• 沒有找到結果。

4 =12( θ − θ | )= − 12tan π 121 θ = (11+cos2 − 1) dθ =12 (1 − θ ) dθ − 12 12sec ˆ ˆ (1+ r ) r ț  = = (11+ | ) dθ rdrdθ − 12 ˆ ˆ ˆ R : − ≤ θ ≤ , 0 ≤ r ≤√ cos2 θ ὃY : 1.(10%)   ᑖ , ᐸ R ʖ `   r =cos2 θ 5Ȗ Ό  ╵ B  ᡠ Ⱥ ᡂḄ ᓜ 9 ஺5 ˜

N/A
N/A
Protected

Academic year: 2022

Share "4 =12( θ − θ | )= − 12tan π 121 θ = (11+cos2 − 1) dθ =12 (1 − θ ) dθ − 12 12sec ˆ ˆ (1+ r ) r ț  = = (11+ | ) dθ rdrdθ − 12 ˆ ˆ ˆ R : − ≤ θ ≤ , 0 ≤ r ≤√ cos2 θ ὃY : 1.(10%)   ᑖ , ᐸ R ʖ `   r =cos2 θ 5Ȗ Ό  ╵ B  ᡠ Ⱥ ᡂḄ ᓜ 9 ஺5 ˜"

Copied!
8
0
0

加載中.... (立即查看全文)

全文

(1)

1.(10%) 求積分˜

R

dA

(1+x2+y2)2,其中 R 是雙紐線 r2 = cos 2θ 右半邊封閉曲線所圍成的區域。

參考解答:

R : −π4 ≤ θ ≤ π4, 0 ≤ r ≤√ cos 2θ

原式= ˆ π

4

π

4

ˆ cos 2θ

0

r drdθ

(1 + r2)2 = −1 2

ˆ π

4

π

4

( 1 1 + r2 |

cos 2θ

0 ) dθ

= −1 2

ˆ π

4

π

4

( 1

1 + cos 2θ − 1) dθ = 1 2

ˆ π

4

π

4

(1 − 1

2sec2θ) dθ

= 1 2(θ − 1

2tan θ |

π 4

π

4

) = π 4 −1

2

(2)

2.(10%) 求積分 ´8

0

´2

3

y

√1 + x4dxdy。

參考解答:

R : 0 ≤ x ≤ 2, 0 ≤ y ≤ x3 原式=´2

0

´x3 0

√1 + x4dydx =´2 0 x3

1 + x4dx = 16(x4+ 1)32 |20= 16(1732 − 1)

3.(10%) 如圖。一個半徑為 2之球體與直徑為2之直圓柱體相切。 求兩立體相交部份的體積。

參考解答:

取方程式為 x2+ y2 + z2 = 4(x − 1)2+ y2 = 1 Let x = r cos θ, y = r sin θ

原方程式可改寫為 0 ≤ z ≤4 − r2 及 r = 2 cos θ V = 4

ˆ π

2

0

ˆ 2 cos θ 0

4 − r2· r drdθ = −2 ˆ π

2

0

ˆ 2 cos θ 0

4 − r2d(4 − r2)dθ

= −2 ˆ π

2

0

2

3(4 − r2)32 |2 cos θ0 dθ = −4 3

ˆ π

2

0

[4(1 − cos2θ)]32 − 432

= −4 3

ˆ π

2

0

8(sin3θ − 1) dθ = −32 3

ˆ π

2

0

sin3θ dθ + 32 3

ˆ π

2

0

= −32 3

ˆ π

2

0

(1 − cos2θ) d cos θ + 32 3

ˆ π

2

0

= −32

3 · (cos θ − cos3θ 3 ) |

π 2

0 +32 3 · θ |

π 2

0

= −32 3 (2

3− π

2) = 48π − 64 9

2

(3)

4.(10%) 求積分 ´ 23

0

´1−y

2

y (2x + y)ey−xdxdy。 參考解答:

令  u = x − y

v = 2x + y ⇒ x = 13(u + v)

y = 13(−2u + v) , J = ∂(x,y)∂(u,v) =

1 3

1

−2 3 3

1 3

= 13. 所以邊界變為 u = 0, v = 2, v = 2u.

原式= ˆ 2

0

ˆ v

2

0

1

3v · e−ududv = 1 3

ˆ 2 0

v · (−e−u) |

v 2

0 dv

= −1 3

ˆ 2

0

v · (ev2 − 1) dv = 2 3

ˆ 2

0

v dev2 +1 3

ˆ 2

0

v dv

= 1

3(2vev2 + 4ev2 +v2

2) |20= 1

3(4e−1+ 4e−1+ 2 − 4)

= 8

3e−1− 2 3.

