New Opportunities in Two-dimensional Materials
Yuanbo Zhang (张远波)
Dept. of Physics, Fudan University, China
A Brief History of Materials
The Stone Age The Bronze Age
The Iron Age
The Silicon Age?
“Interface is the Device”
The first transistor, Bell Lab, 1947
Graphene: The Beginning of 2D Material Research
Geim group (2004)
Graphene : Dirac Fermions in 2D
pc E
Band Structure of Graphene
pc E F
kv E
kx ky
Energy
Momentum, hk
Pseudo-spin
P. R. Wallace, Phys. Rev. 71, 622 (1947).
T. Ando et al, J. Phys. Soc. Jpn 67, 2857 (1998).
Less is different
Graphite
c
High Tc Materials Such as
Bi2Sr2CaCu2O8-x
Zr N Cl
b- ZrNCl Metal
Chalcogenides (M= Nb, Ta, Va, …
X= S, Se, Te ) M X
X
Families of New Materials in 2D
Hundreds of 2D crystals waiting to be explored
Opportunities to Tune the Material Properties in 2D
New device paradigm?
Black phosphorus (semiconductor)
1T-TaS2 (metal) Outline
Gate-controlled intercalation
Tunable Phase in 1T-TaS2
White Phosphorus Red Phosphorus
Allotropes of Phosphorus
Black Phosphorus
Allotropes of Phosphorus: Black Phosphorus
P. W. Bridgman, JACS 36,1344 (1914)
Layered crystal structure
Review:
Morita, Applied Physics A 39, 227–242 (1986).
Phosphorene v.s. Graphene
Puckered honey-comb lattice
5 valence electrons
Fully filled valence band
Gapped semiconductorPhosphorene
Planar honey-comb lattice
4 valence electrons
Half-filled conduction band
Zero-gap semiconductorGraphene
Y. Takao, et al., J. Phys. Soc. Jpn.
50, 3362 (1981)
Band gap ~ 2 eV
Phosphorene
pc E
kx ky
Energy
Graphene
P. R. Wallace, Phys. Rev. 71, 622 (1947).
Phosphorene v.s. Graphene
Direct band gap ~ 0.3 eV Band structure of the bulk
Thickness-dependent Bandgap in few-layer Phosphorene
Thickness-dependent bandgap
Direct bandgap tunable by varying thickness
Thickness-dependent Band Gap
Bridging the gap
Churchill and Jarillo-Herrero, Nature Nano. (2014)
Si
Black Phosphorus
Black Phosphorus Field-effect Transistor
Likai Li et al. Nature Nano. 9, 372 (2014).
Likai Li Fangyuan Yang
See also:
Liu, H. et al. ACS Nano 8, 4033 (2014).
Koenig, S. P. et al., APL 104, 103106 (2014).
Xia, F. et al., Nature Comm. 5, 4458 (2014).
Highest on-off ratio ~ 105
Black Phosphorus FET
5 nm sample
Room temperature
High mobility up to 1000 cm2/Vs
Saturation in I-V CharacteristicsLimiting Factors of Carrier Mobility
Before After
Sample left in air for 3 days
Optic Image of
Black Phosphorus on BN Cross-sectional View
Black Phosphorus on Hexagonal Boron Nitride
Protecting the bottom surface with hBN
Quantum Oscillations in Black Phosphorus on hBN
B = 31T, T = 0.3K
2D Electron and Hole Gases in Black Phosphorus
2D instead of 3D Fermi surface
2D Electron and Hole Gases in Black Phosphorus
2D confinement at the surfave Charge distribution
2D electron and hole gases are confined to ~ 2 atomic layers
2D Electron and Hole Gases in Black Phosphorus
Crucial information obtained from the quantum oscillations
Likai Li et al. Nature Nano., Advance Online Publication (arXiv:1411.6572).
See also:
Tayari, V. et al., arXiv:1412.0259 (2014).
Chen, X. et al., arXiv:1412.1357 (2014).
Gillgren, N. et al., 2D Mater. 2, 011001 (2015).
Even Higher Mobility?
