• 沒有找到結果。

Studies on Biodegradation Capacity and Inhibitory Effects of Heavy Metals for Methyl Tertiary Butyl Ether-Degrading Cult 陳信源、林啟文

N/A
N/A
Protected

Academic year: 2022

Share "Studies on Biodegradation Capacity and Inhibitory Effects of Heavy Metals for Methyl Tertiary Butyl Ether-Degrading Cult 陳信源、林啟文"

Copied!
3
0
0

加載中.... (立即查看全文)

全文

(1)

Studies on Biodegradation Capacity and Inhibitory Effects of Heavy Metals for Methyl Tertiary Butyl Ether-Degrading Cult

陳信源、林啟文

E-mail: 9221186@mail.dyu.edu.tw

ABSTRACT

The thesis was focused on obtaining MTBE-degrading cultures through acclimation by a laboratory-scale biotrickling filter. Removal of MTBE vapors from air streams in a biotrickling filter was studied under various operating conditions including inlet MTBE concentration, air residence time, liquid recirculation rate, liquid temperature, and flow direction of air-to-liquid. Additionally, the MTBE-degrading pure culture isolated from a biotrickling filter was employed to study the inhibitory effects of heavy metals on the biodegradation of MTBE, and the kinetic characteristics for the pure culture were examined by a batch experiment. With the several months’ acclimation period, the mixed culture was capable of degrading MTBE with the removal rate of 1—3 mg-MTBE/g-cell

h under suspended growth or attached growth conditions. It was also found that the removal efficiency was up to 77.7%, and the volume elimination capacity was 14.1 g-MTBE/m3 h in the biotrickling filter. Therefore, it is believed the developed biotrickling filter can be used as a pollution control device for treating MTBE-contaminated air. For the operating conditions investigation, MTBE vapor was found to volatilize to air from liquid phase when the liquid recirculation rate was high. However, MTBE removal increases to 90% when temporarily stop the recirculation liquid feeding. Results of the experiment also indicate that to increase the air residence time will increase the MTBE removal rate, under both co-flow and counter-flow conditions for the air-liquid contact.

Of these, operating in co-flow condition was found to give a better MTBE removal. Because the temperature effect on MTBE removal was significant in high temperature operation condition compared to low temperature operation condition, it should be operated in an appropriate temperature environment for the field application. For the aerobic condition of the batch experiment, it was found that MTBE can be degraded completely in ten hours by the pure culture (i.e., 74.5 mg-MTBE/g-cell h). The kinetic parameters for maximum specific growth rate, the half saturation constant, and inhibitory coefficient were 0.0613 hr-1, 4.95 mg/L, and 158-816 mg/L, respectively. The inhibitory effect of several selected metals on the rate of MTBE degradation under aerobic conditions was tested. The metals considered were Cr3+, Cu2+, Mn2+, Pb2+, and Zn2+. The MTBE degradation was carried out in batch liquid culture with MTBE being introduced in combination with each of the metals. Results showed: (1)inhibitory effect of Cu2+ on MTBE degradation was occurred at low concentration, and MTBE was unable to be degraded at Cu2+ concentration greater than 10 mg/L; (2)the presence of Cr3+, Mn2+, Pb2+, and Zn2+ had no effect on MTBE degradation at their

concentrations of 1 mg/L; however, the presence of Cr3+, Pb2+, and Zn2+ had inhibitory effect on MTBE degradation at their concentrations of 10 mg/L; (3)the presence of Mn2+ had no effect on MTBE degradation until concentration as high as 50 mg/L;

(4) the magnitude of inhibitory effect follows the pattern of Cu2+ > Cr2+ > Zn2+ > Pb2+ > Mn2+.

