a)

(b)

(c) 2wo

θ O

Gaussian

2w

(a) Wavefronts of a Gaussian light beam. (b) Light intensity across beam cross section. (c) Light irradiance (intensity) vs. radial distance r from beam axis (z).

?1999 S.O. Kasap, Optoelectronics (Prentice Hall)

圖1.5 (a) 高斯光束的波前,(b) 光束橫切面的光強度,(c) 光輻 照度 ( 強度 ) 與光束軸之徑向距離間的關係。

(16)

1-2 折射率

(17)

‡

對一行進於相對介電係數 為之非磁性電介質 中的電磁波而言,相速度 V 表示為

(1)

ε

r

0 0

1 µ ε ε

r

=

v

(18)

‡

光在自由空間的速率與在介質中的速率的比值 稱為此介質的折射率 (refractive index)n

(2)

r

n

=

c

=

ε

v

(19)
(20)
(21)

1-3 群速度和群折射率

(22)

‡

最大的振幅是以波向量 運動,因而具有一個 速度稱為群速度 (group velocity),表示為

dk

(3)

d ω

g

= v

δ k

(23)

δω ω

ω + δω ω ? δω δ k

E

max

E

max

Wave packet

Two slightly different wavelength waves travelling in the same direction result in a wave packet that has an amplitude variation which travels at the group velocity.

?1999 S.O. Kasap, Optoelectronics (Prentice Hall)

圖1.6 兩波長稍微不同且在同方向行進的波形成一個具有振幅 變化並以群速度行進的波包。

(24)

‡

由於為波長的函數如玻璃的情況,故假設隨波 長或而定,於是

⎥⎦

(4)

⎢⎣ ⎤

⎥ ⎡

⎢ ⎤

= ⎡

= λ

π

ω λ 2

) ( n k c

v

(25)

‡

介質中的群速度Vg,將 (3) 式微分並代入 (1) 式,可近似地由下式給出

(5) 此式可寫成

(6) 其中

(7)

λ λ ω

d n dn

c dk

d

=

= )

g

( 介質

v

g g

(

v N

=

c

介質 )

λ λ d n dn

N

g

= −

(26)

N

g

n

500 700 900 1100 1300 1500 1700 1900 1.44

1.45 1.46 1.47 1.48 1.49

Wavelength (nm)

(27)

1-4 磁場、輻照度和波印亭向量

(28)

‡

如果 v 為在一各向同性電介質中電磁波的相速 度,而 n 為折射率,則根據電磁理論,電磁波 在任何時刻任何地點時[1],

(1)

[1]

此敘述實際為電磁波中的法拉第定理,它 經常以向量符號表示。

y y

x

B

n B c

E = v =

(29)

z

Propagation direction

E

B

k

Area A v ∆t

A plane EM wave travelling along k crosses an area A at right angles to the direction of propagation. In time ∆t, the energy in the cylindrical volume Av∆t (shown dashed) flows through A .

?1999 S.O. Kasap, Optoelectronics (Prentice Hall)

圖1.8 一平面電磁波沿著k行進並通過一垂直於傳播方向的面積A。在 時間,圓柱體積 Avt ( 虛線所示 ) 內的能量流過A。

(30)

‡

在空間中的一個小區域中,電場 Ex 具有一個 能量密度,即單位體積的能量,並由

給出。同樣地,空間中任一區域的磁場 By 具 有能量密度 。故 Ex 和 By的能量密度相 同,

(2)

2

)

0

2 / 1

( ε ε

r

E

x

2 0) 2 / 1

(

µ

By

2 0 2

0 2

1 2

1

y x

rE B

ε µ

ε

=

(31)

‡

設有一理想的“能量計”位於電磁波的路徑上且 其接收面積A垂直於傳播方向。在一段時間 內,部分的波,空間長度為 ,將通過A。

因此,在時間內 將有 之電磁波體積通 過,此體積內的能量因而被接收。如果S為流 過單位面積的電磁波功率,則

(3) 給出

(4)

t

t v

t A v

t

之能量 單位時間單位體積流過

= S

y x r x

r x

r

E E B

t A

E t

S A ε ε ε ε ε ε

0 2

0 2

0

)