Top View Side View
Graphite local gate screens impurity potential, leads to high mobility
High Mobility Black Phosphorus 2DEG
Factor of 3 increase in mobility
Quantum Hall Effect in Black Phosphorus 2DEG
Likai Li et al. arXiv:1504.07155 (2015)
Holes Electrons
Landau Level Energy Landscape
Even-denominator fractional quantum Hall states in ZnO
Falson, J. et al. Nature Physics 11, 347 (2015)
Black phosphorus potentially harbors similar FQH states
Anyons in Black Phosphorus 2DEG?
1T-TaS2 : a Strongly Correlated 2D Material
Yijun Yu
Crystal structure of 1T-TaS2
1T
6Å
Nearly Commensurate
NCCDW Incommensurate
ICCDW
Commensurate
CCDW & Mott
0 100 200 300 400 500
10-1 100 101
R() bulk
T (K)
Various CDW Phases in 1T-TaS2
Various CDW Phases in 1T-TaS2
Commensurate CDW and Mott Insulator State
Fazekas, P. & Tosatti, E. Philos. Mag. B (1979) Wilson et al., Adv. Phys. (1975)
Sipos, et al. Nat. Mater. (2008).
Gate Doping Limits
Electrolyte SiO2
Conventional Dielectric Gating Ion Liquid Gating
Maximum n ~ 1013 cm-2 Maximum n ~ 1014-1015 cm-2 Only top atomic layer
K.Ueno,Nat.Mater.(2008); D.K.Efetov,Phys.Rev.Lett.(2010); J.T.Ye,Nat.Mater.(2010);
J.G.Checkelsky,Nat.Phys.(2012); Nakano,Nature(2012); J.T.Ye,Science(2013)
Tuning TaS2 through Gate-controlled intercalation
Ion Gel (LiClO4/PEO)
TaS2 Sample
Gate Electrode
Gate-controlled intercalation in TaS2
n ~ 1015 cm-2 for EACH atomic layer
Gate-controlled Doping by Intercalation
Device Structure
Yijun Yu et al. Nature Nano., 10, 270 (2015).
0 1 2 3 0.5
0.6 0.7 0.8 0.9 1.0 1.1
Normalized R
Vg(V)
1T-TaS2 Ionic Field-effect Transistors (iFET)
iFET operates through ion diffusion
NCCDW
ICCDW
0 1 2 3
0.5 0.6 0.7 0.8 0.9 1.0 1.1
Vg(V)
B
0 1 2 3
0.5 0.6 0.7 0.8 0.9 1.0 1.1
Vg(V)
C
Gate-controlled Doping by Intercalation
Gate-controlled Doping by Intercalation
Gate-controlled Doping by Intercalation
Gate-controlled Doping by Intercalation
Gate-controlled Doping by Intercalation
Gate-controlled Doping by Intercalation
Gate-controlled Doping by Intercalation
14 nm sample
Electron Doping from Charge Transfer
~ 20% electron doping from charge transfer from Li
Mott
Tunable Phases in 1T-TaS2 iFET
Mott
Temperature
pressure,
isovalent substitution ICCDW
NCCDW
CCDW
&Mott
SC
Intercalation Compared with Pressure and Isovalent Substitution
Connection btw intercalation and pressure/isovalent substitution??
Sipos, et al. Nat. Mater. (2008).
L. J. Li et al. EPL (2012) R. Ang et al. PRL (2012)
Summary
Black Phosphorus Transistor
Tunable Phases in 1T-TaS2Acknowledgement
Fangyuan Yang Yijun Yu
Likai Li Liguo Ma
Fudan Univ.
Prof. Xianhui Chen Guo Jun Ye
Xiu Fang Lu Ya Jun Yan
USTC
Prof. Sang-Woo Cheong
Rutgers Univ.
Prof. Donglai Feng
Prof. Hua Wu Xuedong Ou Qinqin Ge
Y. H. Cho Prof. Young Woo Son
KIAS, Korea
NIMS, Japan
Dr. Takashi Taniguchi Dr. Kenji Watanabe
Prof. Li Yang
Univ. of Washington
Vy Tran
Ruixiang Fei
Institute of Metal Research
Prof. Wencai Ren