Keywords : MTBE ; biotrickling filter ; heavy metals ; kinetic parameter Table of Contents

封面內頁 簽名頁 授權書 iii 中文摘要 v 英文摘要 vii 誌謝 ix 目錄 x 表目錄 xiii 圖目錄 xiv 第一章 MTBE之污染情形與相關研 究 1.1 前言 1 1.2研究動機與目的 2 1.3研究內容 3 1.4文獻回顧 6 1.4.1 MTBE之合成方式 6 1.4.2 MTBE之物化性質 6 1.4.3 MTBE對人體健康之影響 9 1.4.4 MTBE之污染情形 10 1.4.5 MTBE於傳輸方面之相關研究 13 1.4.6 MTBE之污染處理技術 14 1.4.7 MTBE之代謝路徑 26 第二章 利用生物滴濾塔處理含MTBE廢氣之研究 2.1 前言 29 2.2研究動機 31 2.3研究目的與內 容 32 2.4文獻回顧 35 2.4.1生物反應器介紹 35 2.4.2各反應器之優缺點比較 44 2.4.3反應器之選擇原則 48 2.4.4生物滴濾塔之 相關處理技術與研究 48 2.4.5生物滴濾塔之操作參數 52 2.5實驗設備、材料 61 2.5.1儀器設備 61 2.5.2實驗材料 69 2.5.3分析 方法與步驟 70 2.5.4實驗方法與步驟 77 2.6結果與討論 81 2.6.1批次降解試驗 81 2.6.2生物滴濾塔處理MTBE廢氣之馴化成效 86 第三章 重金屬對MTBE純菌種之降解效率影響 3.1前言 110 3.2研究動機與目的 112 3.3研究內容 113 3.4研究材料與方法 116 3.4.1 藥品 116 3.4.2 批次降解之效率評估方法 116 3.4.3 重金屬溶液製備方式 117 3.4.4 反應動力學特性探討 117 3.4.5降 解抑制實驗與動力學參數求取步驟 125 3.5結果與討論 127 3.5.1本土純菌種對MTBE之降解效率評估 127 3.5.2重金屬存在下 對MTBE之降解抑制探討 128 3.5.3不同重金屬濃度對MTBE之降解影響 133 3.5.4重金屬對基質添加次數之影響情形 138 3.5.5比基質利用率與產值係數評述 143 3.5.6 MTBE分解菌之動力學參數 145 3.5.7含重金屬時之動力學參數 147 第四章 結 論與建議 4.1 結論 156 4.2 建議 160 參考文獻 162 表目錄 表1.4-1 含氧汽油添加劑及其他汽油成分之物理化學性質 8 表1.4-2 MTBE之急毒性反應與致癌性評估 10 表1.4-3 地下水受汽油滲漏污染所包含之主要污染物質 11 表1.4-4 各種混合菌與純菌

(2)