)(

(

2

v v v

=

∆ =

= ∆

(32)

‡

如果我們使用向量E和B代表電磁波中的電場和 磁場,於是波沿E*B的方向傳播,因此一方向 同時垂直於E和B,故式中單位面積流過的電磁 功率可寫成

B

(5)

E

S

=

v

2

ε

0

ε

r ×

(33)

‡

如果我們將電場寫成 ,而後以一段 時間之S的平均值來計算平均輻照度,我們可 發現平均輻照度為

(6)

‡

因 以及 ,我們可將上式寫成

(7)

)

0

sin( t E

E

x

= ω

2 0

2 0

1

E

S v ε ε

r

I

= 平均 =

n

=

c /

v ε

r =

n

2

2 0 3

2 0

0

( 1 . 33 10 )

2

1 c nE nE

S = = ×

=

平均

ε

I

(34)
(35)
(36)

1-5 斯涅耳定理和內部全反射

(TIR)

(37)

37 n2

z y

O

θi

n1

Ai

λ λ

θr θi

Incident Light Bi Ar

Br

θt θt

λt Refracted Light

Reflected Light kt

At

Bt

B A

B A

A′′

θr ki

kr

A light wave travelling in a medium with a greater refractive index (n1 > n2) suffers reflection and refraction at the boundary.

?1999 S.O. Kasap, Optoelectronics (Prentice Hall)

圖1.9 一光波在折射率 較大的介質中行進時於邊界 發生反射及折射。

)

( n

1

> n

2

(38)

‡

由幾何之考量,

及 ,所以

(1) 或

(2)

B

i

B B

A ′ = ′ / sin θ A

t

A B

A ′ = ′ / sin θ

t i

t B t

A

sin

θ

sin

θ

2

1

v

v

=

=

1 2 2

1

sin sin

n n

t

i = =

v v θ

θ

(39)

‡

當折射角達到 時,此入射角就稱為臨界角 90(critical angle) ,並由下式給出

(3)

θ

t

θ

c 1

sin

2

n n

c

=

θ

(40)

1-6 菲涅耳方程式

(41)

41

n2

θi θi n1 > n2

Incident light

θt

Transmitted (refracted) light

Reflected light

kt

θi>θc θc

TIR θc

Evanescent wave

ki kr

(a) (b) (c)

Light wave travelling in a more dense medium strikes a less dense medium. Depending on the incidence angle with respect to θc, which is determined by the ratio of the refractive indices, the wave may be transmitted (refracted) or reflected. (a) θi < θc (b) θi = θc (c) θi

> θc and total internal reflection (TIR).

?1999 S.O. Kasap, Optoelectronics (Prentice Hall)

圖1.10 在較密介質中行進的光波入射到一較疏的介質中。隨入射角 對的 關係,由折射率比決定 ,此波可能透射 ( 折射 ) 或反射。

(a) ; (b) ;(c) 且內部全反射 (TIR)。

θc θc

θ

θ < θ =θ θ >θ

(42)

ki

n2

n1 > n2 θt=90

Evanescent wave

Reflected wave Incident

wave

θi θr

Er,//

Er,⊥

Ei, Ei,//

Et,⊥

(b) θi > θc then the incident wave suffers total internal reflection.

However, there is an evanescent wave at the surface of the medium.

z y

x into paper θi θr

Incident wave

θt

Transmitted wave

Ei,//

Ei,⊥

Er,//

Et,//

Et, Er,⊥

Reflected wave

kt

kr

Light wave travelling in a more dense medium strikes a less dense medium. The plane of incidence is the plane of the paper and is perpendicular to the flat interface between the

(a) θi < θc then some of the wave is transmitted into the less dense medium. Some of the wave is reflected.

