• 沒有找到結果。

• Definition of inner product

N/A
N/A
Protected

Academic year: 2022

Share "• Definition of inner product"

Copied!
32
0
0

加載中.... (立即查看全文)

全文

(1)

Chapter 2: Inner Product Spaces

• Motivation

• Definition of inner product

• The spaces L

2

and l

2

• Schwarz and triangular inequalities

• Orthogonality

• Linear operators

• Least squares

(2)

1. Motivation

• For two vectors X=(x1,x2,x3), Y=(y1,y2,y3) in R3, the standard inner product of X and Y is defined as

• This definition is partly motivated by the desire to measure the length of a vector (Pythagorean theorem)

• If X is a unit vector, then is to measure the vector length of Y, i.e., the projection of Y on vector X.

3 3 2

2 1

, Y x

1

y x y x y

X = + +

X X x

x x

X ,

of

Length = 12 + 22 + 32 =

Y

X ,

(3)

• Ex.點(3,6,5)到點(3,8,7)的歐氏距離為:

• Ex.向量(3,6,5)長度為:

• Ex.

如果X不是單位向量(ex:(1,0,0))﹐則<X,Y>不 再是量測Y投影到X方向的長度﹐而是有放大或縮 小的效果

: ex: X=(2,0,0) or X=(0.5,0,0)

8 4

4 0

) 5 7

( )

6 8

( )

3 3

( −

2

+ −

2

+ −

2

= + + =

70 5

6

3

2

+

2

+

2

=

(4)

2 Definition of inner product

• For any dimension n, the two vectors

) ,

, ,

( x

1

x

2

x

n

X = L

and

Y = ( y

1

, y

2

, L , y

n

)

,

the Euclidean inner product is

=

= n

j

j j y x Y

X

1

,

• Complex form: Z and W are both complex vectors

=

= n

j

j jw z W

Z

1

,

(5)

•複數的向量內積使用共軛複數的原因

•If X=3+2i=(3,2i), then the length of X is:

2009/04/01 5

5 4

9 4

9 )

2 , 3 ( ) 2 , 3 (

, > = = + 2 = =

< X X i i i

Without conjugate (wrong):

With conjugate (correct):

13 4

9 4

9 )

2 , 3 ( ) 2 , 3 (

, > = = 2 = + =

< X X i i i

3 2i

(6)

3 The spaces L

2

and l

2

(1)

• Continuous form (連續型): L2

{

<

}

= b

a f t dt

C b

a f

b a

L2([ , ]) :[ , ] ; | ( ) |2

The energy of a continuous function f in the interval is defined as:

The L2 inner product in the interval [a, b] of two continuous functions is defined as:

dt t

g t f g

f

b

L

=

a

( ) ( )

,

2

(f and g can be complex.)

連續型內積定義

(7)

能量的定義

•能量的定義,就是將每一個element平方後相加,也 就是向量長度的平方。

•Ex. The energy of a vector (or a signal) X=(3,4,5) is defined by:

•Ex. The energy of a vector (or a signal) X=(x1,x2,x3,…,xn) is defined by:

50 5

4

3

2

+

2

+

2

=

2 2

3 2

2 2

,

X x1 x x xn

X

>= + + + +

< L

(8)

3 The spaces L

2

and l

2

(2)

• Discrete form (離散型): l2

=

=

b

a i

i

l

x

i

y

Y X ,

2

The l2 inner product in the interval [a, b] of two discrete functions is defined as:

(X and Y can be complex.)

離散型內積定義

(9)

4 Schwarz inequalities

Schwarz inequality:

||

||

||

||

| ,

| X YX Y

X

Y X+Y

Equality holds if and only if X and Y are linear dependent.

If X and Y are linear independent, what happens?

||

||

||

||

cos

||

||

||

||

| ,

| X Y = X Y θ X Y

θ 1.

cos ,

180 or

0

If θ = θ = ° θ =

. 0 cos

, 270 or

0 9

If θ = ° θ = ° θ =

線性相依

線性無關

(10)

Triangular inequalities

Triangle inequality:

||

||

||

||

||

|| X + YX + Y

X

Y X+Y

Equality holds if and only if X or Y is a positive multiple of the other.