株之MTBE降解情形比較 22 表2.4-1 不同生物反應器之優缺點 41 表2.4-2 三種生物反應槽之主要特性 43 表2.4-3 三種廢氣 生物處理法之比較 44 表2.4-4 氣相生物反應器之優缺點比較 47 表2.4-5 循環水流量對滴濾塔執行效率之影響 60 表2.5-1 生 物滴濾塔規格 64 表2.5-2 營養鹽成份及濃度 64 表2.5-3 填充濾材之物理性質 65 表2.5-4 氣相層析儀之分析條件 77 表3.4-1 MTBE降解實驗之組數規劃與重金屬含量 126 表3.5-1 微生物動力學相關參數值一覽表 149 表3.5-2 以Monod積分式擬合實 驗數據 所獲得之動力學參數值 150 表3.5-3 以Monod-Haldane積分式擬合實驗數據 所獲得之動力學參數值 151 圖目錄 圖1.3-1 本論文之研究總架構 5 圖1.4-1 於好氧條件下微生物降解MTBE之可能代謝途徑 28 圖2.3-1 研究流程圖 34 圖2.4-1 三 種氣相生物反應器之示意圖 42 圖2.4-2 具吸附與不具吸附能力之擔體其污染物 濃度剖面關係 56 圖2.5-1 生物滴濾塔示意圖 66 圖2.5-2 生物滴濾塔之檢量線 72 圖2.5-3 面積值與液相濃度(Cw)之檢量線 74 圖2.6-1 混合菌於液態批次條件下對MTBE之 降解趨勢 82 圖2.6-2 混合菌於不同MTBE濃度下之降解情形 84 圖2.6-3 混合菌於存在其他汽油添加劑條件下之降解情形 86 圖2.6-4 生物滴濾塔對MTBE之處理能力 89 圖2.6-5 有機負荷對MTBE去除率之影響 91 圖2.6-6 循環水流量對MTBE去除率 之影響 92 圖2.6-7 不同氣體流向於有無循環水條件下之去除效率 94 圖2.6-8滴濾塔各段高之濃度變化(有無循環水時) 95 圖2.6-9 氣體停留時間對去除效率之影響(同向流) 97 圖2.6-10 氣體停留時間對去除效率之影響(逆向流) 99 圖2.6-11 以不同停 留時間下各滴濾塔高度之濃度變化關係 101 圖2.6-12 不同氣體流向對MTBE去除效率之影響 103 圖2.6-13 不同氣體停留時 間下去除效率之變化趨勢 105 圖2.6-14滴濾塔各段高之濃度變化關係 106 圖2.6-15不同溫度對去除效率之影響 108 圖2.6-16 不同操作溫度下各段高之濃度變化關係 109 圖3.3-1 本章之研究流程 115 圖3.4-1 動力參數μm、Ks及Ki之求取流程 124 圖3.5-1 未添加重金屬之降解趨勢 128 圖3.5-2 添加重金屬Mn2+之降解趨勢 129 圖3.5-3 添加重金屬Pb2+之降解趨勢 130 圖3.5-4 添加重金屬Zn2+之降解趨勢 131 圖3.5-5 添加重金屬Cr3+之降解趨勢 132 圖3.5-6 添加重金屬Cu2+之降解趨勢 133 圖3.5-7 添加不同重金屬離子之降解趨勢(1 mg/L) 134 圖3.5-8 添加不同重金屬離子之降解趨勢(10 mg/L) 136 圖3.5-9 添加不 同重金屬離子之降解趨勢(50 mg/L) 137 圖3.5-10 添加不同重金屬離子之降解趨勢(100 mg/L) 138 圖3.5-11 重金屬濃度1 mg/L對基質添加次數之影響情形 139 圖3.5-12 重金屬濃度10 mg/L對基質添加次數之影響情形 142 圖3.5-13 比較重金 屬Cu+2與Cr+3對不同基質添加次數之 影響情形 142 圖3.5-14 實驗值與模式擬合值比較圖(MTBE alone) 152 圖3.5-15 實驗 值與模式擬合值比較圖(Mn2+, 1 mg/L) 152 圖3.5-16 實驗值與模式擬合值比較圖(Pb2+, 1 mg/L) 152 圖3.5-17 實驗值與模式 擬合值比較圖(Zn2+, 1 mg/L) 153 圖3.5-18 實驗值與模式擬合值比較圖(Cr3+, 1 mg/L) 153 圖3.5-19 實驗值與模式擬合值比 較圖(Cu2+, 1 mg/L) 153 圖3.5-20 實驗值與模式擬合值比較圖(Mn2+, 10 mg/L) 154 圖3.5-21 實驗值與模式擬合值比較 圖(Pb2+, 10 mg/L) 154 圖3.5-22 實驗值與模式擬合值比較圖(Cr2+, 10 mg/L) 154 圖3.5-23 實驗值與模式擬合值比較圖(Cr3+, 10 mg/L) 155

REFERENCES

Francois, A., H. Mathis, D. Godefroy, P. Piveteau, F. Fayolle, F. Monot,(2002), “degradation of Methyl tert-Butyl Ether and Other Fuel Oxygenates by a New Strain, Mycobacterium austroafricanum IFP 2012”, Appl. Environ. Microbiol., 68: 2754-2762 Fayolle, F., J.-P.

Vandecasteele, F. Monot,(2001),“Microbial degradation and fate in the environment of methyl tert-butyl ether and related fuel oxygenates”

Appl. Microbiol. Biotechnol. 56: 339-349 Keller, A. et al., 1998, “Health and environmental assessment of MTBE,” Report to the governor and legislature of the state of California as sponsored by SB 521. Duffy, J. S., J. A. Pup, and J. J. Kneiss, 1992, “Toxicological evaluation of MTBE testing performed under TSCA consent agreement,” Journal of Soil Contamination, 1, p27-37. Sorial, G.A. F.L. Smith, P. Biswas, and R.C.