Ei,⊥

(43)

‡

如果我們定義 為介質2對介質1的相對 折射率,則針對 之反射係數為

(1a)

‡

和穿透係數

(1b)

1 2 / n

n

n

=

E

2 / 1 2

2

2 / 1 2

2

, 0

, 0

] sin

[ cos

] sin

[ cos

i i

i i

i r

n n E

E

θ θ

θ θ

− +

= −

=

r

2 / 1 2

2 ,

0 , 0

] sin

[ cos

cos 2

i i

i i

t

E n E

θ θ

θ

= +

=

t

(44)

‡

對於 場之相對應的反射及穿透係數 和 為 (2a) (2b)

‡

以上係數之間的關係為

(3)

i i

i i

i r

n n

n n

E E

θ θ

θ θ

cos ]

sin [

cos ]

sin [

2 2

/ 1 2 2

2 2

/ 1 2 2

//

, 0

//

, 0

//

− +

= −

= r

2 / 1 2 2

2 //

, 0

//

, 0

//

cos [ sin ]

cos 2

i i

i i

t

n n

n E

E

θ θ

θ

= +

= t

E

//

r

//

t

//

=

+

(45)

‡

例如,將垂直入射角 的情況放進菲涅耳 方程式,我們發現

(4)

) 0 ( θ

i

=

2 1

2 1

//

n n

n n

+

= −

= r

r

(46)

‡

針對 而解之菲涅耳方程式,我們可求出此 一特殊的入射角,並標記為 。而此反射波的 場始終垂直於入射面,因而可適當地定義。此 特殊的角度稱為偏振角 (polarization angle) 或 布魯斯特角 (Brewster’s angle),並由上式給出

(5)

//

= 0 r

θ

p

tan n

2 p

=

θ

(47)

47

Internal reflection: (a) Magnitude of the reflection coefficients r

//

and r

vs. angle of incidence θ

i

for n

1

= 1.44 and n

2

= 1.00. The critical angle is 44? (b) The corresponding phase changes φ

//

and φ

vs. incidence angle.

φ

//

φ

(b)

60 120 180

Incidence angle,

θ

i

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0 10 20 30 40 50 60 70 80 90

|

r

// |

|

r

|

θc

θp

Incidence angle,

θ

i

(a)

Magnitude of reflection coefficients Phase changes in degrees

0 10 20 30 40 50 60 70 80 90 θc

θp

TIR

0

−60

−120

−180

?1999 S.O. Kasap, Optoelectronics (Prentice Hall)

圖1.12 內反射:(a) 與 時之反射係數 的大小對入射角 的關係,臨界角為44;(b) 對應的相位改變 對入射角的關係。

44 .

1

= 1

n n

2

= 1 . 00 r

//

r

θ

i

φ

//

φ

(48)

‡

顯示當 時, ,但其相位變化為

(6)

‡

對於 分量,其相位變化 為

(7)

r

θ

i

> θ

c

| r

| = 1

i

i

n

θ φ θ

cos

] [sin

2 tan 1

2 1 2

2

⎟ =

⎜ ⎞

φ

//

E

//

i n

θ π θ

φ

1 [sin ]

tan 1

2 1 2 2

//

=

+

(49)

49

‡

當 時,介質2中的電場,為一接近於界面 且沿 z 方向行進的波,此波稱為消散波

(evanescent wave) 且沿著 z 前進,其電場隨 著進入介質2而減少,即

(8)

‡

式中 為入射波沿 z 軸之波向量,而 為電場透射到介質2中的衰減係數

(attenuation coefficient),

(9)

c

i

θ

θ >

) (

exp )

, ,

(

2

,

y z t e j t k z

E

t

=

α y

ω −

iz

i i

iz

k

k = sin θ α

2

2 1 2

2

2 1 2

2 2 sin 1

⎟⎟

⎜⎜

= i

n n

n θ

λ

α π

(50)

The reflection coefficients r

//

and r

vs. angle of incidence θ for n = 1.00 and n = 1.44.