0 , >

= tY t X

X Y=2X

||

||

||

||

||

|| X + Y = X + Y

(11)

5 Orthogonality 正交性 (1)

The vectors X and Y are said to be orthogonal if

0 , Y = X

The vectors X and Y are said to be orthonormal if

0 , Y = X

1

||

||

and

1

||

|| X = Y =

內積為0

長度為1 內積為0

(12)

5 Orthogonality (2)

Example:

]).

, ([

L in orthogonal

are cos

) ( and sin

) ( function The

2 −π π

=

= t g t t

t f

Proof:

0

| ) 2 4 cos(

1

) 2 2 sin(

1

cos sin

,

=

= −

=

=

ππ

π

π

π

π

t

dt t

tdt t

g f

內積為0,所以正交(orthogonal)

(13)

5 Orthogonality (3)

• Orthogonal projection

vectors of

collection l

orthonorma an

is } ,

, ,

{ev1 ev2 L evN

=

α

= N

j

j j

N

e v

e e

e v

1

2

1, ,..., }, then, {

of space in the

lies If

v v

v v

v v

where

α

j

= v v v , e

j

ev

j

vv

α j

Origin

).

,..., ,

( is coordinate its

and }

,..., ,

{

system coordinate

new a

in spanned be

can vector

: means That

2 1

2

1 e eN N

e

v

α α

v α v

v

v

(14)

5 Orthogonality (4)

Example:

z y

x v

z z

v

y y

v

x x

v

v

v v v

v

v v v

v v

v

v v

v

7 5

3

).

1 , 0 , 0 ( where

, 7

and );

0 , 1 , 0 ( where

, 5

);

0 , 0 , 1 ( where

, 3

means it

), 7 , 5 , 3 ( is

R in A vector

3

+ +

=

=

=

=

=

=

=

=

(15)

任何向量都可以投射到新的坐標空間

Example

3

x y

4 v=(3,4) x’

y’

5 /

) 1 , 2 ( '= x

5 /

) 2 , 1 ( '= −

y / 5 5/ 5 5

2 ) 1 4 , 3 (

4721 .

4 5 2 5 / 10 5

1 / ) 2 4 , 3 (

=

⎟⎟ =

⎜⎜

⎛−

=

=

⎟⎟ =

⎜⎜

? )

5 ( )

5 2 ( energy

25 16

9 4

3 energy

2 2

2 2

= +

=

= +

= +

= (x,y)-plane

(x’,y’)-plane

5 5 2

新的坐標空間

投射後能量守恆

) 5 , 5 2

= ( v

(16)

矩陣表示

Example

3 4

5 5 2

⎟⎟

⎜⎜

⎟⎟

⎜⎜

=

⎟⎟

⎜⎜

=

⎟⎟

⎜⎜

4 3 1 0

0 1 4

3

2

1 v

x x

T T v v

v

⎟⎟

⎜⎜

⎟⎟

⎜⎜

=

⎟⎟

⎜⎜

=

⎟⎟

⎜⎜

4 3 5 / 2 5 / 1

5 / 1 5

/ 2 '

' 5

5 2

2

1 v

x x

T T v v

v

) 5 , 5 2

= ( v

向量在投射後的坐標﹐可用矩陣表示法計算

新的坐標空間

v=(3,4)

本位座標空間

新的坐標空間

⎟⎟

⎜⎜

=

5 / 1

5 / ' 2

x1

⎟⎟

⎜⎜

= ⎛−

5 / 2

5 / ' 1

x2

x1

x2

新的坐標

(17)

2009/04/01 17

Example:

用途﹕在找出多數向量的主軸(主軸分析)﹐資料壓縮

axis.

new a

|| is in which ||

system, coordinate

new a

Construct .

coordinate Cartison

in vector a

be ) 7 , 5 , 3 ( Let

v z v v

= v

v v v

0 ,

so

), 7 , 5 , 3 83 ( 1

||

and ||

) 2 , 1 , 3 14 ( Define 1

3 1

3 1

=

=

=

= e

e

v e v

e v

v v

v v v

0694 .

