• 沒有找到結果。

(1 point). Then the following two statements hold true:

N/A
N/A
Protected

Academic year: 2022

Share "(1 point). Then the following two statements hold true:"

Copied!
10
0
0

加載中.... (立即查看全文)

全文

(1)

1061微微微乙乙乙01-05班班班期期期末末末考考考解解解答答答和和和評評評分分分標標標準準準 1. (15%)

(a) (5%) 請精確陳述微積分基本定理。

(b) (10%) 函數 f (x) 滿足

x 0

f (t)dt =∫

1 x

t2f (t)dt +x16 8 +

x18

9 +C 對所有的 x, 其中 C 是常數。求出函數 f (x) 及常數 C.

Solution:

(a) (5 points) Assume that f (x) is continuous on [a, b]

(1 point). Then the following two statements hold true:

(Part I) Let F (x) =∫

x

a f (t)dt. Then F(x) = f (x).

(2 points)

(Part II) If G(x) = f (x). Then ∫

b a

f (t)dt = G(b) − G(a).

(2 points)

註: The fact that

F (x) =∫ f (x)dx implies F(x) = f (x)

is just a definition for anti-derivatives but not a part of Fundamental Theorems of Calculus. You will get no points if you write down this as part I in your answer.

(b) (10 points) Do the derivatives on the both sides of

x 0

f (t)dt =∫

1 x

t2f (t)dt +x16 8 +

x18 9 +C, we obtain

f (x) = −x2f (x) + 2x15+2x17. Hence

f (x) =2x15+2x17

1 + x2 =2x15.

(7 points)

Furthermore, set x = 0 in the formula∫

x 0

f (t)dt =∫

1 x

t2f (t)dt +x16 8 +

x18

9 +C, we have 0 =∫

1 0

t2f (t)dt + C

= ∫

1

0 2t17dt + C

= t18

9 ∣

1

0

+C

=

−1 9 +C.

Hence C =−1

9 .

(3 points)

註: Doing the derivatives incorrectly such as writing down

f (x) − f (0) = f (1) − x2f (x) + 2x15+2x17,

or making any similar mistakes in this step, you will get no more then 5 points for this question.

Page 1 of 10

(2)

2. (7%) 求 limx→∞ ln(1 + x) ln(1 + x2)

.

Solution:

(7 points) By using L’Hospital rule (for the ∞

form), we have

x→∞lim

ln(1 + x) ln(1 + x2)

= lim

x→∞

1 1+x

2x 1+x2

= lim

x→∞

x2+1

2x(x + 1)

(5 points)

= lim

x→∞

x2+1 2x2+2x

= 1

2.

(2 points)

註: Doing the derivatives as

(ln(1 + x2))

= 1 1 + x2 you will get no points for this question.

(3)

3. (7%) 求 limx→0( 1 x2

1 sin2x).

Solution:

Solution 1.

cosx = 1 −x2 2! +

x4 4! −

x6 6! +...

cos2x = 1 −22∗x2 2! +

24∗x4 4! −

26∗x6 6! +...

sin2x = 1 − cos2x

2 =

2 ∗ x2 2! −

23∗x4 4! +

25∗x6 6! +...

x→0lim

2∗x2 2! −2

3∗x4 4! +2

5∗x6

6! +... − x2 x2∗ (2∗x

2

2! −2

3∗x4 4! +2

5∗x6 6! +...)

xlim→0

2

3∗x4 4! +2

5∗x6 6! +...