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

0 10 20 30 40 50 60 70 80 90

θ

p r//

r

Incidence angle,

θ

i External reflection

(51)
(52)
(53)

強度、反射比及透射比

‡

對於一個光波在相對介電係數為 的介質中 以速度 v 行進,其光強度 以電場振幅 定義 為

(10)

ε

r

I E

0

2 0

2

0

1 v ε

r

ε E

I =

(54)

‡

反射比 (reflectance)R是量測反射光對入射光 的強度比,而分別為平行及垂直於入射面的電 場分量定義。反射比 和 定義為

(11)

R

R

//

2 2

, 0

2 ,

0

| |

|

|

|

|

= = r

R

i r

E

E

2

2 //

//

, 0

2 //

, 0

//

| |

|

|

|

| r

R = =

i r

E

E

(55)

‡

反射比由下式簡單地給出

(12)

2

2 1

2 1

// ⎟⎟

⎜⎜

+

=

=

=

n n

n R n

R

R

(56)

‡

對垂直之入射而言,入射和透射光束為垂直,

且透射比定義為

(13) 或

(14)

2 1

2 2

, 0 1

2 , 0

2

| |

|

|

|

|

⎟⎟

⎜⎜ ⎞

= ⎛

= t

T n

n E

n

E n

i 2 t

//

1 2 2

//

, 0 1

2 //

, 0 2

//

| |

|

|

|

| t

T ⎟⎟

⎜⎜ ⎞

= ⎛

= n

n E

n

E n

i t

2 1 //

4 n n

= +

=

= T

T

T

(57)
(58)
(59)
(60)
(61)
(62)
(63)
(64)

d

Semiconductor of photovoltaic device Antireflection

coating Surface

Illustration of how an antireflection coating reduces the

n

1

n

2

n

3

A B

(65)
(66)
(67)

1-7 多重干涉與光學共振器

(68)

‡

由於鏡面上的電場 ( 假設為金屬鍍膜 ) 必須為 零,因此只能用半波長, ,的整數 m 個 去合適此腔的長度 L ,

(1)

2 λ /

"

"

3 , 2 ,

2 ⎟ = = 1

⎜ ⎞

L m

m λ

(69)

A

B L

M1 M2 m = 1

m = 2

m = 8

Relative intensity

υ δυm

υm υm + 1

υm - 1

(a) (b) (c)

R ~ 0.4 R ~ 0.8

1 υf

Schematic illustration of the Fabry-Perot optical cavity and its properties. (a) Reflected waves interfere. (b) Only standing EM waves, modes, of certain wavelengths are allowed in the cavity. (c) Intensity vs. frequency for various modes. R is mirror reflectance and lower R means higher loss from the cavity.

?1999 S.O. Kasap, Optoelectronics (Prentice Hall)

圖1.16 法布里-比洛光學腔以及其特性的圖例。(a) 反射波干涉,(b) 只有特定波長的電磁駐波,模態,可容許在腔內,(c) 各種模態的強 度對頻率的關係;R為鏡面反射比,R越小意指由腔的損失越高。

(70)

‡

只要光頻率 v 和波長 的關係為 ,則這 些模所對應的頻率 為腔的共振頻率

(resonant frequencies),

(2)

λ υ = c / λ

υ

m

) 2 /(

2 m ; c L

L

m c

f f

m

⎟ = =

⎜ ⎞

= ⎛ υ υ

υ

(71)

‡

當我們知道腔內的場,我們就可計算強 度 。此外,我們可用反射比

進一步簡化此式子。經過代數處理後的結果為 (3)

2 cavity cavity = | E |

I R = r 2

) ( sin 4

) 1

( 2 2

0 cavity

R kL R

I I

+

=

(72)

‡

這些位在滿足 之 的峰值,直接導 致原直觀所推導的式。對於這些共振的,上式 給出

(4)

π m L

k

m

= k = k

m

π m L

k

m =

= ;

) 1

( 2

0

max

R

I I

(73)

‡

法布里-比洛標準具的頻譜寬度 (spectral

width)[1] 所定義之個別模強度在最大值一 半時的全寬度 (FWHM)。當 時,它的值 可直接由下列計算出

(5)

[1]

頻譜寬度又叫條紋寬度,而為條紋的級

數。

δυ

m

6 .