8 ) 1 1 4 , , 9 12 (17

12 . , 17

4 9 0

7 5

3

0 2

3

. 0 ,

and 0

, :

satisfies which

) , , ( Define

2

2 3 2

1 2

=

=

=

= +

+

=

+ = = =

e

z x

z z y

y x

z y

x

e e e

e z

y x ev

+

+

83 0 0 ) (

: form matrix

a in or

83 0

0 : as d represente be

can

system, coordinate

new in the

Therefore,

3 2 1

3 2

1

e , e , e

e e

e v

v v v

v v

v v

建立新的坐標系統﹐使得Z軸與給定的向量平行

(18)

找出多數向量的主軸(主軸分析)

新的坐標空間

主軸

找出主軸後﹐次要的軸就變得不重要﹐可以 忽略﹐因此可以做:

1.資料壓縮 2.降低維度

(19)

2009/04/01 19

任何一個一維空間的資料﹐可視為超高維空間的一個點(或點向量)

(

f f f

)

n

f = , , , n length = :

data D

1 1 2 K

( )

⎟⎟

⎜⎜

+ +

⎟⎟

⎜⎜

+

⎟⎟

⎜⎜

=

1 0 0 0

1 0

0 0 1 ,

, , D,

In 1 2 1 2 M

K M

K M v

n

n f f f

f f

f f

n

n n

n n

e e f e

e f e

e f f

f

R e

e e

v v v

v K v v

v v v

v

L v v

v

, ,

,

: form new

a in d represente be

can then

} , , , { : system coordinate

another is

there If

1 2

2 1 1

1 1

2 1

+ +

+

=

f e

e e g

f T

T n

T T

v vM

v v

v v 2

1

) (

×

=

= ( , , , , , , )

2

1 f e f en

e f

g v v

v K v v

v = v

此一點向量﹐可以投射到任何一個新的(維 度相同的)座標系統,這是Fourier transform的 理論基礎。

(20)

6 Linear operators (1)

Definition:

.

V for

) ( )

( )

(

satisfies W which

V : T function a

is W space

vector a

and V

space vector

a between map)

(or operator

linear A

C a,b

u,v v

bT u

aT bv

au

T + = +

=

=

=

∑ ∑

n mn

m

n

i j ij j

j j j

x x

t t

t t

x t v

T

v x v

M L

M O

M v L

v

1

1

1 11

) (

: any vector

For matrix.

a as

d represente be

can T

then l,

dimensiona finite

are W and

V If

=

=

m

i ij j

j

t w

v

T ( )

1

and v v

(21)

6 Linear operators (2)

Example . angle an

for axis

- z respect to with

) 2 , 1 ( vector

a Rotate

θ v =

x z

⎟⎟ y

⎜⎜

⎟⎟

⎜⎜

θ θ

θ

= θ

2 1 cos

sin

sin ) cos

(v T

x y

(22)

6 Linear operators (3)

v=[1;2];

a=30/180*pi;

t=[cos(a) sin(a);-sin(a) cos(a)];

w=t*v;

figure(1); clf;

plot([0 v(1)],[0 v(2)],'r');

hold on;

plot([0 w(1)],[0 w(2)],'g');

axis equal;

Matlab program:

0 0.5 1 1.5 2

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Result:

Red: Before rotation, Green: After rotation.

旋轉30度

(23)

6 Linear operators (4)

Adjoints: Definition

v ) ( ,

w ,

satisfies that

: operator linear

the is of

adjoint the

spaces, product

inner o

between tw operator

linear a

is :

If

* w T

v w

T(v)

V W

T T

W V

T

*

=

=

= n

j x jv j

v 1

Let v v ( )

=1

= m

i ij i

j a w

v

T v v

Q

w w

c

w x

a v

T x v

x T

v T

m

i

i i

m i

n

j ij j i

n

j j j

n

j j j

v v

v v

v v

=

=

=

=

=

∑ ∑

=

= =

=

=

1

1 1

1

1 ) ( ) ( )

( )

(

where =

n=

j ij j

i a x

c 1

=

=

= n

j

j ij

i b v

w T

v w

T

1

*

*( ) , then let ( )

If v v v v

既然可以轉過去,當然也可以轉回來

(24)

6 Linear operators (5)

v v

b c

v b c w

T c w

c T

w T

n j

m i

j ij i

m i

n j

j ij i m

i i i

m

i i i

v v

v v

v v

=

=

=

=

=

∑∑

∑∑

= =

= = =

=

1 1

1 1

1

* 1

*

*( ) ( ) ( )

=

= n

j x jv j

v 1

v

Known v j

m

i

ij

ib x

c =

=1

=

= n

j ij j

i a x

c 1

Known

∑∑

= =

= m

i

n j

j ij ij

j a b x

x

1 1

(25)

2009/04/01

Matrix representation:

( )

=

n n

x x v

v

vv v L v M1

1, ,

( ) w

c c w

w v

T

m m

M v L v

v

v =

=

1 1, ,

) (

( )

