• 沒有找到結果。

Section 10.2 Calculus with Parametric Curves EX.2

N/A
N/A
Protected

Academic year: 2022

Share "Section 10.2 Calculus with Parametric Curves EX.2"

Copied!
2
0
0

加載中.... (立即查看全文)

全文

(1)

Section 10.2 Calculus with Parametric Curves

EX.2

x = 1tdxdt = −1t2 and y =√

te−tdydt = e−tt−12 (12 − t). So dydx = e−tt32(t − 12)

EX.5

x = t cos t ⇒ dxdt = cos t − t sin t and y = t sin t ⇒ dydt = sin t + t cos t. So t = π ,dydx = −π−1 = π Moreover, the tangent line is y − y(π) = π(x − x(π) ⇒ y = πx + π2

EX.6

x = cos θ + sin 2θ ⇒ x(0) = 1 and y = sin θ + cos 2θ ⇒ y(0) = 1.

dx

= − sin θ + 2 cos θ and dydt = cos θ − 2 sin 2θ. So t = 0 ,dydx = 12. So the tangent line is y = 12x +12.

EX.11

x = t2 + 1 and y = t2+ t ⇒ dxdt = 2t and dydt = 2t + 1. So dydx = 2t+12t . Moreover, d

dy dx

dt = −12t2, ddx2y2 =

ddy dx dt dx dt

=

−1 2t2

2t = 4t−13. So the curve is concave upward as dxd2y2 > 0 ⇒ t < 0

EX.16

x = cos 2t and y = cos t ⇒ dxdt = −2 sin 2t and dydt = − sin t. So dydx = 4 cos t1 = sec t4 . Moreover, d

dy dx

dt = sec t tan t

4 , dxd2y2 =

ddy dx dt dx dt

=

sec t tan t 4

−2 sin 2t = − sec163t. So the curve is concave upward as ddx2y2 > 0 ⇒

π

2 < t < π

EX.30

x = 3t2+ 1 and y = 2t3+ 1 ⇒ dxdt = 6t and dydt = 6t2dxdy = t

The tangent line is y − (2t3+ 1) = t(x − (3t2+ 1)) and passes through x = 4, y = 3.

So 2 − 2t3 = 3t − 3t3 ⇒ t3− 3t + 2 = 0 ⇒ (t + 2)(t − 1)2 = 0 ⇒ t = −2 or t = 1.

The tangent line is y − 3 = x − 4 or y − 3 = −2(x − 4).

1

(2)

EX.31

The area is 4Ra

0 y dx x=a cos θ,y=b sin θ

===========⇒ 4R0

π 2

b sin θa(− sin θ) dθ = 4abR π2

0 sin2θdθ = abπ

EX.41

dx

dt = 6t , dydt = 6t2, Arc length=R1

0 p(6t)2+ (6t2)2 dt ⇒ 6R1 0 t√

t2+ 1 dt = 2(t2+ 1)(32)

1 0 = 4√

2 − 2

EX.44

dx

dt = −3 sin t + 3 sin 3t and dydt = 3 cos t − 3 cos 3t, Arc length =Rπ

0 3p(sin 3t − sin t)2+ (cos 3t − cos t)2dt =Rπ 0 3√

2 − 2 sin 3t sin t − 2 cos 3t cos t dt

=Rπ

0 3p2 + cos 4t − cos 2t − (cos 4t + cos 2t) dt = 6 R0πq

1−cos 2t 2

= 6Rπ

o sin t dt = −6 cos t

π 0 = 12

EX.62

By the formula:

The area of surface =R1

0 2π 3t2p(3 − 3t2)2+ (6t)2dt = 18πR1

0 t2p(t2− 1)2+ (2t)2dt

= 18πR1

0 t2(t2+ 1) dt = 18π(15 +13) = 485π

EX.63

By the formula:

The area of surface =R π2

0 2π a sin3θp

(−3a cos2θ sin θ)2+ (3a cos θ sin2θ)2

= 2πaRπ2

0 sin3θp

(3a cos θ sin θ)(cos θ2+ sin2θ) dθ

= 6πa2Rπ2

0 sin4θ cos θ dθ = 65πa2

2

參考文獻

相關文件

If a and b are fixed numbers, find parametric equations for the curve that consists of all possible positions of the point P in the figure, using the angle  as the parameter.. If

The first equation gives  = −1, but this does not satisfy the other equations, so the particles do not collide.. All

Some earlier versions of Maple (as well as Mathematica) cannot do the integral exactly, so we use the command evalf(Int(sqrt(diff(x,t)ˆ2+diff(y,t)ˆ2),t=0..4*Pi)); to estimate

固的-46 Set up an integral 伽t represents the length of the part of the parametric curve shown in the graph.. Then use a calculator (or computer) to find the length co叮ect to

Section 10.1 Curves Defined by Parametric Equations 10 PARAMETRIC EQUATIONS AND POLAR COORDINATES1. 10.1 Curves Defined by

To find the point that the curve may fail to be smooth ,we need solve dx dt = dy dt = 0 ,and there is no such

Hint:By the definition of the area of the surface of a parametric curve rotating about the x-axis or

[r]