> 0 R

R R

= −

= ; 1

2

π

1

δυ υ F

F

f m

(74)

‡

如果入射的光強度為 ,則有 分數的光 進到腔內以建立式中的 ,並有分數

的 離開腔成為透射強度 。因此,

(6)

incident

I

) 1

( − R

cavity

I

) 1

( − R

cavity

I

cavity

I

) ( sin 4

) 1

(

) 1

(

2 2

2 incident

d transmitte

R kL R

I R

I +

=

(75)

L λ λm

λm - 1 Fabry-Perot etalon

Partially reflecting plates

Output light Input light

Transmitted light

Transmitted light through a Fabry-Perot optical cavity.

?1999 S.O. Kasap, Optoelectronics (Prentice Hall)

圖1.17

(76)
(77)
(78)

1-8 古斯-亨琴移動與光學隧道作

(79)

θi

n2

n1 > n2

Incident light

Reflected light θr

∆z

Virtual reflecting plane

Penetration depth, δ

z y

The reflected light beam in total internal reflection appears to have been laterally shifted by an amount ∆z at the interface.

A B

?1999 S.O. Kasap, Optoelectronics (Prentice Hall)

圖1.18 內部全反射的反射光束顯示在界面上已被橫向位移一個量

z

(80)

θi

n2

n1 > n2

Incident light

Reflected light

θr

When medium B is thin (thickness d is small), the field penetrates to the BC interface and gives rise to an attenuated wave in medium C.

z y

d n1

A B C

(81)

81 Incident

light Reflected

light

θi > θc TIR

(a)

Glass prism

θi > θc FTIR

(b) n1

n1

n2 n

1

B = Low refractive index transparent film ( n

2)

C A A

Reflected

Transmitted

(a) A light incident at the long face of a glass prism suffers TIR; the prism deflects the light.

(b) Two prisms separated by a thin low refractive index film forming a beam-splitter cube.

The incident beam is split into two beams by FTIR.

Incident light

?1999 S.O. Kasap, Optoelectronics (Prentice Hall)

圖1.20 (a) 在玻璃稜鏡長的面上的入射光歷經TIR,稜鏡偏折光線;

(b) 兩稜鏡以低折射率的薄膜分開以形成一個光束分光器立方體,入射 光束以FTIR分成兩道光束。

(82)

1-9 時間與空間的同調性

(83)

‡

當我們以一個純的正弦波來表示一個電磁波 時,例如用

)

(1)

sin(

0 0

0

t k z

E

E

x

= ω −

(84)

P Time

Q Field

υ Amplitude

υο

−∞

Time

(a)

υ Amplitude

υο

υ = 1/∆t Time

(b)

P Q

l = c∆t

Space

∆t

(c)

υ Amplitude

(a) A sine wave is perfectly coherent and contains a well-defined frequency υo. (b) A finite wave train lasts for a duration ∆t and has a length l. Its frequency spectrum extends over

υ = 1/∆t. It has a coherence time ∆t and a coherence length l. (c) White light exhibits practically no coherence.

