QUANTUM MONTE CARLO AND NON-GINZBURG-LANDAU TYPE PHASE TRANSITION
NTU Colloquium
Naoki Kawashima
ISSP
December 27, 2011 NTU, Taiwan
Collaborators
Kyoto U. Kenji Harada ... SUN, JQ , BIQ, PWU, K ISSP Synge Todo ... K, JQ, PWU, SUN
Haruhiko Matsuo ... K, JQ, PWU, SUN Jie Lou ... SUN, JQ, K
Akiko Masaki … PWU, OPT, K Takahiro Ohgoe ... OPT, PWU
Hyogo U. Takafumi Suzuki … JQ, K, OPT, PWU, SUN Boston U. Anders Sandvik ... JQ
NEC Kota Sakakura … K
K … Parallelization on “K”
SUN... SU(N) Heisenberg model
BIQ ... Biquadratic Heisenberg model PWU ... Paralllelization of worm update JQ ... SU(N) J-Q model
OPT ... Optical lattice
Ising Model
Critical Slowing Down in Monte Carlo …
The typical size of magnetic domains: ξ ~ a x (T/Tc - 1)ν The size of the updating unit: (a single site) ~ a
The effect of spin flip at a point propagates
by some diffusion-like process which makes z~2.
So, it takes
τ~ (T-Tc)νz
Monte Carlo steps for a magnetic domain undertake a substantial change (annihilation, creation, relocation, etc).
Swendsen-Wang Algorithm
S G S’
not flipped flipped
Swendsen-Wang 1987 ... Binding spins together to form a cluster.
Path-Integral Monte Carlo Method
:
:
S
p p
Z W S
W S w S
S
plaquette
The whole pattern of world-lines
Interaction Vertex(“shaded plaquettes”)
World Line Suzuki 1976
Method Used before 1993
Many Problems --- No change in topological numbers, critical slowing down, high-precision slowing down, etc.
The patterns are updated only locally.
Generalizing SW algorithm to QMC
A "bond" in the Swendsen-Wang algorithm
Loop elements
in the loop algorithm
for QMC
Loop Algorithm for QMC
Cluster Algorithm on Path-Integral Representation:
A graph element (for S=1/2 anti- ferromagnetic Heisenberg model)
Evertz-Lana-Marcu 1993
Magnetic/Non-Magnetic Transition
"Bond-alternation" enforces the transition to the VBS state.
, , , , , :
1 1
x
x
e e
x y x y x y x
H J S S
J S S
x
x
x
xx x odd
Conventional Transition
At the transition point, the Skyrmion number is not conserved.
Monopole ("hedgehog")
= The skyrmion-number-changing event . Example: 2+1 D O(3) Wilson-Fisher f.p.
If the skyrmion number changes at some point of time...
... there must be a singular point in space-time.
Skyrmion number:
d x n
xn
yn
Q
24 1
Deconfined Critical Phenomena
If the skyrmion number changes at some point of time...
... there must be a singular point in space-time.
Skyrmion number:
d x n
xn
yn
Q
24 1
At the deconfined critical point, the skyrmion number is asymptotically
conserved, and monopoles are prohibited.
Example: non-compact CP(1) model ?
T. Senthil, et al, Science 303, 1490 (2004)
Symmetries Around DCP
VBS
Spin rotation symmetry
Neel
broken not broken
Lattice symmetry
broken not broken
We cannot say one phase has higher symmetry than the other.
T. Senthil, et al., Science 303, 1490 (2004)
SU(2) Symmetric NCCP 1 Model
Kuklov, Matsumoto, et al, PRL 101, 050405 (2008) g=1.65
*
2 2( ) 1,2 1,2
c.c. 1 1
8
iAij
i j j
ij
S t z z e A z
g
1 0, 2 0
i i
z z 1 2
* 1 2
0 0,
i i
i i
z z
z z
*
1 2 0, 1 2 0
i i i i
z z z z
SU(N) Heisenberg Model
thesame with theconjugate representationtion representa some
by d represente rotation
SU(N) of
generators
r S
R r
S
' ,
r r
r S
r N S
H J
S , S S
S
, , , 1 , 2 , , N
A general extension of the SU(2) anti-ferromagnetic Heisenberg model
, , , ,etc
Representation:
n=1
(fundamental representation.)
n=2 n=3 n=4
2D Analogue of "Haldane" States
Nc ~ 5.3 n
Read & Sachdev (1989) Arovas & Auerbach (1988)
2D Isotropic Case (Tanabe, N.K.) Prediction from 1/N expansion
New challenge --- 「京」
京 = 10
160.64 M cores
Parallelization of loop algorithm
S. Todo & H. Matsuo
Binary-tree algorithm for cluster identification
... Relative overhead is negligible at very low temperatures
Parallelization of loop algorithm
S. Todo & H. Matsuo
Asynchronous lock-free union-find algorithm
(1) find root of each cluster/tree (2) unify two clusters
(3) compress path to the new root Locking whole clusters is no good.
(reduces parallelization efficiency) Finding root and path compression are “thread-safe”
Lock-free unification can be achieved by using CAS (compare-and-swap) atomic operation
S. Todo & H. Matsuo
Fundamental Representation (n=1)
/ / 4 2 0 0
4 /
2 /
M L
M
M L
M
L C
L L C
R
M M M
4<Nc<5
R S
11 R S
22 R
M
Neel order dissapears at Nc
Tanabe & N.K.: PRL 98 057202 (2007)
2D Isotropic Case (Tanabe, N.K.)
SU(N) Model (n=2)
Nc~9
NB
y x
n n n
V
V V
A
1 2
1
;
R R R e
R R
R
L/2
A 0A
Very small but finite LRO is present.
Lattice rotation symmetry is broken.