2∗x4 2! −2

3∗x6 4! +2

5∗x8 6! +...⇒

−2 3

2 =

−1 3

Solution 2.

x→0lim

sin2x − x2

x2sin2x because equ. satisfy L’H (0 0)

⇒lim

x→0

sin2x − 2x

2xsin2x + x2sin2x using equ. sin2x = 2sinxcosx and L’H (0 0)

⇒lim

x→0

2cos2x − 2

2sin2x + 4xsin2x + 2x2cos2x using equ. L’H (0 0)

⇒lim

x→0

−4sin2x

6sin2x + 12xcos2x − 4x2sin2x using equ. L’H (0 0)

⇒lim

x→0

−8cos2x

24cos2x − 32sin2x − 8x2cos2x

−8 24 ⇒

−1 3

score(solution1): Final answer 1 point. Using cosx to find sin2x 3 points. Find cos2x 1 point. Find sin2x 2 point.

score(solution2): Final answer 1 point. Using L’H 3 points. Correct 1st differential equ 1 point. Correct 2nd differential equ 2 point.

Page 3 of 10

(4)

4. (14%)

(a) (7%) 導出 tan−1x在 x = 0 處之泰勒展示。(需求出 第 n 項) (b) (7%) 求 limx→03 tan−1x − 3x + x3

3x5 .

Solution:

(a) Solution 1.

1

1 − x =1 + x + x2+... + xn 1

1 + x2 =

dtan−1x dx =

1 1 − (−x2)

=1 + (−x2) + (−x2)2+... + (−x2)n=1 − x2+x4−x6+... + (−1)nx2n tan−1x =∫

1

1 + x2dx. = x −x3 3 +

x5

5 +... + (−1)n 2n + 1x2n+1=

∞ n=0∑

(−1)n 2n + 1x2n+1

Solution 2.

dtan−1x

dx = (1 + x2)−1 (1 + x2)−1=

n=0

Cn−1x2n

tan−1x =

n=0∑Cn−1x2n+1 2n + 1

score: Final answer 1 point. Know tan−1x = 1

1 − x2 2 points.

Know 1

1 − x =1 + x + x2+... 2 points. Correct concept 4 points.

(b) Solution 1.

limx→0

3tan−1x − 3x + x3 3x5 =lim

x→0

3(x −x33+x

5

5 +...) − 3x + x3

3x5 =lim

x→0

3(x55x

7

7 +...) 3x5

= 3 5∗

1 3=

1 5. Solution 2.

limx→0

3tan−1x − 3x + x3

3x5 because equ. satisfy L’H (0 0) limx→0

3(1+x12) −3 + 3x2 15x4 =lim

x→0

3 − 3 − 3x2+3x2+3x4 (1 + x2)15x4 =lim

x→0

3x4 15x4+15x6

1 5 score: answer 1 point. Using equ. L’H or upward result of (a.) 6points.

(5)

5. (14%) 求出以下兩個不定積分。

(a) (7%) ∫ x sin−1xdx.

(b) (7%) ∫

ln x x ln x + xdx.

Solution:

(a). Let u = sin−1x, dv = xdx then du = dx

1 − x2, v = x2 2 .

∫ x sin−1x = x2

2 sin−1x − 1 2∫

x2dx

1 − x2 (1)

For integral in (1), let x = sin θ then dx = cos θdθ

x2dx

1 − x2 = ∫

sin2θ

1 − sin2θ

cos θdθ =∫ sin2θ

cos θ cos θdθ

= ∫ sin2θdθ =∫

1 − cos 2θ 2 dθ

= θ 2 −

sin 2θ 4 Since sin θ = x then cos θ =

1 − x2, sin 2θ = 2x

1 − x2 and θ = sin−1x θ

2− sin 2θ

4 = 1

2sin−1x − x 2√

1 − x2 Hence (1) become

∫ x sin−1x =x2

2 sin−1x −1

4sin−1x + x 4√

1 − x2 +C Grading Critiria:

ˆ 使用分佈積分並正確令u = sin−1x, dv = xdx得2分

ˆ 正確寫下使用分佈積分的結果(式子(1))得

1

ˆ 根據式子(1)的結果,令x = sin θ並正確寫下變數替換後的式子得

2

ˆ 剩下計算過程加解答

2

ˆ 也可以用其他方法做,給分原則不變。

(b). Let u = ln x then du =dx x

ln x

x ln x + xdx =∫ u

1 + udu =∫ (1 − 1 1 + u)du

=u − ln (1 + u) + C = ln x − ln (1 + ln x) + C Grading Critiria:

ˆ 使用變數變換,令u = ln x並正確寫下變換後的式子得

3

ˆ 剩下計算過程和解答共佔

4

Page 5 of 10

(6)

6. (6%) 求出 sin(x2)在 x = 0 處之泰勒展示的第 n 項。(可可可直接使用 sin x 及 cos x 之泰勒展示,不必推導。)

Solution:

Write down the tylor expansion of sin x

sin x = x −x3 3! +

x5 5! −

x7 7! + ⋯⋯

Substitute x with x2 then it’s the tylor expansion of sin(x2)

sin x2=x2− x6

3! + x10

5! − x14

7! + ⋯⋯

Grading Critiria:

ˆ 寫下sin x的泰勒展式得

3

ˆ 把x換成x2帶入sin x的泰勒展式得

3

ˆ 化簡有錯扣

1

ˆ sin x的泰勒展示寫錯直接0分

(7)

7. (7%) 求出 sin2x在 x = 0 處之泰勒展示的第 n 項。(可直接使用 sin x 及 cos x 之泰勒展示,不必推導。)

Solution:

Method1

sin2x = 1 − cos 2x

2 (1 point)

cos x =

n=0

(−1)n x2n

(2n)! (2 points)

cos(2x) =

n=0∑(−1)n(2x)2n

(2n)! (2 points)

sin2x = 1 2−

1 2

n=0∑(−1)n(2x)2n (2n)!

= 1 2

n=1

(−1)n−122n (2n)! x2n

=

n=1

(−1)n−122n−1

(2n)! x2n (2 points)

Method2

d

dxsin2x = 2 sin x cos x = sin(2x) (1 point) sin x =

n=0∑(−1)n x2n+1

(2n + 1)! (2 points)

sin(2x) =

n=0∑(−1)n(2x)2n+1

(2n + 1)! (2 points)

sin2x =∫

x 0

n=0

(−1)n(2x)2n+1 (2n + 1)! dx

=

n=0

(−1)n22n+1 (2n + 2)! x2n+2

=

n=1

(−1)n−122n−1

(2n)! x2n (2 points)

Therefore, the n-th term of the Taylor expansion of sin2x centered at x = 0 is

⎧⎪

⎪⎪

⎪⎪

⎪⎩

0 , n = 0

(−1)n−122n−1

(2n)! x2n , n ≥ 1

Note that there will be 1˜2 point(s) deducted if you (to some degree) don’t specify the n-th term or just leave the answer in form of 1

2 − 1 2

n=0∑(−1)n(2x)2n (2n)!

Page 7 of 10

(8)

8. (10%) 求曲線 y = ln sec x 在 0 ≤ x ≤ π

4 間之長度。(任何積分公式都可使用,無須推導。)

Solution:

The arc length of the curve L =∫

b a

1 + [f(x)]2 dx, (2 points) where f (x) = ln sec x and f(x) = 1

sec x⋅sec x tan x = tan x (2 points) L =∫

π/4 0

1 + tan2x dx (2 points)

= ∫

π/4 0

sec x dx (1 point)

= ∫

π/4 0

sec x ⋅sec x + tan x sec x + tan x dx

= ∫

π/4 0

sec2x + sec x tan x sec x + tan x dx

=ln ∣ sec x + tan x∣∣

π/4 0

(2 points)

=ln ∣

2 + 1∣ − ln ∣1 + 0∣

=ln(√

2 + 1) (1 point)

Note that there will be no point if you put the formula in the wrong way at the beginning.