(85)

‡

此 範圍為該波列的頻譜寬度 (spectral

width) 而隨時間同調長度 而定,並由下列 給出

(2)

υ

t

t

=

∆ υ 1

(86)

c

(a)

Time

(b)

A

B

∆t

Interference No interference No interference

Space

c P

Q Source

Spatially coherent source

An incoherent beam

(c)

(a) Two waves can only interfere over the time interval ∆t. (b) Spatial coherence involves

(87)

10-1 繞射原理

(88)

Light intensity pattern

Incident light wave

Diffracted beam

Circular aperture

A light beam incident on a small circular aperture becomes diffracted and its light intensity pattern after passing through the aperture is a diffraction pattern with circular bright rings (called Airy rings). If the screen is far away from the aperture, this would be a

(89)

Incident plane wave

New wavefront A secondary wave source

(a) (b)

Another new

wavefront (diffracted)

θ z

(a) Huygens-Fresnel principles states that each point in the aperture becomes a source of secondary waves (spherical waves). The spherical wavefronts are separated by λ. The new wavefront is the envelope of the all these spherical wavefronts. (b) Another possible

wavefront occurs at an angle θ to the z-direction which is a diffracted wave.

?1999 S.O. Kasap, Optoelectronics (Prentice Hall)

圖1.24 (a) 惠更斯-菲涅耳原理敘述孔徑上每一點皆成為一個次級子 波 ( 球面波 ) 源,這些球面波前均以 分開,新的波前為所有這些 球面波的波封;(b) 另外的可能波前發生在與方向 z 夾 角的方位 上,其為繞射波。

λ θ

89

(90)

‡

考慮一個任意的方向 ,並考慮在 y 之任意點 光源所發射的波 (Y) 對在 y = 0 之點光源所發 射的波 (A) 的相位,如果 k 為波向量,

則波 Y 對 A 為 異相。因此從之點光源 所發射的波具有一個場 為

(1)

λ π /

= 2 k

) sin exp(

)

( δ θ

δ Eyjky δ E

θ sin ky

θ

(91)

‡

屏幕上之合成場 為

(2)

) (

θ E

==

= y a

y

y jky

C

E

(

θ

) 0

δ

exp( sin

θ

)

(92)

‡

將上式積分並以代數方法處理,最後我們得到

θ

(3)

θ θ

θ

2 sin 1

2 sin sin 1

) (

2 sin 1

ka

ka a

Ce E

ka

j

⎜ ⎞

=

(93)

θ

A

ysinθ y

Y

θ

θ = 0 δy

δy z

Screen Incident

light wave

θ

R = Large

θ

c b

Light intensity a

y

y

z

(a) (b)

(a) The aperture is divided into N number of point sources each occupying δy with

amplitude ∝ δy. (b) The intensity distribution in the received light at the screen far away from the aperture: the diffraction pattern

Incident light wave

?1999 S.O. Kasap, Optoelectronics (Prentice Hall)

圖1.25 (a) 孔徑分成個數目的點源,每個佔據 且其大

;(b) 遠離孔徑之屏幕上所接受的光的強度分佈:繞射圖 案。

δ y δ y

(94)

‡

屏幕上的光強度 正比於 ,因此

(4)

|

2

) (

| E θ I

θ β

β θ

θ

θ

sin

2

; 1 ) ( sinc )

0 ( 2 sin

1

2 sin sin 1

)

( 2

2

ka ka

ka a

C

=

=

= I

I

(95)

‡

由上式,零強度發生在

"

(5)

, 2 ,

1

;

sin = m = ± ±

a

m λ

θ

(96)

The rectangular aperture of dimensions a × b on the left gives the diffraction pattern on the right.

a

b

(97)

‡

如上圖所定義的第一個暗環的角位置 是由孔 徑的直徑 以及波長 所決定的,並由下 式給出

(6)

θ )

( a

D = λ

D

θ 1 . 22 λ

sin =

(98)
(99)
(100)

d

z y

Incident light wave

Diffraction grating

One possible diffracted beam

θ a

Intensity

y

m = 0 m = 1

m = -1 m = 2

m = -2

Zero-order First-order

First-order Second-order Second-order Single slit

diffraction envelope

dsinθ

(a) (b )

(101)