R
MN
L
2D Isotropic Case (Tanabe, N.K.)
Ground-State Manifold is U(1) Symmetric
Tanabe & N.K.: PRL 98 057202 (2007)
n=1, N=6
N
S S
P
P V P
D
1
,
, 1 ,
R R
R R
e R R e
R R
R
D ,
xD
y
The system is asymptotically U(1) symmetric though the original microscopic model
does not possess this symmetry.
pure columnar
pure plaquette
N=10,n=1,L=32,β=20
SU(N) Heisenberg Model (n=1)
D
xD
y2D Isotropic Case (Tanabe, N.K.) ... Reflection of the U(1)
symmetry at DCP
Multi-spin Interactions
2D JQ-Model (Lou, Sandvik, N.K.)
J. Lou, A. Sandvik, N.K.: PRB 80, 180414R (2009)
A. W. Sandvik, Phys. Rev. Lett. 98, 227202 (2007)
SU(2) J-Q Model
A. W. Sandvik, PRL98, 227202 (2007)
U(1) Nature is confirmed near the critical point.
(Slightly on the dimer
order side.)
VBS - VBS Crossover
SU(2) J-Q3 SU(3) J-Q2
Large Q Small Q
2D JQ-Model (Lou, Sandvik, N.K.) J. Lou, A. Sandvik, N.K (2009)
Scaling Properties of Anisotropy
SU(2) J-Q3 Model
SU(3) J-Q2 Model
) 5 ( 20 . 1 ),
2 ( 69 . 0 ),
2 ( 20 .
0 4
d a
) 2 ( 6 . 1 ),
3 ( 65 . 0 ),
3 ( 42 .
0 4
d a
SU(2) J-Q3 SU(3) J-Q2
cos 4
,
2 2
2 4
y x
y x
y x
D D
D D
P dD dD
D
CF: J. Lou, A. W. Sandvik, and L. Balents, PRL (2007).
2D JQ-Model (Lou, Sandvik, N.K.)
J. Lou, A. Sandvik, N.K. (2009)
Recovery of Discreteness
The exponent nu on the VBS side may be affected by the additional fixed point and can be differ from the Neel side.
J-Q Model
Jie Lou, A. Sandvik and N.K.:Phys. Rev. B 80, 180414 (2009)
1 ,
2 4 for
1
, ,
, 3 3
) ( 2 2
) ( 1
3 2
1
n N
C
C C C Q
H
C C Q
H
C J
H
H H
H H
j i
j i ij
ijklmn
mn kl ij ijkl
kl ij ij
ij
S S
Continuous Transition is suggested.
SU(2) J-Q Model
2D JQ-Model (Lou, Sandvik, N.K.)
SU(3) and SU(4) J-Q2 Models
) 3 ( 65 . 0 ),
3 ( 38 .
s
0
) 2 ( 70 . 0 ),
5 ( 42 .
s
0
SU(3) J-Q2
SU(4) J-Q2
Jie Lou, A. Sandvik and N.K.:
Phys. Rev. B 80, 180414 (2009)
Universality?
T. Senthil, et al, Science 303, 1490 (2004)
M. Levin and T. Senthil, Phys. Rev. B 70, 220403R (2004).
. 1 ,
1
For N
s
For N 1,
d N .
CPN-1 Field Theory:M. A. Metlitski, et al, PRB 78, 214418 (2008);
G. Murthy and S. Sachdev, Nucl. Phys. B 344, 557 (1990).
J. Lou, A. Sandvik, N.K.: PRB 80, 180414R (2009)
2D JQ-Model (Lou, Sandvik, N.K.)
Scaling Dimension (CP N-1 Model)
Murthy and Sachdev, Nucl. Phys. B 344 557 (1990) Metlitski, et al, PRB78 214418 (2008)
1
2 2
VBS VBS 2
1 1
1
1
: 1 gauge field
monopole scaling dimension
0 0 0 1
1 2
lim 0.2492 0.062296 Murthy & Sachdev
2
q
D N
L D z i z
g
D iA
A U
D R D R v R v
R
N N N
is non-compact
conservation of the gauge current
absense of monopoles
G
A
J A
2D JQ-Model (Lou, Sandvik, N.K.)
1
2
2 1 1 1
0.2492 0.32
D
O
N N N N
Monopole Scaling Dimension up to O(N -1 )
D
N
2D JQ-Model (Lou, Sandvik, N.K.) Jie Lou, A. Sandvik
and N.K.: Phys. Rev.
B 80, 180414 (2009)
Recent Refinement by Kaul & Sandvik
R. Kaul and A. Sandvik, arXiv:1110.4130v1
Quantum Spin System
Yip
(PRL 90 (2003) 250402): on - site Coulomb repulsion
)
( , 1,0,1
ij
i j
j
i
b b b
b t
H
Effective Hamiltonian to the 2nd order in t/U.
] is spin total
when the repulsion
site -
on the [
3 4 3
2 , 2
const
0 2
2 2
2 2 )
(
2
S U
U t U
J t U
J t
J J
H
S
Q L
ij
j i Q j
i L
S S S S
23
Na: 0< U
0< U
2( J
Q< J
L< 0)
Bilinear-Biquadratic Model in 2D with
strong spatial anisotropy (Phase Diagram)
sin cos ,
Q L
2 Q
L
J J
J J
y x
S S J S S J H
Diversing Correlation Lengths
θ=-π/2
2 correlation length diverges at the same point.
1 1
spin,
VBSVBS Neel
y x
J J
θ=ー0.5π (SU(3) symmetric)
Jx
Jy /
R
MR
Dx y
J
J
5
125 .
c
0
A single transition is likely...
Cannot obtain a reliable finite-size scaling plot.
Binder Ratio
Quasi-1D SU(N) (Harada, Troyer, N.K.)