Brenner, 1993, “Development of aerobic biofilter design criteria for treating VOCs,” Proceedings of the 86th Annual Meeting & Exhibition of the Air & Waste Management Association, Denver, CO, USA. Hernandez-Perez, G., F. Fayolle, J.-P. Vandecasteels,(2001), “Biodegradation of ethyl t-butyl ether (ETBE), methyl t-butyl ether (MTBE) and t-amyl methyl ether (TAME) by Gordonia terrae ” Appl. Microbiol. Biotechnol. 55:

117-121 Hardison, L. K., S. S. Curry, L. M. Ciuffetti, M. R. Hyman,(1997), “Metabolism of Diethyl Ether and Cometabolism of Methyl tert-Butyl Ether by a Filamentous Fungus, a Graphium sp.”, Appl. Environ. Microbiol., 63: 3059-3067 Garnier, P. M., R. Auria, C. Augur, S.

Revah,(1999),“Cometabolic biodegradation of methyl t-butyl ether by Pseudomonas aeriginosa grown on pentane” Appl. Microbiol. Biotechnol.

51: 498-503 Steffan, R.J., McClay, K., Vaiberg, S., Condee, C.W., Zhang, D., 1997, “Biodegradation of the gasoline oxygenates Methyl tert-Butyl Ether, Ethyl tert-Butyl Ether, tert-Amyl Ethyl Ether by propane-oxidizing bacteria,” Applied Environ. Microbiology, 63: 4216-4222.

Mo, K., Lora, C.O., Wanken, A.E., Javanmardian, M., Yang, N., Kulpa, C.F., 1997, “Biodegradation of ethyl tert-Butyl Ether by pure bacterial cultures,” Appl. Microbiol. Biotechnol., 47:69-72. Salanitro, J.P., Diaz, L.A., Williams, M.P., Wisniewski, H.L., 1994,:Isolation of a bacterial culture that degrades MTBE,”Applied Environ. Microbiology, 60:2593-2596. Park, K. and R. Cowan, (1997), Effects of oxygen and temperature on the biodegradation of MTBE. Proceedingsof the 213th ACS National Meeting: Division of Environmental Chemistry, San Francisco, CA, April 13-17. Stoffels, M., R. Amann,W. Ludwig, D. Hekmat, and K.-H. Schleife. (1998) “Bacterial Community dynamics during start-up of a

Trickle-bed Bioreactor degrading Aromatic Compounds”, Appl. Environ. Microbiol.. 64: 930-939 Mpanias, C. J., B. C. Baltzis . (1998)

“Biocatalytic removal of mono-Chlorobenzene vapor in trickling filters”, Catalysis Today. 40: 113-120 Findlay G. Edwards and N.

Nirmalakhandan. (1996) “Biological Treatment of Airstreams Contaminated with VOCs:an Overview”. Wat. Sci. Tech. 34: 565-571 Fortin , N.

Y., M. A. Deshusses . (1999) “Treatment of Methyl tert-Butyl Ether Vapors in Biotrickling Filters. 1. Reactor Steady —State Performance, and Culture Characteristics”, Environ. Sci. Technol. 33: 2980-2986 Sa, C. S. A., R. A. R. Boaventura. (2001) “Biodegradation of phenol by

(3)

Pseudomonas putida DSM 548 in a trickling bed reactor”, Biochem. Eng. 9: 211-219 Den, W., M. Pirbazari, C. C. Huang, K. P. Shen. (1998)

“Technology review for vapor phase biofiltration partⅠ: Technological development and applications “Journal of the Chinese Institute of Environmental Engineering. 8: 159-179 Cox, H. H. J., and M. A. Deshusses. ,(2002) ,“Co-treatment of H2S and toluene in a biotrickling filter”, Chem. Engine. Journal ,87:101-110 Hekmat, D., A. Linn, M. Stephan, and D. Vortmeyer. ,(1997), “Biodegradation dynamics of aromatic compounds from waste air in a trickl-bed reactor”Appl. Microbiol.Biotechnol. 48: 129-134 Langwaldt, J. H. and J. A. puhakka., (2000), “On-site biological remediation of contaminated groundwater: a review “Environmental Pollution.107: 187-197 Cox, H. H. J., T. T. Nguyen, M. A.