繞射光柵

‡

若此量為波長的整數倍,則所有來自成對之狹 縫的波將互為建設性干涉,

"

(7)

,

2 ,

1 ,

0

;

sin = m m = ± ±

d θ λ

(102)

‡

當入射光束不垂直於繞射光柵時,則上式必須 再修飾。如果 為針對光柵法線的入射角,則 第 m 級的繞射角 由下式給出

(8)

θ

i

θ

m

"

, 2 ,

1 , 0

; )

sin

(sin − = m m = ± ±

d θ

m

θ

i

λ

(103)

103

Incident light wave

m = 0 m = -1 m = 1

Zero-order First-orde First-order

(a) Transmission grating (b) Reflection grating Incident

light wave

Zero-order First-order

First-order

(a) Ruled periodic parallel scratches on a glass serve as a transmission grating. (b) A reflection grating. An incident light beam results in various "diffracted" beams. The

zero-order diffracted beam is the normal reflected beam with an angle of reflection equal to the angle of incidence.

?1999 S.O. Kasap, Optoelectronics (Prentice Hall)

圖1.29 (a) 玻璃上之週期性平行刻痕當做一透射光柵;(b) 反射光 柵。一入射光束形成各種“繞射”光束,零級繞射光束為垂直的反射光 束,具有等於入射角的反射角。

(104)

First order

γ

Normal to grating plane Normal to

face

d

γ

(105)

Two confocal spherical mirrors reflect waves to and from each other. F is the focal point and R is the radius. The optical cavity contains a Gaussian beam

Wave front

Spherical mirror Optical cavity

Spherical mirror

A B

L

R

?1999 S.O. Kasap, Optoelectronics (Prentice Hall)

2 θ R F

圖1.31 兩個共焦的球面鏡彼此來回相互反射光波。F 為焦點而 R 為半徑;此光學腔含有一個高斯光束。

(106)
(107)

n

1

n

2

n

3

B1

A1 A2 A3 A0

C1 B2

B3

B4 B5

C2 C3 B6

Thin film coating of refractive index n2 on a semiconductor device

?1999 S.O. Kasap, Optoelectronics (Prentice Hall)

圖1.32 折射率的薄膜鍍在一半導體元件上。

(108)

L

Fabry-Perot etalon

Output light Input light

θ

θ

θ

θ

Broad Lens

monochromatic

source Screen

Screen

k

FP etalon

Fabry-Perot optical resonator and the Fabry-Perot interferometer (schematic)

(109)

n1

n3

n2

Air

Glass substrate

Thin layer

(a)

Glass substrate Thin layer

Prism Laser light

d = Adjustable coupling gap

(b)

(a) Light propagation along an optical guide. (b) Coupling of laser light into a thin layer - optical guide - using a prism. The light propagates along the thin layer.

?1999 S.O. Kasap, Optoelectronics (Prentice Hall)

圖1.34 (a) 沿光學波導的光傳播;(b) 雷射光利用一個稜鏡耦合 到一個薄層-光學波導,光沿此薄層傳播。

參考文獻

Outline

相關文件

If the source is very highly coherent and the detector is placed very far behind the sample, one will observe a fringe pattern as different components of the beam,

For circular cone, a special non-symmetric cone, and circular cone optimization, like when dealing with SOCP and SOCCP, the following studies are cru- cial: (i) spectral

The beam we selected for the bright-field image was the central (transmitted) beam of the diffraction pattern. Selecting other diffracted beam produces

A smaller aperture increases the range in which A smaller aperture increases the range in which the object is approximately in focus. Di

grep - print lines matching a pattern. $ grep [OPTIONS]

– Recover response curve from multiple exposures, then reconstruct the radiance map. • • Limited dynamic range Limited

In the second phase, the optimization design of the dot pattern of the light guide plate can be launched to categorize the light guide plate into 31 areas and used the

We use the TracePro software to establish the basic configuration and simulate the results。The LED light source distance and the incident light angle were first investigated