=

mj j m

j

a a w

w v

T v v L v M1

1, , )

(

( ) ( )

( )

=

=

=

n mn

m

n n

n n

n n

x x

a a

a a

w w

x x v

v T x

x v

v T v

T

M L

M O

M v L v L

v M v L

v M v L

v

1

1

1 11

1

1 1

1 1

, ,

) ,

, ( )

, , ( )

(

25

6 Linear operators (6)

Let and

C=AX

(26)

6 Linear operators (7)

Similarly

( )

=

m m

c c w

w

wv v L v M1

1, , ( )

=

ni i n

i

b b v

v w

T v v L v M1

1

*( ) , ,

(known) Let

( )

( )

=

=

=

n n

m nm

n

m n

x x v

v v

c c

b b

b b

v v

w T

v M v L

v

M L

M O

M v L v L

v

1 1

1

1

1 11

1

*

, , , , )

(

X=BC

X=BC=BAX BA=I

(27)

7 Least squares (1)

• Motivation:

– 1. we often use least squares to develop a

procedure for approximating signals (or functions).

– 2. we often use least squares to get model parameters in a fitting problem.

(28)

7 Least squares (2)

Best line fitting problem (overdetermined problem)

) , (xi yi

) ,

(xi mxi +b

Error at xi is | yi (mxi +b)|

The best line fitting is to find the minimum total square error:

=

+

= N

i

i

i mx b

y E

1

))2

(

( N>>2

(29)

7 Least squares (3)

=

+

= N

i

i

i mx b

y E

1

))2

( (

⎪⎪

=

+

=

=

+

=

=

= N

i

i i

i i

i N

i

b mx b y

E

x b

mx m y

E

1 1

0 ) 1 ))(

( (

2 0

0 ) ))(

( (

2 0

⎪⎪

=

=

=

= N

i

i i

N

i

i i

i i

b mx y

bx mx

x y

1 1

2

0 ) (

0 ) (

⎪⎪

+

=

+

=

∑ ∑ ∑

=

=

=

= = =

1 1

1

1 1 1

2

N

i N

i

i N

i i N

i

N

i

i N

i

i i

i

b mx

y

bx mx

x y

⎟⎟

⎜⎜

=

=

=

=

=

=

b m N

x

x x

y x y

N

i i

N

i i N

i i N

i i N

i

i i

1

1 1

2

1 1

Linear equations.

⎟⎟ =

⎜⎜

=

=

=

=

=

1 1 1

1

1 1

2

N

i i N

i

i i N

i i

N

i i N

i i

y x y N

x

x x

b m

(30)

7 Least squares (4)

Matlab program:

m=2.5; b=3.7;

x=rand(1,50)*50;

y=m*x+b+randn(1,50)*5;

sx=[min(x) max(x)];

sy=m*sx+b;

figure(1); clf; plot(x,y,'.'); hold on; plot(sx,sy,'r');

A=[sum(x.^2) sum(x);

sum(x) length(x)];

B=[sum(x.*y); sum(y)];

v=inv(A)*B ; m1=v(1)

b1=v(2)

y1=m1*sx+b1;

plot(sx,y1,'g');

(31)

7 Least squares (5)

Result

Red: Ground truth, Green: Estimation.

(32)

Homework

•計算f長度,

f = sin t, | f |=

ππsin2 t dt

參考文獻

相關文件

Keywords: accuracy measure; bootstrap; case-control; cross-validation; missing data; M -phase; pseudo least squares; pseudo maximum likelihood estimator; receiver

Compute interface normal, using method such as Gradient or least squares of Youngs or Puckett Determine interface location by iterative bisection..

We are not aware of any existing methods for identifying constant parameters or covariates in the parametric component of a semiparametric model, although there exists an

Use the design in part (a) to cover the floor board completely, how many trapezium tiles are needed at least.

Curriculum planning: Teachers may introduce how to use short division to find the greatest common divisor and the least common multiple of two numbers at Learning Objective 1.4

Then, we recast the signal recovery problem as a smoothing penalized least squares optimization problem, and apply the nonlinear conjugate gradient method to solve the smoothing

Then, we recast the signal recovery problem as a smoothing penalized least squares optimization problem, and apply the nonlinear conjugate gradient method to solve the smoothing

Q: Can we at least find the exact string theory background that gives our universe. A: A