(9)

9. (20%) 設 Ω 是由 y = 1

x(3 − x), x = 1, x = 2 及 x軸所包圍的區域。

(a) (7%) 求 Ω 之面積。

(b) (7%) 求 Ω 繞 x 軸旋轉所產生的體積。

(c) (6%) 求 Ω 繞 y 軸旋轉所產生的體積。

Solution:

Ω bounded by (y = 1

x(3 − x)) + (x = 1) + (x = 2) + (y = 0)

0 0.5 1 1.5 2 2.5 3

0 0.1 0.2 0.3 0.4 0.5

x

y

(a)

2 1

1

x(3 − x)dx =∫

2 1

1/3 x +

1/3 3 − xdx = 1

3(ln(x))21+ 1

3(−ln(3 − x))21= 2 3ln(2) Note:

1

x(3 − x)= A x + B

3 − x⇒1 = A(3 − x) + Bx ⇒ A = 1/3 , B = 1/3 配分:

寫出公式 (1 pt) 求出係數 (3 pt) 積分 (2 pt) 答案 (1 pt)

(b) 法一

Vx= ∫

2 1

π( 1

x(3 − x))2dx =∫

2 1

π2/27 x +

1/9 x2 +

2/27 3 − x+

1/9 (3 − x)2dx

=π[2

27(ln(x))21+ 1 9

−1 x +

2

27(−ln(3 − x))21+ 1 9

1

3 − x] =π( 4

27ln(2) +1 9)

Note:

( 1 x(3 − x))2=

A x +

B x2+

C 3 − x+

D (3 − x)2

Page 9 of 10

(10)

⇒1 = Ax(3 − x)2+B(3 − x)2+Cx(3 − x) + Dx2 put x = 0, x = 3, x = 1, x = −1, ⇒ A = 2/27, B = 1/9, C = 2/27, D = 1/9

配分:

寫出公式 (1 pt) 求出係數 (3 pt) 積分 (2 pt) 答案 (1 pt)

法二

By (a) we have

Vx= ∫

2 1

π( 1

x(3 − x))2dx =∫

2 1

π(1/3 x +

1/3

3 − x)2dx = π 9∫

2 1

( 1 x+

1

3 − x)2dx = π 9∫

2 1

( 1 x2+

2 x(3 − x)+

1 (3 − x)2)dx

= π 9 ∫

2 1

1 x2dx +π

9 ∫

2 1

2

x(3 − x)dx +π 9∫

2 1

1

(3 − x)2dx = π 9(

−1 x)21+

π 9 ⋅2 ⋅2

3ln(2) +π 9(

1

(3 − x))21=π(4

27ln(2) + 1 9)

(c) 法一

Vy= ∫

2 1

2πxf (x)dx =∫

2 1

2πx 1

x(3 − x)dx =∫

2 1

2π 1

3 − xdx = 2π∫

2 1

(−ln(3 − x))21=2πln(2)

配分:

寫出公式 (1 pt) 積分 (3 pt) 答案 (2 pt)

法二

由 Pappus Thm

(對y軸旋轉之體積)=(Ω質心繞一圈軌跡長)(Ω 面積) 容易看出Ω 對x方向為對稱圖形,故質心之x座標: ¯x =3

2 由(a)

⇒Vy=2π(3

2) ⋅ ∣Ω∣ = 2π ⋅ (3 2) ⋅ (

2

3ln(2)) = 2πln(2)

參考文獻

相關文件

(2) (1 points) Correct evaluation with the (right or wrong) obtained result of second time implicit differ- entiation to obtain y ′′ (1) deserves the rest 1 points.. In the second

Find unit vector correctly get 1 point, know how to do inner product get 1 point, answer correct get 1 point.. (c) There are 4 points in

Then you get zero point if the answer is not

Only write the correct Spherical coordinate, doesn’t write the range of θ, φ gets 1 point separately.. The correct range of θ on both surface gets

To get the inteval of convergence , we need to check the end points, 1

[r]

A floating point number in double precision IEEE standard format uses two words (64 bits) to store the number as shown in the following figure.. 1 sign

A) The solubility of an ionic solid in water decreases with increasing temperature.. B) The solubility of a gas in water usually increases with