(4)

5.(10%) 考慮 x2+ y2+ z2 = 1y = 1 − x2 在第一卦限部分的交線, C 為其上從 (2

2 ,12,12) 到 (1, 0, 0) 的曲線段。 令 F = −3z i + 32x j, 求 ´

C F · dr。 參考解答:

r(x) = h x, 1 − x2,√

x2− x4i ˆ

C

F dr = ˆ 1

2 2

−3√

x2− x4dx +3

2x · (−2x) dx

= ˆ 1

2 2

3 2

1 − x2d(1 − x2) − ˆ 1

2 2

3x2dx

= (1 − x2)32 − x3 |12

2

= −1

4

(5)

6.(10%) 令 F = (px2 + y2 x

1+y2) i + (ex + tan−1y) j, C 為心臟線 r = 1 + cos θ. 求 fl

C F · nds。 參考解答:

ˆ

C

F · n ds =

¨

r≤1+cos θ

( x

px2+ y2 − 1

1 + y2 + 1

1 + y2) dA

=

¨

r≤1+cos θ

x

px2+ y2 dA

= 2 ˆ π

0

ˆ 1+cos θ 0

r cos θ drdθ

= ˆ π

0

(1 + cos θ)2cos θ dθ

= ˆ π

0

2 cos2θ dθ

= π.

(6)

7.(10%) (a) 令向量場 F = eyzi + (xzeyz+ z cos y) j + (xyeyz+ sin y) k。 求此向量場的位 勢函數( potential function )。

(b) 令 C 為從 (1, 0, 1)經由 (1,π

2, 1), 再到(1, π

2, 2) 的折線段。F將一物體沿著 C 移動, 求所作的功。

參考解答: (a)

fx = eyz ⇒ f (x, y, z) = xeyz+ g(y, z) fy = xzeyz+ ∂g

∂y(y, z) = xzeyz+ z cos y ⇒ g(y, z) = z sin y + h(z) fz = xyeyz+ sin y + h0(z) = xyeyz+ sin y ⇒ h(z) = C

∴ f (x, y, z) = xeyz+ z sin y + C (b) 所作的功=f (1,π

2, 2) − f (1, 0, 1) = eπ+ 1.

8.(10%) 求輪胎面 (torus) r(u, v) = (R + r cos u) cos v i + (R + r cos u) sin v j + r sin u k, 0 ≤ u, v ≤ 2π 的表面積, 其中 r < R 為常數。

參考解答:

ru = −r sin u cos v i − r sin u sin v j + r cos u k

rv = −(R + r cos u) sin v i + (R + r cos u) cos v j + 0k

⇒ ru× rv = −(R + r cos u)(r cos v cos u) i − (R + r cos u)(r sin v cos u) j + (−r sin u)(R + r cos u) k

|ru× rv| = r(R + r cos u)

⇒ A = ˆ

0

ˆ 0

(rR + r2cos u) dudv = 4π2rR.

6

(7)

9.(10%) 令 S 為平面 z = x + 2 在圓柱 x2 + y2 = 1 之內的部份, n 為向上的法向量, F = y i + xz j + (x + 2y) k。 求˜

S

curlF · n dσ。 參考解答:

curlF = (2 − x) i − j + (z − 1) k, n = 12(−i + k).

curlF · n = 1

2(−2 + x + z − 1) = 1

2(−2 + x + x + 2 − 1) = 1

2(2x − 1)

¨

S

curlF · n dσ = 1

√2

¨

S

(2x − 1) dσ

(Let x = r cos θ, y = r sin θ, z = 2 + r cos θ)

= 1

√2 ˆ

0

ˆ 1 0

(2r cos θ − 1) ·√

1 + r2r drdθ = −π 另解: C : h cos θ, sin θ, 2 + cos θ i, θ ∈ [0, 2π]

Stokes 定理 原式=

ˆ

C

F · dr

= ˆ

0

[− sin θ sin θ + cos θ(2 + cosθ) cos θ + (cos θ + 2 sin θ + 2 sin2θ cos θ)] dθ

= ˆ

0

[−3 sin2θ + 2 cos2θ] dθ

= ˆ

0

−3(1 − cos 2θ

2 ) + 2(1 + cos 2θ 2 ) dθ

= −1

2· 2π = −π

(8)

10.(10%) 令 D 為立方體 0 ≤ x ≤ a, 0 ≤ y ≤ b, 0 ≤ z ≤ 1。 SD 的六個面, F = (−x2 − 4xy) i − 6yz j + 12z k。 試求 a, b 之值, 使得通量 (flux) ˜

S F · n dσ 為最 大, 並求其值。

參考解答:

Divergence 定理 Flux =

˚

D

divF dV

= ˆ a

0

ˆ b 0

ˆ 1 0

(−2x − 4y − 6z + 12) dzdydx

= ˆ a

0

ˆ b

0

(−2x − 4y + 9) dydx = ˆ a

0

[(−2x + 9) · b − 2b2] dx

= −a2b − 2ab2+ 9ab := f(a, b)

∂f

∂a = ∂f∂b = 0 ⇒ −2a − 2b + 9 = 0

−a − 4b + 9 = 0 ⇒ a = 3, b = 32, f (3,32) = 272.

8

參考文獻

相關文件

Find all the local maximum, local minimum and saddle points

(a) Find parametric equations for the curve C that consists of all possible positions of the point P in the figure using the angle θ as the parameter.. (b) What are the

Only write the correct Spherical coordinate, doesn’t write the range of θ, φ gets 1 point separately.. The correct range of θ on both surface gets

[r]

If students observe the unit normal of the bottom surface, and they only calculate the k-component of curl V.. They do NOT pay for without calculating

Find the coordinates of the center of mass and the moment of inertial about the

[r]

Then, it is easy to see that there are 9 problems for which the iterative numbers of the algorithm using ψ α,θ,p in the case of θ = 1 and p = 3 are less than the one of the