Deshusses., (2000), “Toluene degradation in the recycle liquid of biotrickling filters for air pollution control” Appl. Microbiol.Biotechnol. 54:

133-137 Converse, B. and E. D. Schroeder, (1999), “Biodegradation of Methyl Tertiary Butyl Ether (MTBE) Using a Granular Activated Carbon Trickling Filter,” Proceedings of the 92nd Annual Meeting & Exhibition of the Air & Waste Management Association, St Louis, Missouri, USA.

Diks R.M.M. and S.P.P. Ottengraf, (1991), “Vertification studies of a simplified model for the removal of dichloromethane from waste gases using a biological trickling filter,” Bioprocess engineering, 6:93-99. Eweis, J.B., N. Watanabe, E. D. Schroeder, D. P.Y. Chang, K. M. Scow, (1998),

“MTBE biodegradation in the presence of other gasoline compounds” National Ground Water Association Conference on MTBE and Perchlorate, Anaheim, CA, June 3-4. Mo, K., Lora, C.O., Wanken, A.E., Javanmardian, M., Yang, N., Kulpa, C.F., (1997), “Biodegradation of ethyl tert-Butyl Ether by pure bacterial cultures,” Appl. Microbiol. Biotechnol., 47:69-72. Abbas, A. S., and C. Edwards,(1990), “Effects of Metals on Streptomyces coelicolor Growth and Actinorhodin Production” , Appl. Environ. Microbiol..56: 675-680 Tyagi, R. D., D. Couillard, J.

P. Villeneuve,(1986), “Functional Design of Activated Sludge Processes with Heavy Metal Inhibition”, The Canadian Journal of Chemical Engineering , 64: 632-638 Said, W. A. and D. L. Lewis,(1991), “Quantitative Assessment of the Effects og Metals on Microbial Degradation of Organic Chemicals” ,Appl. Environ. Microbiol..57: 1498-1503 Baldrian, P., C. Wiesche, J. Gabriel, F. Nerud, F. Zadrazil,(2000), “Influence of Cadmium and Mercury on Activities of Ligninolytic Enzymes and Degradation of Polycyclic Aromatic Hydrocarbons by Pleurotus ostreatus in Soil

”, Appl. Environ. Microbiol..66: 2471-2478 Cabrero, A., S. Fernandez, F. Mirada, J. Garcia,(1998), “Effects of Copper and Zinc on the Activated Sludge Bacteria Growth Kinetics”, Wat. Res.,32: 1355-1362 Codina, J. C., M. A. Munoz, F. M. Cazorla, A. P-Garcia, M. A. Morinigo, A. D. Vicenti,(1998), “The Inhibition of Methanogenic Activity from Anaerobic Domestic Sludges as a Simple Toxicity Bioassay ”, Wat.

Res.,32: 1338-1342 Silver, S.,(1998) “Genes for all metals-a bacterial view of the Periodic Table The 1996 Thom Award Lecture”, Journal of Industrial Microbiological & Biotechnology ,20: 1-12 林啟文、吳照雄 (1999),「汽油添加劑MTBE之生物降解技術研究」,期中報告,中國 石油股份有限公司。計畫編號:NSC-CPC-E-212-001 侯松男 (2002),「含氧汽油添加劑分解菌之馴化、篩選及生長條件研究」,大葉大學 環境工程研究所碩士論文 邱創汎、王耀銘、張坦卿 (1996),「空氣污染生物處理技術本土化之評析」,工業污染防治,第58期

,p111-124 陳良誌 (2000),「1.模場生物滴濾處理含異辛醇排氣之操作性能研究;2.以實場生物滴濾塔處理合成樹脂廠排氣之操作性能 研究」,國立中山大學環境工程研究所碩士論文 朱振華 (1998),「生物濾床法處裡含BTEX廢氣程序控制之研究」,國立中興大學環境 工程研究所碩士論文 蘇佳慶 (1996),「以生物滴濾塔處理排氣中一氧化氮之操作性能研究」,國立中山大學環境工程研究所碩士論文 吳非隆 (1995),「以生物滴濾塔處理排氣中甲苯成份之操作性能研究」,國立中山大學環境工程研究所碩士論文 黃忠永 (1996),「以生 物滴濾塔及濾床處理煉油廢水場排氣中揮發性有機物之研究」,國立中山大學環境工程研究所碩士論文 涂秀妹 (2001),「以實場生物滴 濾塔處理排氣中苯乙烯及丙烯?之操作性能研究」,國立中山大學環境工程研究所碩士論文 王嘉禧 (2000),「以生物滴濾塔處理排氣中 氨之操作性能研究」,國立中山大學環境工程研究所碩士論文 許宏寬 (2001),「MTBE生物降解研究」,雲林科技大學環境與安全工程 研究所碩士論文 廖志祥、李明堂、何佳倩 (2001),「以H2O2/UV並以抽取回送式處理MTBE污染地下水」,第二十六屆廢水處理技術 研討會,國立高雄第一科技大學,高雄市 林啟文、吳照雄 (2000),「汽油添加劑MTBE之生物降解技術研究」,期末報告,中國石油股 份有限公司。計畫編號:NSC-CPC-E-212-001 林啟文、張金全 (2001),「連續批次反應系統處理含氧汽油添加劑及環狀有機物之動力特性 研究(1/3)」,行政院國科會專題研究計畫成果報告,行政院國科會。計畫編號:NSC 89-2211-E-212-006 林啟文、張金全 (2002),「連續 批次反應系統處理含氧汽油添加劑及環狀有機物之動力特性研究(2/3)」,行政院國科會專題研究計畫期中成果報告,行政院國科會。計 畫編號:NSC 90-2211-E-212-008 林啟文、洪士賢、陳政遠、呂珊茹 (2002),「ETBE與TAME對甲基第三丁基醚分解菌之抑制效應研究」

,中華民國環境工程學會第二十七屆廢水處理技術研討會,台北市 陳谷汎、陳谷汎、方韋寧、陳廷育、高志明 (2002),「以好氧生物復 育法整治受甲基第三丁基醚(MTBE)污染場址之評估」,第一屆海峽兩岸土壤與地下水污染整治研討會,pp B179-B185 王雅玢、陳志強

、謝徨麒,(2001)「汽油油品中金屬元素之特徵」,第二十六屆廢水處理技術研討會,高雄市 張豐藤、李俊德、李文智,(2000)「柴油車 排放廢氣中重金屬元素之特徵」,第十七屆空氣污染控制技術研討會,雲林縣 平成股份有限公司,「工業區土壤及地下水質污染全面 性調查工作」,新竹市環保局委託研究計畫期末報告,1999 李俊璋、謝佳褘,「修車廠作業員工揮發性有機物質暴露評估」,碩士論 文,國立成功大學環境醫學研究所,1999 張全勝 (1994),MTBE及TAME製程與觸媒發展及其反應原料之取得,觸媒與製成,第三卷第 三期,pp54-58 黃士軒 (1999),「甲基第三丁基醚(MTBE)在土壤中傳輸之研究」,台灣大學環境工程工程研究所碩士論文

參考文獻

相關文件

Wang, Solving pseudomonotone variational inequalities and pseudocon- vex optimization problems using the projection neural network, IEEE Transactions on Neural Networks 17

Define instead the imaginary.. potential, magnetic field, lattice…) Dirac-BdG Hamiltonian:. with small, and matrix

Basing on the observation and assessment results, this study analyzes and discusses the effects and problems of learning the polynomial derivatives on different level students

This study aims at evaluating the learning effects on the part of students from the teacher-designed concrete vector classroom-teaching approach in Plane Vector course on the basis

• elearning pilot scheme (Four True Light Schools): WIFI construction, iPad procurement, elearning school visit and teacher training, English starts the elearning lesson.. 2012 •

Briefing Session on the Initial Recommendations for the Ultimate Way Forward of the Business, Accounting and Financial Studies (BAFS) Curriculum and Assessment Event Date &

Microphone and 600 ohm line conduits shall be mechanically and electrically connected to receptacle boxes and electrically grounded to the audio system ground point.. Lines in

The min-max and the max-min k-split problem are defined similarly except that the objectives are to minimize the maximum subgraph, and to maximize the minimum subgraph respectively..